

August 2012 May 2013 Update

Washington State
Department of Transportation

Government Vessel Airshed Emissions As part of the 2011 Puget Sound Maritime Air Emissions Inventory data collection effort for Harbor Vessels, data from nine 1988 diesel powered United States Coast Guard (USCG) vessels were provided to the data collection team. Vessel data for these vessels were not provided from the associated agencies during the 2005 emissions inventory and therefore these vessels were not included in the 2005 inventory. Further investigation, after the publication of the inventory report, by the Puget Sound Clean Air Agency revealed that the USCG vessels, which all come under the Government Vessel category, were actually operated in the Puget Sound during 2005. This new information affects only the tables that compare 2011 vs 2005 Airshed emissions that include Government Vessels. For a proper 2011 vs 2005 comparison, these vessels should be added back into the 2005 emissions. Adding these vessels back into the 2005 Airshed totals increases NO_x by 269 tons or 1%, VOC by 10 tons or 0.3%, CO by 22 tons or less than 0.2%, SO₂ by 0.13 tons or less than 0.1%, PM₁₀ by 12.62 tons or 0.8%, PM_{2.5} by 11.57 tons or less than 0.9%, DPM by 12.62 tons or less than 1%, and CO₂e by 14,229 or less than 0.8%. It is important to note that this new information *does not* affect any of the port comparison tables as the USCG vessels are not tenants nor associated with any port.

The affected 2011 vs 2005 Airshed emissions comparison tables in the inventory report include those in the Overview, Executive Summary, Section 2, and Section 4. The following key tables have been updated to facilitate more accurate comparisons: Tables ES.6/2.5, Tables ES.7/2.6, and Tables 4.19/4.20. Again, it should be noted that 2011 vs 2005 comparison tables by ports in Section 9 are not affected because these vessels are not tenants nor associated with any port.

Original - Tables ES.6/2.5: 2011 vs 2005 Total Airshed Emissions Comparison, tpy

Year	NO _x	VOC	CO	SO ₂	PM_{10}	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
2011	22,912	1,830	11,905	11,729	1,304	1,092	1,122	1,736,226
2005	26,790	3,060	17,686	13,621	1,552	1,298	1,329	1,831,684
Change, tpy	-3,877	-1,230	-5,781	-1,892	-248	-206	-208	-95,457
Change, %	-14%	-40%	-33%	-14%	-16%	-16%	-16%	-5%

Adjusted 2005 - Tables ES.6/2.5: 2011 vs 2005 Total Airshed Emissions Comparison, tpy

Year	NO_x	voc	СО	SO_2	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
2011	22,912	1,830	11,905	11,729	1,304	1,092	1,122	1,736,226
2005	27,059	3,070	17,708	13,621	1,565	1,310	1,342	1,845,912
Change, tpy	-4,146	-1,240	-5,804	-1,892	-261	-218	-220	-109,686
Change, %	-15%	-40%	-33%	-14%	-17%	-17%	-16%	-6%

Original - Tables ES.7/2.6: 2011 vs 2005 Total Airshed Emissions by Source Category, tpy

	NO_x	voc	СО	SO_2	PM_{10}	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
2011								
Ocean-going vessels	11,658	442	1,036	11,709.00	879.65	703.72	711.12	737,640
Harbor vessels	7,050	1,124	9,672	5.34	291.52	271.64	277.72	481,123
Locomotives	1,264	80	200	10.51	45.15	41.35	45.15	75,289
Cargo-handling equipment	594	37	297	0.60	32.60	31.70	32.60	64,275
Heavy-duty vehicles	2,340	143	666	3.40	55.00	43.50	55.00	375,071
Fleet vehicles	6	3	34	0.05	0.09	0.08	0.04	2,828
Total	22,912	1,830	11,905	11,728.90	1,304.01	1,092.00	1,121.63	1,736,226
2005								
Ocean-going vessels	14,551	509	1,200	12,923.71	1,030.66	822.51	841.99	812,391
Harbor vessels	6,228	2,207	14,455	380.17	293.72	270.58	259.54	450,134
Locomotives	2,156	109	269	168.60	59.11	54.39	59.11	98,495
Cargo-handling equipment	832	81	814	61.84	54.89	53.25	54.64	79,581
Heavy-duty vehicles	3,012	148	899	86.70	114.00	97.60	114.00	387,846
Fleet vehicles	10	5	50	0.04	0.08	0.08	0.08	3,237
Total	26,790	3,060	17,686	13,621.05	1,552.46	1,298.41	1,329.37	1,831,684
% Change								
Ocean-going vessels	-20%	-13%	-14%	-9%	-15%	-14%	-16%	-9%
Harbor vessels	13%	-49%	-33%	-99%	-1%	0%	7%	7%
Locomotives	-41%	-27%	-25%	-94%	-24%	-24%	-24%	-24%
Cargo-handling equipment	-29%	-54%	-64%	-99%	-41%	-40%	-40%	-19%
Heavy-duty vehicles	-22%	-3%	-26%	-96%	-52%	-55%	-52%	-3%
Fleet vehicles	-34%	-48%	-31%	24%	8%	3%	-47%	-13%
Total	-14%	-40%	-33%	-14%	-16%	-16%	-16%	-5%

Adjusted 2005 - Tables ES.7/2.6: 2011 vs 2005 Total Airshed Emissions by Source Category, tpy

	NO_x	voc	со	SO_2	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
2011								
Ocean-going vessels	11,658	442	1,036	11,709.00	879.65	703.72	711.12	737,640
Harbor vessels	7,050	1,124	9,672	5.34	291.52	271.64	277.72	481,123
Locomotives	1,264	80	200	10.51	45.15	41.35	45.15	75,289
Cargo-handling equipment	594	37	297	0.60	32.60	31.70	32.60	64,275
Heavy-duty vehicles	2,340	143	666	3.40	55.00	43.50	55.00	375,071
Fleet vehicles	6	3	34	0.05	0.09	0.08	0.04	2,828
Total	22,912	1,830	11,905	11,728.90	1,304.01	1,092.00	1,121.63	1,736,226
2005								
Ocean-going vessels	14,551	509	1,200	12,923.71	1,030.66	822.51	841.99	812,391
Harbor vessels	6,497	2,217	14,477	380.31	306.34	282.15	272.17	464,362
Locomotives	2,156	109	269	168.60	59.11	54.39	59.11	98,495
Cargo-handling equipment	832	81	814	61.84	54.89	53.25	54.64	79,581
Heavy-duty vehicles	3,012	148	899	86.70	114.00	97.60	114.00	387,846
Fleet vehicles	10	5	50	0.04	0.08	0.08	0.08	3,237
Total	27,059	3,070	17,708	13,621.18	1,565.08	1,309.97	1,341.99	1,845,912
% Change								
Ocean-going vessels	-20%	-13%	-14%	-9%	-15%	-14%	-16%	-9%
Harbor vessels	9%	-49%	-33%	-99%	-5%	-4%	2%	4%
Locomotives	-41%	-27%	-25%	-94%	-24%	-24%	-24%	-24%
Cargo-handling equipment	-29%	-54%	-64%	-99%	-41%	-40%	-40%	-19%
Heavy-duty vehicles	-22%	-3%	-26%	-96%	-52%	-55%	-52%	-3%
Fleet vehicles	-34%	-48%	-31%	24%	8%	3%	-47%	-13%
Total	-15%	-40%	-33%	-14%	-17%	-17%	-16%	-6%

Original - Table 4.19: 2011 vs 2005 Commercial Harbor and Government Vessel Emissions Comparison, tpy

Year	NO_x	voc	СО	SO_2	PM_{10}	PM _{2.5}	DPM	CO ₂ e
2011	6,253.0	247.2	1,021.9	3.7	272.3	253.7	272.1	381,275
2005	5,299.7	189.4	919.1	358.3	252.7	232.5	252.5	338,949
Change, tpy	953.3	57.8	102.8	-354.6	19.6	21.2	19.6	42,326
Change, %	18%	31%	11%	-99%	8%	9%	8%	12%

Adjusted 2005- Table 4.19: 2011 vs 2005 Commercial Harbor and Government Vessel Emissions Comparison, tpy

Year	NO_x	voc	СО	SO_2	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
2011	6,253.0	247.2	1,021.9	3.7	272.3	253.7	272.1	381,275
2005	5,568.7	199.6	941.5	358.5	265.4	244.1	265.1	353,178
Change, tpy	684.3	47.6	80.3	-354.8	7.0	9.6	7.0	28,097
Change, %	12%	24%	9%	-99%	3%	4%	3%	8%

Original - Table 4.20: 2011 vs 2005 Harbor Vessel Activity Change

Туре	2005 as 2011 hp-hr-lf	2011 hp-hr-lf	% Change
Assist/Escort	81,212,373	89,289,023	10%
Commercial fishing	10,558,042	9,493,618	-10%
Excursion	16,962,842	17,248,062	2%
Ferry	314,514,283	350,485,994	11%
Government	32,032,977	52,947,794	65%
Harbor tug	45,559,880	54,657,979	20%
Ocean tug	86,344,802	80,122,263	-7%
Tank barge	3,006,689	3,373,361	12%
Workboat	4,250,7 00	6,520,218	53%
Total	594,442,588	664,138,311	12%

Adjusted 2005 - Table 4.20: 2011 vs 2005 Harbor Vessel Activity Change

Туре	2005 as 2011	2011	% Change
	hp-hr-lf	hp-hr-lf	
Assist/Escort	81,212,373	89,289,023	10%
Commercial fishing	10,558,042	9,493,618	-10%
Excursion	16,962,842	17,248,062	2%
Ferry	314,514,283	350,485,994	11%
Government	56,818,977	52,947,794	-7%
Harbor tug	45,559,880	54,657,979	20%
Ocean tug	86,344,802	80,122,263	-7%
Tank barge	3,006,689	3,373,361	12%
Workboat	4,250,700	6,520,218	53%
Total	619,228,588	664,138,311	7%

Port Average 2011 OGV Type Characteristics Upon further review of the average 2011 OGV type characteristics tables, Starcrest noted that the hotelling time was actually the total annual hotelling plus anchorage time for each ship in the inventory domain, averaged by vessel type. Taking advantage of the update for Harbor Vessels, Starcrest replaced Hotelling Time with At-Berth Time which is the average time at-berth per call, by vessel type, for ships under normal operations (staying at berth less than 200 hours per call). There are occasional ships that have maintenance issues or are laid-berthed at a terminal with no loading/unloading operations. These ships were not included in At-Berth Time as to not skew the average.

It should be noted that Year Built, DWT, Main Engine Power, and Aux Engine Power columns are derived from data provided in the IHS Fairplay dataset and is averaged by vessel type. All four columns were updated with the latest data as part of this update.

The affected tables were:

Table 3.25:	Port of Anacortes Average 2011 OGV Type Characteristics, pg 117
Table 3.27:	Port of Port Angeles Average 2011 OGV Type Characteristics, pg 119
Table 3.29:	Port of Everett Average 2011 OGV Type Characteristics, pg 120
Table 3.31:	Port of Olympia Average 2011 OGV Type Characteristics, pg 120
Table 3.33:	Port of Seattle Average 2011 OGV Type Characteristics, pg 122
Table 3.35:	Port of Tacoma Average 2011 OGV Type Characteristics, pg 127

2011 PUGET SOUND MARITIME AIR EMISSIONS INVENTORY

September 2012

Prepared by:

Starcrest Consulting Group, LLC Poulsbo, Washington 98370

TABLE OF CONTENTS

Overview	
Exposuring Changa DV	1
EXECUTIVE SUMMARY	
ES.1.1 Maritime-Related Source Categories	
ES.1.2 Puget Sound Maritime Air Emissions Inventory Findings ES.1.2.1 Emissions Inventory Domain	
ES.1.2.1 Emissions inventory Domain	
ES.1.2 2011 Alished Total Ethissions ES.1.3 Overview of Comparison, 2011 vs 2005	
•	
SECTION 1 INTRODUCTION	
1.1 Reason for Study	
1.2 Scope of Study	
1.2.1 Pollutants	
1.2.2 Temporal Extent	
1.2.3 Emission Source Categories	
1.2.4 Geographical Extent	
1.3 Background Air Quality Conditions and Regulations	
1.3.1 Air Quality Conditions	
1.3.2 Washington State Regulations	
1.3.3 Federal Regulations	
1.3.4 International Regulations	
1.4 Emission Reduction Strategies	
1.4.1 BNSF Railway Company (BNSF)	
1.4.2 Port of Everett	
1.4.3 Port of Olympia	
1.4.4 Port of Seattle	
1.4.5 Port of Tacoma	
1.4.6 Tacoma Public Utilities – Locomotives	
1.4.7 Union Pacific	
1.4.8 Washington State Ferries	25
SECTION 2 SUMMARY RESULTS	26
2.1 Results	
2.2 Emission Comparison, 2011 vs 2005	
2.3 Port and Petroleum Facility Summaries	

TABLE OF CONTENTS (cont'd)

SECTION 3 OCEAN-GOING VESSELS	
3.1 Source Category Description and Operational Characteristics	
3.1.1 Auto Carriers	
3.1.2 Bulk Carriers	
3.1.3 Containerships	
3.1.4 Passenger Cruise Vessels	
3.1.5 General Cargo Vessels	
3.1.6 Ocean-Going Tugboats	
3.1.7 Refrigerated Vessels	
3.1.8 RoRo Vessels	
3.1.9 Tanker Vessels	
3.2 Geographical Delineation	
3.3 Data and Information Acquisition	
3.3.1 2005 Puget Sound Maritime Air Emissions Inventory	
3.3.2 Marine Exchange of Puget Sound (MarEx)	
3.3.3 Lloyd's Register of Ships	
3.3.4 Puget Sound Pilots	
3.3.5 Vessel Operational Data	
3.4 Operational Profiles	
3.4.1 Vessel Activity	
3.4.2 Vessel Routing	
3.5 Emission Reduction Technologies Identified	
3.6 Emissions Estimating Methodology	
3.6.1 Propulsion Engine Maximum Continuous Rated Power	
3.6.2 Propulsion Engine Load Factor	
3.6.3 Propulsion Engine Time in Mode	
3.6.4 Propulsion Engine Emission Factors	
3.6.5 Varying Emission Factors for Low Loads for Propulsion Engines	
3.6.6 Propulsion Engine Maneuvering Loads	
3.6.7 Auxiliary Engine Emission Factors	
3.6.8 Auxiliary Engine Defaults	
3.6.9 Auxiliary Boilers	
3.6.10 Fuel Correction Factors	
3.6.11 Other Correction Factors	116
3.7 Data Facts and Findings	116
3.7.1 Port of Anacortes Data Findings	117
3.7.2 Port of Everett Data Findings	
3.7.3 Port of Olympia Data Findings	120
3.7.4 Port of Seattle Data Findings	121
3.7.5 Port of Tacoma Data Findings	126
3.7.6 Tankers in Puget Sound	131
3.8 Emission Estimates	132
3.8.1 Main Port Emission Estimates	135
3.8.2 Petroleum Facilities Emission Estimates	138
3.8.3 Other Maritime Facilities Emission Estimates	138
3.9 Emission Comparison, 2011 vs 2005	139

TABLE OF CONTENTS (cont'd)

SECTION 4 HARBOR VESSELS	141
4.1 Source Description	
4.2 Geographical Delineation	143
4.3 Data and Information Acquisition	
4.4 Operational Profiles	
4.4.1 Assist and Escort Tugboats	147
4.4.2 Harbor and Ocean Tugboats	
4.4.3 Commercial Fishing Vessels	
4.4.4 Ferry Vessels	
4.4.5 Excursion Vessels	
4.4.6 Government Vessels	150
4.4.7 Work Boats	150
4.5 Emission Reduction Initiatives Identified	150
4.6 Emissions Estimating Methodology	151
4.6.1 Emission Equations	
4.6.2 Emission Factors for Diesel Engines	
4.6.3 Fuel Correction Factors for Diesel Alternatives	
4.6.4 Emission Factors for Gasoline Engines	
4.6.5 Fuel Correction Factors for Gasoline Engines	
4.7 Commercial Harbor and Government (non military) Vessel E	
Estimates	
4.8 Recreational Vessels	
4.9 Emission Comparison, 2011 vs 2005	

TABLE OF CONTENTS (cont'd)

SECTION 5 CARGO HANDLING EQUIPMENT	171
5.1 Source Description	
5.1.1 Crane	
5.1.2 Forklift	175
5.1.3 Side Handler	175
5.1.4 Straddle Carrier	176
5.1.5 Top Handler	176
5.1.6 Yard Tractor	177
5.2 Geographical Delineation	177
5.3 Data and Information Acquisition	
5.4 Operational Profiles	178
5.4.1 Port of Anacortes	179
5.4.2 Port of Everett	180
5.4.3 Port of Olympia	183
5.4.4 Port of Seattle	184
5.4.5 Port of Tacoma	188
5.5 Emission Reduction Technologies Identified	193
5.6 Emissions Estimating Methodology	194
5.6.1 Emission Control Factors	196
5.6.2 Greenhouse Gas Emission Factors	197
5.7 Emission Estimates	
5.7.1 Port of Anacortes Emission Estimates	198
5.7.2 Port of Everett Emission Estimates	198
5.7.3 Port of Olympia Emission Estimates	199
5.7.4 Port of Seattle Emission Estimates	199
5.7.5 Port of Tacoma Emission Estimates	200
5.8 Emission Comparison, 2011 vs 2005	200
Section 6 Locomotives	202
6.1 Source Description	202
6.2 Geographical Delineation	202
6.3 Data and Information Acquisition	207
6.4 Operational Profiles	208
6.5 Emission Reduction Technologies Identified	210
6.6 Emissions Estimating Methodology	210
6.7 Emission Estimates	212
6.8 Emission Comparison, 2011 vs. 2005	214

TABLE OF CONTENTS (cont'd)	
SECTION 7 HEAVY-DUTY VEHICLES	
7.1 Source Description	
7.2 Geographical Delineation	
7.3 Data and Information Acquisition	
7.4 Operational Profiles	
7.5 Emission Reduction Technologies Identified	
7.6 Emissions Estimating Methodology	
7.7 Emission Estimates	229
7.8 Emission Comparison, 2011 vs 2005	234
SECTION 8 FLEET VEHICLES	
8.1 Source Description	
8.2 Geographical Delineation	
8.3 Data and Information Acquisition	
8.4 Operational Profiles	
8.5 Emission Reduction Technologies Identified	243
8.6 Emissions Estimating Methodology	244
8.7 Emission Estimates	
8.8 Emission Comparison, 2011 vs 2005	247
SECTION 9 EMISSIONS COMPARISON BY PORT	248
9.1 Emissions Calculation and Allocation Methodology Changes	250
9.2 Port of Everett	
9.3 Port of Olympia	258
9.4 Port of Seattle	264
9.4.1 2011 vs 2005 Port Emissions Comparisons	264
9.4.2 2011 vs 2005 Airshed Emissions Comparisons	
9.5 Port of Tacoma	
9.5.1 2011 vs 2005 Port Emissions Comparisons	
9.5.2 2011 vs 2005 Airshed Emissions Comparisons	284
SECTION 10 CLEAN AIR STRATEGY EMISSION REDUCTIONS	288
10.1 Port of Seattle	289
10.1.1 Ocean-Going Vessels	
10.1.2 Commercial Harbor Vessels	290
10.1.3 Cargo Handling Equipment	290
10.1.4 Locomotives	291
10.1.5 Heavy-Duty Vehicles	291
10.2 Port of Tacoma	292
10.2.1 Ocean-Going Vessels	
10.2.2 Harbor Vessels	293
10.2.3 Cargo Handling Equipment	293
10.2.4 Locomotives	
10.2.5 Heavy-Duty Vehicles	295
APPENDIX A - GLOSSARY	

APPENDIX B - SUPPORTING DATA

LIST OF FIGURES

Figure O.1: Georgia Basin/Puget Sound International Airshed	2
Figure O.2: 2011 Total Airshed Emissions	
Figure O.3: 2011 vs 2005 Total Airshed Emissions Change	
Figure ES.1: Georgia Basin/Puget Sound International Airshed	4
Figure ES.2: 2011 Total Airshed Emissions Distribution	
Figure ES.3: 2011 Total Airshed Emissions by Clean Air Agency	8
Figure ES.4: 2011 vs 2005 Total Airshed Emissions Change	10
Figure 1.1: Georgia Basin/Puget Sound International Airshed	
Figure 1.2: Puget Sound Counties and Major Ports	11
Figure 2.1: 2011 Total Airshed Emissions, tpy	27
Figure 2.2: Contribution of 2011 Total Airshed Emissions by Source Category	28
Figure 2.3: 2011 Total Airshed NO _x Emissions by Source Category	29
Figure 2.4: 2011 Total Airshed VOC Emissions by Source Category	29
Figure 2.5: 2011 Total Airshed CO Emissions by Source Category	30
Figure 2.6: 2011 Total Airshed SO ₂ Emissions by Source Category	
Figure 2.7: 2011 Total Airshed PM ₁₀ Emissions by Source Category	31
Figure 2.8: 2011 Total Airshed PM _{2.5} Emissions by Source Category	31
Figure 2.9: 2011 Total Airshed DPM Emissions by Source Category	32
Figure 2.10: 2011 Total Airshed CO2e Emissions by Source Category	32
Figure 2.11: Distribution of Total Airshed Emissions by Regional Clean Air Agency	34
Figure 2.12: 2011 vs 2005 Total Airshed Emissions Change	36
Figure 2.13: Port of Anacortes 2011 Port Emissions	41
Figure 2.14: Port of Anacortes 2011 vs 2005 Port Emissions Change	
Figure 2.15: Port of Everett 2011 Port Emissions	44
Figure 2.16: Port of Everett 2011 vs 2005 Port Emissions Change	
Figure 2.17: Port of Everett 2011 vs 2005 Port Emissions 10,000 Tonnes of Cargo Chang	ge
	46
Figure 2.18: Port of Olympia 2011 Port Emissions	
Figure 2.19: Port of Olympia 2011 vs 2005 Port Emissions Change	49
Figure 2.20: Port of Olympia 2011 vs 2005 Port Emissions per 10,000 Tonnes of Cargo	
Metric Change	
Figure 2.21: Port of Seattle 2011 Port Emissions Contribution by Source Category	50
Figure 2.22: Port of Seattle 2011 vs 2005 Port Emissions Change	
Figure 2.23: Port of Seattle 2011 vs 2005 Port Emissions per 10,000 TEU Change	52
Figure 2.24: Port of Seattle 2011 vs 2005 Port Emissions per 10,000 Tonnes of Cargo	
Change	
Figure 2.25: Port of Seattle 2011 vs 2005 Airshed Emissions Change	56
Figure 2.26: Port of Seattle 2011 vs 2005 Airshed Emissions per 10,000 TEU Change	
Figure 2.27: Port of Seattle 2011 vs 2005 Airshed Emissions per 10,000 Tonnes of Cargo	
Change	57
Figure 2.28: Port of Tacoma 2011 Port Emissions	
Figure 2.29: Port of Tacoma 2011 vs 2005 Port Emissions Change	
Figure 2.30: Port of Tacoma 2011 vs 2005 Port Emissions per 10,000 TEU Change	
Figure 2.31: Port of Tacoma 2011 vs 2005 Port Emissions per 10,000 Tonnes of Cargo	
Change	61

List of Figures (cont'd)

Figure 2.32: Port of Tacoma 2011 vs 2005 Airshed Emissions Change	64
Figure 2.33: Port of Tacoma 2011 vs 2005 Airshed Emissions per 10,000 TEU Change	64
Figure 2.34: Port of Tacoma 2011 vs 2005 Airshed Emissions 10,000 Tonnes of Cargo	
Change	65
Figure 3.1: Puget Sound 2011 Distribution of OGV by Inbound Calls	67
Figure 3.2: Puget Sound 2011 Distribution of Discrete OGV Types	
Figure 3.3: 2011 Distribution of Ships' Flags by Vessel Call	
Figure 3.4: 2011 Distribution of Ships' Flags by Discrete Vessel	
Figure 3.5: Auto Carrier	
Figure 3.6: Bulk Carrier	
Figure 3.7: Containership	71
Figure 3.8: Cruise Vessels	72
Figure 3.9: General Cargo Vessel	73
Figure 3.10: Integrated Tug and Barge	74
Figure 3.11: Refrigerated Vessel	75
Figure 3.12: RoRo Vessel	
Figure 3.13: Tanker	77
Figure 3.14: 2011 OGV Inventory Boundary	78
Figure 3.15: 2011 OGV Inventory Boundary – JA Buoy to/from U.S. Marine Facilities	80
Figure 3.16: 2011 OGV Inventory Boundary - Victoria to/from U.S. Marine Facilities	
Figure 3.17: 2011 OGV Inventory Boundary - Vancouver to/from U.S. Marine Facilities	s.83
Figure 3.18: 2011 OGV Inventory Boundary - Vancouver to/from Anacortes, Cherry	
Point, Ferndale, March Point, and Sandy Point	84
Figure 3.19: 2011 OGV Inbound Calls by Facility Type	91
Figure 3.20: 2011 Distribution of OGV Shifts vs Inbound Calls by Vessel Type	
Figure 3.21: Propeller Law Curve of Power Demand	103
Figure 3.22: Port of Seattle 2011 OGV Model Year, by Vessel Type	
Figure 3.23: Port of Seattle 2011 OGV DWT by Vessel Type	
Figure 3.24: Port of Seattle 2011 OGV Main and Auxiliary Engine Power by Vessel Type	
kW	
Figure 3.25: Port of Tacoma Average 2011 OGV Model Year, by Vessel Type	
Figure 3.26: Port of Tacoma Average 2011 OGV DWT by Vessel Type	.129
Figure 3.27: Port of Tacoma Average 2011 OGV Main and Auxiliary Engine Power by	
Vessel Type, kW	
Figure 3.28: 2011 Distribution of Total OGV Airshed Emissions by Transit, Maneuverin	ıg,
and Hotelling Mode	
Figure 3.29: 2011 Distribution of Other Maritime Facilities Port Emissions	
Figure 3.30: 2011 vs 2005 Total OGV Airshed Emissions Change	
Figure 4.1: 2011 Commercial Harbor and Government Vessels Count by Vessel Type	
Figure 4.2: 2011 Commercial Harbor and Government Vessel Emissions by Vessel Type	
Figure 4.3: 2011 Commercial Harbor and Government Vessel Emissions by Regional Cle	
Air Agency	157
Figure 4.4: 2011 vs 2005 Commercial Harbor and Government Vessel Emissions Change	
Figure 5.1: 2011 CHE Count Distribution	.172

List of Figures (cont'd)

Figure 5.2: 2011 CHE Distribution by Port	173
Figure 5.3: Container Crane	174
Figure 5.4: Rubber Tired Gantry Crane	174
Figure 5.5: Forklift	175
Figure 5.6: Side Handler	175
Figure 5.7: Straddle Carrier	176
Figure 5.8: Top Handler	176
Figure 5.9: Yard Tractor	177
Figure 5.10: Port of Anacortes 2011 CHE Counts and Distribution by Type	179
Figure 5.11: Port of Everett 2011 CHE Counts and Distribution by Type	181
Figure 5.12: Port of Olympia 2011 CHE Counts and Distribution by Type	183
Figure 5.13: Port of Seattle 2011 CHE Counts and Distribution by Type	185
Figure 5.14: Port of Tacoma 2011 CHE Counts and Distribution by Type	188
Figure 5.15: 2011 vs 2005 Total CHE Emissions Change	201
Figure 6.1: State of Washington Rail System Map	203
Figure 6.2: Port of Seattle Harbor Rail System Map	204
Figure 6.3: Port of Tacoma Rail System Map	205
Figure 6.4: Port of Olympia Rail System Map	206
Figure 6.5: 2011 vs 2005 Airshed Locomotive Emissions Change	215
Figure 7.1: Truck with Container	217
Figure 7.2: Bobtail Truck	218
Figure 7.3: Puget Sound Metropolitan Transportation System Map	219
Figure 7.4: 2011 Heavy-Duty Vehicle Age Distribution	220
Figure 7.5: Port of Seattle Cruise Terminal Anti-Idling Signage	222
Figure 7.6: 2011 vs 2005 Total HDV Port Emissions Change	
Figure 7.7: 2011 vs 2005 Total Airshed HDV Emissions Change	
Figure 7.8: 2011 vs 2005 Total HDV Port and Airshed Emissions Change	
Figure 7.9: 2011 and 2005 HDV Age Distributions	238
Figure 8.1: 2011 Terminal Fleet Vehicle Fuel Type Distribution	
Figure 8.2: 2011 Terminal Fleet Vehicle MOBILE6.2 Classifications	
Figure 9.1: Port of Everett 2011 vs 2005 Port Tons of Emissions per 10,000 Tonnes of	
Cargo Change	253
Figure 9.2: Port of Olympia 2011 vs 2005 Port Tons of Emissions per 10,000 Tonnes o	
Cargo Change	
Figure 9.3: Port of Seattle 2011 vs 2005 Port Tons of Emissions per 10,000 TEU Chang	ge
	265
Figure 9.4: Port of Seattle 2011 vs 2005 Port Tons of Emissions per 10,000 Tonnes of	
Cargo Change	266
Figure 9.5: Port of Seattle 2011 vs 2005 Airshed Tons of Emissions per 10,000 TEU	
Change	
Figure 9.6: Port of Seattle 2011 vs 2005 Airshed Tons of Emissions per 10,000 Tonnes	of
Cargo Change	
Figure 9.7: Port of Tacoma 2011 vs 2005 Port Tons of Emissions per 10,000 TEU Char	nge
	277

List of Figures (cont'd)

Figure 9.8: Port of Tacoma 2011 vs 2005 Port Tons of Emissions per 10,000 Tonnes of	
Cargo Change	278
Figure 9.9: Port of Tacoma 2011 vs 2005 Airshed Tons of Emissions per 10,000 TEU	
Change	285
Figure 9.10: Port of Tacoma 2011 vs 2005 Airshed Tons of Emissions per 10,000 Tonnes	
of Cargo Change	286

LIST OF TABLES

Table O.1: 2011 Total Airshed Emissions, tpy	4
Table O.2: 2011 vs 2005 Total Airshed Emissions Comparison, tpy	
Table ES.1: 2011 Total Airshed Emissions, tpy	
Table ES.2: 2011 Total Airshed Emissions Contribution by Source Category	
Table ES.3: 2011 Total Airshed Emissionsby Clean Air Agency, tpy	
Table ES.4: Distribution of 2011 Total Airshed Emissionsby Clean Air Agency	
Table ES.5: 2011 vs 2005 Port Activity Comparison	
Table ES.6: 2011 vs 2005 Total Airshed Emissions Comparison, tpy	
Table ES.7: 2011 vs 2005 Total Airshed Emissionsby Source Category, tpy	
Table ES.8: Port of Seattle 2011 Emission Reductions, tpy	
Table ES.9: Port of Tacoma 2011 Port Direct Emission Reductions, tpy	.14
Table 1.1: Pollutant Description	
Table 2.1: 2011 Total Airshed Emissions, tpy	
Table 2.2: Contirbution of 2011 Total Airshed Emissions by Source Category	.28
Table 2.3: 2011 Total Airshed Emissions by Regional Clean Air Agency, tpy	.33
Table 2.4: 2011 vs 2005 Port Activity Comparison	.35
Table 2.5: 2011 vs 2005 Total Airshed Emissions Comparison, tpy	.36
Table 2.6: 2011 vs 2005 Total Airshed Emissions by Source Category, tpy	.38
Table 2.7: Port of Anacortes 2011 Port Emissions, tpy	.41
Table 2.8: Port of Anacortes 2011 vs 2005 Port Emissions Comparison, tpy	.42
Table 2.9: Port of Everett 2011 Port Emissions, tpy	
Table 2.10: Port of Everett 2011 vs 2005 Port Emissions Comparison, tpy	
Table 2.11: Port of Olympia 2011 Port Emissions, tpy	
Table 2.12: Port of Olympia 2011 vs 2005 Port Emissions Comparison, tpy	
Table 2.13: Port of Seattle 2011 Port Emissions, tpy	
Table 2.14: Port of Seattle 2011 vs 2005 Port Emissions Comparison, tpy	
Table 2.15: Port of Seattle 2011 Air District Emissions, tpy	
Table 2.16: Port of Seattle 2011 Air District OGV Emissions by County by Mode, tpy	.54
Table 2.17: Port of Seattle 2011 Airshed Emissions, tpy	
Table 2.18: Port of Seattle 2011 vs 2005 Airshed Emissions Comparison, tpy	
Table 2.19: Port of Tacoma 2011 Port Emissions, tpy	
Table 2.20: Port of Tacoma 2011 vs 2005 Port Emissions Comparison, tpy	
Table 2.21: Port of Tacoma 2011 Air District Zone Emissions, tpy	
Table 2.22: Port of Tacoma 2011 Air District Zone OGV Emissions by County, tpy	
Table 2.23: Port of Tacoma 2011 Airshed Emissions, tpy	
Table 2.24: Port of Tacoma 2011 vs 2005 Airshed Emissions Comparison, tpy	
Table 2.25: Refinery Related 2011 Port Emissions, tpy	
Table 3.1: 2011 OGV Movements by Vessel Type	
Table 3.2: OGV Vessel Routes Used in Puget Sound Maritime Air Emissions Inventory	
Table 3.3: OGV Routes Not Included in Puget Sound Maritime Air Emissions Inventory	
Table 3.4: 2011 OGV Anacortes Destinations	
Table 3.5: 2011 OGV Everett Destinations	
Table 3.6: 2011 OGV Olympia Destinations	
Table 3.7: 2011 OGV Port Angeles Destinations	
Table 3.8: 2011 OGV Tacoma Destinations	97

Table 3.9: 2011 OGV Seattle Destinations	98
Table 3.10: 2011 OGV Other Ports Destinations	99
Table 3.11: 2011 Excluded Piers in Lake Washington	100
Table 3.12: Emission Factors for OGV Main Engines Using RO, g/kW-hr	105
Table 3.13: GHG Emission Factors for OGV Main Engines Using RO, g/kW-hr	105
Table 3.14: NO _x Emission Factors for Engines on Specific Vessels, g/kW-hr	106
Table 3.15: Low-Load Emission Factor Regression Equation Variables	108
Table 3.16: Low-Load Adjustment Multipliers for Emission Factors	109
Table 3.17: Composite Maneuvering Load Factors	110
Table 3.18: Auxiliary Engine Emission Factors, g/kW-hr	111
Table 3.19: Greenhouse Gas Emission Factors for Auxiliary Engines, g/kW-hr	
Table 3.20: 2011 Auxiliary Engine Power and Load Defaults, kW	112
Table 3.21: 2011 Auxiliary Boiler Energy Defaults, kW	114
Table 3.22: Fuel Correction Factors	115
Table 3.23: 2011 OGVs by Vessel Type	116
Table 3.24: Port of Anacortes 2011 OGV Movements	117
Table 3.25: Port of Anacortes 2011 OGV Type Characteristics	117
Table 3.26: Port of Port Angeles 2011 OGV Movements	
Table 3.27: Port of Port Angeles 2011 OGV Type Characteristics	119
Table 3.28: Port of Everett 2011 OGVMovements	
Table 3.29: Port of Everett 2011 OGV Type Characteristics	120
Table 3.30: Port of Olympia 2011 OGV Movements	120
Table 3.31: Port of Olympia 2011 Average OGV Type Characteristics	120
Table 3.32: Port of Seattle 2011 OGV Movements	
Table 3.33: Port of Seattle 2011 OGV Type Characteristics	122
Table 3.34: Port of Tacoma 2011 OGV Movements	
Table 3.35: Port of Tacoma Average 2011 OGV Type Characteristics	127
Table 3.36: 2011 Tanker Movements	131
Table 3.37: 2011 Total OGV Airshed Emissions by County and Regional Clean Air A	igency,
tpy	132
Table 3.38: 2011 Total OGV Airshed Emissions by Vessel Type, tpy	
Table 3.39: 2011 Total OGV Airshed Emissions by Engine Type, tpy	
Table 3.40: 2011 Total OGV Airshed Emissions by Mode, tpy	
Table 3.41: Port of Anacortes 2011 OGV Port Emissions by Mode, tpy	136
Table 3.42: Port of Port Angeles 2011 OGV Port Emissions by Mode, tpy	136
Table 3.43: Port of Everett 2011 OGV Port Emissions by Mode, tpy	136
Table 3.44: Port of Olympia 2011 OGV Port Emissions by Mode, tpy	
Table 3.45: Port of Seattle 2011 OGV Port Emissions by Mode, tpy	137
Table 3.46: Port of Tacoma 2011 OGV Port Emissions by Mode, tpy	137
Table 3.47: Petroleum Facilities 2011 OGV Port Emissions by Mode, tpy	
Table 3.48: Other Maritime Facilities 2011 OGV Port Emissions by Mode, tpy	
Table 3.49: 2011 vs 2005 Total OGV Airshed Emissions Comparison, tpy	140
Table 3.50: 2011 vs 2005 Total OGV Inbound Movements Comparison	140
Table 4.1: 2011 Commercial Harbor and Government Vessel Counts by Vessel Type	142

Table 4.2: 2011 Commercial Harbor and Government Vessel Propulsion Engines Inve	entory
Table 4.3: 2011 Commercial Harbor and Government Vessel Auxiliary Engines Inven	
Table 4.4: Source of Emission Factors	
Table 4.5: Harbor Vessel Emission Factors for Diesel Engines, g/kW-hr	
Table 4.6: Fuel Correction Factors	154
Table 4.7: Harbor Vessel Emission Factors for Gasoline Engines, g/kW-hr	154
Table 4.8: Load Factors	155
Table 4.9: 2011 Commercial Harbor and Government Vessel Emissions by Vessel Type	
T11 440 2044 C '111 1 1 1 C T T T T T T T T T T T T T T	
Table 4.10: 2011 Commercial Harbor and Government Vessel Emissions by Regional	
Air Agency, tpy	
Table 4.11: 2011 Commercial Harbor and Government Vessel Emissions by County,	
Table 4.12: 2011 Public Marina Vessel Counts by Associated Port and County	
Table 4.13: 2011 Private Marinas and Other Non-Port Public Entities Vessel Counts b	
County	
Table 4.14: 2011 Recreational Vessel Fuel and Average Horsepower by Vessel Type Table 4.15: 2011 Recreational Vessel Airshed Emissions by County, tpy	
Table 4.16: 2011 Recreational Vessel Airshed Emissions by Public Marinaand Associa	
Port, tpy	
Table 4.17: 2011 vs 2005 Load Factor Changes	
Table 4.18: 2011 vs 2005 Harbor Vessel Count Comparison	
Table 4.19: 2011 vs 2005 Commercial Harbor and Government Vessel Emissions	105
Comparison, tpy	166
Table 4.20: 2011 vs 2005 Harbor Vesel Activity Change	
Table 4.21: 2011 vs 2005 Commercial Harbor and Government Vessel Average Opera	
Hours Comparison	
Table 4.22: 2011 vs 2005 Commercial Harbor and Government Vessel Average Engin	
Horsepower by Engine and Vessel Type, hp	
Table 4.23: 2011 vs 2005 Commercial Harbor and Government Vessel Average Propu	
Engine Model Year by Vessel Type	168
Table 4.24: 2011 vs 2005 Commercial Harbor and Government Vessel Average Auxilia	iary
Engine Model Year by Vessel Type	169
Table 4.25: 2011 vs 2005 Recreational Vessels Emissions Comparison	
Table 4.26: 2011 vs 2005 Recreational Vessels Count Comparison	
Table 5.1: 2011 CHE Distribution by Type	
Table 5.2: 2011 CHE Distribution by Port	
Table 5.3: Port of Anacortes 2011 CHE Characteristics	
Table 5.4: Port of Everett 2011 CHE Characteristics	
Table 5.5: Port of Everett 2011 CHE Characteristics by Terminal	
Table 5.6: Port of Olympia 2011 CHE Characteristics	
Table 5.7: Port of Seattle 2011 CHE Characteristics	
Table 5.8: Port of Seattle 2011 CHE Characteristics by Terminal	
Table 5.9: Port of Tacoma 2011 CHE Characteristics	189

Table 5.10: Port of Tacoma 2011 CHE Characteristics by Terminal	190
Table 5.11: 2011 CHE Count of Emission Reduction Technologies	
Table 5.12: NONROAD Engine Source Categories	195
Table 5.13: Emission Control Factors for CHE Retrofits	196
Table 5.14: Emission Control Factors for On-road Engines	197
Table 5.15: 2011 CHE Total Emissions, tpy	
Table 5.16: Port of Anacortes 2011 CHE Emissions by Terminal, tpy	
Table 5.17: Port of Everett 2011 CHE Emissions, tpy	
Table 5.18: Port of Olympia 2011 CHE Emissions, tpy	
Table 5.19: Port of Seattle 2011 CHE Emissions, tpy	
Table 5.20: Port of Tacoma 2011 CHE Emissions, tpy	
Table 5.21: 2011 vs 2005 Port Total CHE Emissions Comparison, tpy	
Table 5.22: 2011 vs 2005 Total CHE Activity and Count Comparison	
Table 6.1: 2011 Switching Locomotive Port Emissions, tpy	
Table 6.2: 2011 Line-Haul Locomotive Port Emissions, tpy	
Table 6.3: 2011 Line-Haul Locomotive Airshed Emissions Exclusive of Port Emissions	
Table 6.4: 2011 Line-Haul Locomotive Airshed Emissions by County Exclusive of Port	
Emissions, tpy	
Table 6.5: 2011 vs 2005 Locomotive Activity and Fuel Consumption Comparison	
Table 6.6: 2011 vs 2005 Locomotive Airshed Emissions Comparison, tpy	
Table 7.1: 2011 On-Terminal HDV Operational Profiles	
Table 7.2: HDV Emission Factors – Driving, g/mile	
Table 7.3: HDV Emission Factors – Idling, g/hour	226
Table 7.4: 2011 Total HDV Port Emissions by Terminal, tpy	230
Table 7.5: 2011 Total HDV Port Emissions - Driving by Terminal, tpy	
Table 7.6: 2011 Total HDV Port Emissions - Idling by Terminal, tpy	232
Table 7.7: 2011 Total HDV Airshed Emissions by County Exclusive of Port Emissions	s, tpy
	233
Table 7.8: Distribution of 2011 Total HDV Airshed Emissions by Clean Air Agency	
Exclusive of Port Emissions, tpy	
Table 7.9: 2011 vs 2005 Total HDV Port Emissions Comparison, tpy	
Table 7.10: 2011 vs 2005 Total HDV Port VMT and Idling Hours Comparison	
Table 8.1: 2011 Terminal Fleet Vehicle Characteristics	
Table 8.2: 2011 Terminal Fleet Vehicle Count by Fuel Type	
Table 8.3: 2011 Terminal Fleet Vehicle MOBILE6.2 Classifications	
Table 8.4: Alternative Fueled LDV and HDV Emissions Factors for N ₂ O and CH ₄ , g/s	
Table 8.5: Gasoline and Diesel Fueled LDV and HDV Emissions Factors for N_2O and	
CH ₄ , g/mile	
Table 8.6: 2011 Total Terminal Fleet Vehicle Emissions by Terminal, tpy	
Table 8.7: 2011 Import/Export Vehicle Emissions, tpy	
Table 8.8: Terminal Fleet Vehicle 2011 vs 2005 Emissions Comparison, tpy	
Table 8.9: Terminal Fleet Vehicle 2011 vs 2005 Count Comparison	
Table 9.1: Port of Everett 2011 vs 2005 TEU and Cargo Throughput Comparison	252

Table 9.2: Port of Everett 2011 vs 2005 Port Tons of Emissions per 10,000 Tonnes of	
Cargo Comparison	
Table 9.3: Port of Everett 2011 vs 2005 Port Emissions Comparison, tpy	254
Table 9.4: Port of Everett 2011 vs 2005 OGV Port Emissions Comparison, tpy	
Table 9.5: Port of Everett 2011 vs 2005 OGV Activity Comparison	255
Table 9.6: Port of Everett 2011 vs 2005 Port Recreational Vessels Emissions Comparison	on,
tpy	256
Table 9.7: Port of Everett 2011 vs 2005 Port CHE Emissions Comparison, tpy	
Table 9.8: Port of Everett 2011 vs 2005 CHE Activity and Equipment Count Comparis	
Table 9.9: Port of Everett 2011 vs 2005 Port Locomotive Emissions Comparison, tpy	
Table 9.10: Port of Everett 2011 vs 2005 Port HDV Emissions Comparison, tpy	257
Table 9.11: Port of Everett 2011 vs 2005 Port Terminal Fleet Vehicles Emissions	
Comparison, tpy	
Table 9.12: Port of Olympia 2011 vs 2005 TEU and Tonnage Comparison	
Table 9.13: Port of Olympia 2011 vs 2005 Port Tons of Emissions per 10,000 Tonnes of	
Cargo Comparison	
Table 9.14: Port of Olympia 2011 vs 2005 Port Emissions Comparison, tpy	
Table 9.15: Port of Olympia 2011 vs 2005 Port OGV Emissions Comparison, tpy	
Table 9.16: Port of Olympia 2011 vs 2005 OGV Activity Comparison	
Table 9.17: Port of Olympia 2011 vs 2005 Port Recreational Vessel Emissions Compari	
tpy	262
Table 9.18: Port of Olympia 2011 vs 2005 Port CHE Emissions Comparison, tpy	262
Table 9.19: Port of Olympia 2011 vs 2005 CHE Activity and Equipment Count	242
Comparison	
Table 9.20: Port of Olympia 2011 vs 2005 Port Locomotive Emissions Comparison, tpg	
Table 9.21: Port of Olympia 2011 vs 2005 Port HDV Emissions Comparison, tpy	
Table 9.22: Port of Seattle 2011 vs 2005 TEU and Cargo Throughput Comparison	264
Table 9.23: Port of Seattle 2011 vs 2005 Port Tons of Emissions per 10,000 TEU	264
Comparison.	264
Table 9.24: Port of Seattle 2011 vs 2005 Port Tons of Emissions per 10,000 Tonnes of	265
Cargo Comparison	
Table 9.25: Port of Seattle 2011 vs 2005 Port Emissions Comparison, tpy	
Table 9.26: Port of Seattle 2011 vs 2005 OGV Port Emissions Comparison, tpy	
Table 9.27: Port of Seattle 2011 vs 2005 OGV Activity Comparison	
Table 9.28: Port of Seattle 2011 vs 2005 Port Commercial Harbor and Government Ver	
Emissions Comparison, tpy	
Table 9.29: Port of Seattle 2011 vs 2005 Port Recreational Vessel Emissions Comparison	
tpy	209 270
Table 9.31: Port of Seattle 2011 vs 2005 CHE Activity and Equipment Count Comparis	
Table 9.32: Port of Seattle 2011 vs 2005 Port Locomotive Emissions Comparison, tpy	∠/U 271
Table 9.33: Port of Seattle 2011 vs 2005 Port HDV Emissions Comparison, tpy	
Table 9.34: Port of Seattle 2011 vs 2005 Port Fleet Vehicle Emissions Comparison, tpy	
Table 7.5 it I of the or beautic 2011 to 2005 I off I feet terrible Eminosions Companioni, the	

Table 9.35: Port of Seattle 2011 vs 2005 Airshed Tons of Emissions per 10,000 T	EU.
Comparison	
Table 9.36: Port of Seattle 2011 vs 2005 Airshed Tons of Emissions per 10,000 T	onnes of
Cargo Comparison	
Table 9.37: Port of Seattle 2011 vs 2005 Airshed Emissions Comparison, tpy	275
Table 9.38: Port of Tacoma 2011 vs 2005 TEU and Cargo Throughput Comparis	son276
Table 9.39: Port of Tacoma 2011 vs 2005 Port Tons of Emissions per 10,000 TE	LU
Comparison	
Table 9.40: Port of Tacoma 2011 vs 2005 Port Tons of Emissions per 10,000 To	nnes of
Cargo Comparison	277
Table 9.41: Port of Tacoma 2011 vs 2005 Port Emissions Comparison, tpy	279
Table 9.42: Port of Tacoma 2011 vs 2005 Port OGV Emissions Comparison, tpy	r280
Table 9.43: Port of Tacoma 2011 vs 2005 OGV Activity Comparison	280
Table 9.44: Port of Tacoma 2011 vs 2005 Port Commercial Harbor Vessel Emiss	sions
Comparison, tpy	281
Table 9.45: Port of Tacoma 2011 vs 2005 Port CHE Emissions Comparison, tpy	281
Table 9.46: Port of Tacoma 2011 vs 2005 CHE Activity and Equipment Count C	Comparison
	282
Table 9.47: Port of Tacoma 2011 vs 2005 Port Locomotive Emissions Comparise	on, tpy .282
Table 9.48: Port of Tacoma 2011 vs 2005 Port HDV Emissions Comparison, tpy	
Table 9.49: Port of Tacoma 2011 vs 2005 Port Terminal Fleet Vehicles Emission	S
Comparison, tpy	
Table 9.50: Port of Tacoma 2011 vs 2005 Airshed Emissions, tons emissions per	10,000
TEU	
Table 9.51: Port of Tacoma 2011 vs 2005 Airshed Tons of Emissions per 10,000	Tonnes of
Cargo Comparison	
Table 9.52: Port of Tacoma 2011 vs 2005 Airshed Emissions Comparison, tpy	
Table 10.1: Port of Seattle 2011 Emission Reductions, tpy	
Table 10.2: Port of Seattle 2011 OGV Emission Reductions, tpy	
Table 10.3: Port of Seattle 2011 Commercial Harbor Vessel Emission Reductions	
Table 10.4: Port of Seattle 2011 CHE Emission Reductions, tpy	
Table 10.5: Port of Seattle 2011 Locomotive Emission Reductions, tpy	291
Table 10.6: Port of Seattle 2011 HDV Emissions Reductions, tpy	
Table 10.7: Port of Tacoma 2011 Port Emission Reductions, tpy	
Table 10.8: Port of Tacoma 2011 OGV Emission Reductions, tpy	
Table 10.9: Port of Tacoma 2011 Commercial Harbor Vessel Emission Reductio	
Table 10.10: Port of Tacoma 2011 CHE Emission Reductions, tpy	
Table 10.11: Port of Tacoma 2011 Locomotives Emissions Reductions, tpy	294
Table 10.12: Port of Tacoma 2011 HDV Emissions Reductions, toy	295

ACKNOWLEDGEMENTS

The Puget Sound Maritime Air Emissions Inventory was the result of a group effort made up Funding Committee Partners, participating Ports' staff and regional environmental agencies.

Project Leadership and Management Ron Stuart, Port of Tacoma Cindy Lin, Port of Tacoma

Funding Organizations

American Lung Association of Washington and Idaho - \$1,000

BNSF Railway Company- \$5,000

Environmental Protection Agency - \$8,572

Northwest Clean Air Agency - \$10,000

North West & Canada Cruise Ship Association - \$5,000

Pacific Merchant Shipping Association - \$5,000

Port of Anacortes - \$4,000

Port of Everett - \$10,000

Port of Olympia - \$10,000

Port of Seattle - \$75,000

Port of Tacoma - \$75,000

Puget Sound Clean Air Agency - \$25,000

Washington State Department of Ecology - \$35,000

Washington State Department of Transportation Ferries - \$10,000

Western States Petroleum Association - \$10,000

Puget Sound Maritime Air Forum Members

Guiselle Aldrete, Starcrest Consulting Group

Bruce Anderson, Starcrest Consulting Group

Gina Bonifacino, EPA

Dan Brown, EPA

Mark Buford, Northwest Clean Air Agency

Carole Cenci, Puget Sound Clean Air Agency

Christos Christoforou, Northwest Clean Air Agency

Wayne Elson, EPA

Janice Gedlund, Port of Seattle

Frank Holmes, Western States Petroleum Association

Sheila Helgath, Washington State Ferries

Leslie Hughes, North Pacific Fishing Vessel Owner's Association

Stephanie Jones-Stebbins, Port of Seattle

Jason Jordan, Port of Tacoma

Renee Klein, American Lung Association

Cindy Lin, Port of Tacoma

Rose Muller, Starcrest Consulting Group

ACKNOWLEDGEMENTS (CONT'D)

Mike Moore, Pacific Merchant Shipping Association

Carrie Nyssen, American Lung Association

Stacey Patterson – Farallon Consulting

Joseph Ray, Starcrest Consulting Group

Jordan Royer, Pacific Merchant Shipping Association

Alex Smith, Port of Olympia

Donna Spalding, North West & Canada Cruise Ship Association

Michael Stanfill, BNSF

Tina Stotz, Holland America

Ron Stuart, Port of Tacoma

Connie Thoman, Port of Anacortes

Svea Truax, RSEC Environmental and Engineering

Jon Turvey, Holland America

Frank Van Haren, Washington Department of Ecology

Ellen Watson, Port of Seattle

Brandon Whitaker, Port of Everett

Jennifer Wiener, BNSF Jim Wilson, ORCAA

Project Managers: Ron Stuart, Port of Tacoma

Bruce Anderson, Principal, Starcrest

Authors: Archana Agrawal, Principal, Starcrest

Guiselle Aldrete, Consultant for Starcrest Bruce Anderson, Principal, Starcrest Joseph Ray, Principal, Starcrest Rose Muller, Consultant for Starcrest

Contributors: Steve Ettinger, Principal, Starcrest

Paul Johansen, Consultant for Starcrest Jill Morgan, Consultant for Starcrest Sam Wells, Consultant for Starcrest Paula Worley, Consultant for Starcrest

Cover: Kimberly Cline, Port of Tacoma

Document Preparation: Denise Anderson, Consultant for Starcrest

ACRONYMS AND ABBREVIATIONS

ATB articulated tug-barge BNSF BNSF Railway Company

bhp brake horsepower

BSFC brake-specific fuel consumption
CARB California Air Resource Board
CAS Northwest Ports Clean Air Strategy

CFR Code Federal Regulations

CH₄ methane

CHE cargo handling equipment

CO carbon monoxide CO₂ carbon dioxide

CO₂e carbon dioxide equivalents
DOC diesel oxidation catalyst
DPF diesel particulate filter
DPM diesel particulate matter
DWT deadweight in tonnes
ECA emission control area
EF emission factor

EMD Electro-Motive Diesel, Inc.

EMS Environmental Management System
EPA U.S. Environmental Protection Agency

FCF fuel correction factor

Forum Puget Sound Maritime Air Forum

g gram

gensets electrical generator sets
GVWR gross vehicle weight rating
HAL Holland America Line

HC hydrocarbon

HDDV heavy-duty diesel fueled vehicle HDGV heavy-duty gasoline vehicle

HDV heavy-duty vehicles

hp horsepower

hr hour

IFO intermediate fuel oil

IMO International Maritime Organization

ITB integrated tug-barge

kg kilogram

K-Line Kawasaki Kisen Kaisha

kW kilowatts kW-hr kilowatt-hour lbs pounds

LDGT light-duty gasoline truck LDGV light-duty gasoline vehicle

LDV light-duty vehicles

LF load factor

ACRONYMS AND ABBREVIATIONS (CONT'D)

LLA low load adjustment LPG liquefied petroleum gas LPG liquefied petroleum gas

MarEx Marine Exchange of Puget Sound

MARPOL International Convention for the Prevention of Pollution from Ships

MCR maximum continuous rated (power)

MOBILE EPA on-road vehicle emission modeling software

mph miles per hour N₂O nitrous oxide

NAAQS National Ambient Air Quality Standards

NO_x oxides of nitrogen

NONROAD EPA non-road equipment emission modeling software

NWCCA North West & Canada Cruise Ship Association

NWCAA Northwest Clean Air Agency

OGVs ocean-going vessels

ORCAA Olympic Region Clean Air Agency

PM particulate matter

PM₁₀ particulate matter, diameter of ten microns or less

PM₂₅ particulate matter, diameter of 2.5 microns or less; fine particulate

POLA Port of Los Angeles
POLB Port of Long Beach
ppb parts per billion
ppm parts per million

PSCAA Puget Sound Clean Air Agency
PSEI Puget Sound Emissions Inventory
PSRC Puget Sound Regional Council
RFID radio-frequency identification
RIA regulatory impact analysis

RO residual oil RoRo roll-on/roll-off

rpm revolutions per minute

RSD Regulatory Support Document RTG rubber tired gantry (crane) SIG Seattle International Gateway

 SO_2 sulfur dioxide SO_x sulfur oxides

TEU twenty-foot equivalent units

tonnes 1,000 kg also known as a metric ton

TOTE Totem Ocean Trailer Express

tpy tons per year

TTI Total Terminals, Inc

U.S. United States

USCG United States Coast Guard
ULSD ultra low sulfur diesel (fuel)
UP Union Pacific (Railroad)

ACRONYMS AND ABBREVIATIONS (CONT'D)

VBP Vessel Boarding Program
VLCC very large crude carriers
VMT vehicle miles traveled

VOCs volatile organic compounds

VTS Vessel Traffic Service

vs versus

WDOE Washington State Department of Ecology

WSF Washington State Ferries

WSPA Western States Petroleum Association

WUT Washington United Terminals

OVERVIEW

What is the 2011 inventory?

The 2011 Puget Sound Maritime Air Emissions Inventory updates the 2005 baseline inventory which identified and quantified pollutants emitted from maritime-related diesel equipment and alternatively fueled equipment operating within the greater Puget Sound region airshed. The inventory update quantifies maritime-related emissions for the calendar year 2011, and compares the data against the 2005 baseline inventory.

Why was the inventory developed?

The purpose of this emission inventory is to provide scientific data and evaluation of emissions from maritime-related activities in the region in 2011 and compare those emissions to 2005. This study will improve understanding of the nature, location, and magnitude of emissions from maritime-related operations, aid in the planning and prioritization of pollution prevention investments in the region, and evaluate the success of existing emission reduction programs.

Who developed the emissions inventory?

The inventory was funded by the Puget Sound Maritime Air Forum (Forum), a voluntary association of private and public maritime organizations, ports, air agencies, environmental, public health advocacy groups, and other parties with operational or regulatory responsibilities related to the maritime industry. The Forum is committed to accurately quantifying and voluntarily reducing air emissions associated with the maritime transportation of freight, vehicles and passengers. The Forum selected Starcrest Consulting Group, LLC (Starcrest) to be the technical lead for the inventory in collaboration with the Forum. Several Forum members collected and provided data for the inventory update.

What does the inventory measure?

Similar to the 2005 inventory, this emissions inventory quantifies annual marine diesel emissions, expressed in tons per year, from maritime-related activities associated with U.S. operations in a defined portion of the greater Georgia Basin/Puget Sound International Airshed (see Figure O.1 on the next page). The emissions inventory domain is bounded in the north by the black dotted line and to the south by the solid red line. This area spans approximately 140 miles south to north and 160 miles west to east, at its extremities. The geographical domain used in the 2011 inventory is the same as the domain used in the 2005 inventory and is referred to as the greater Puget Sound airshed in this report.

Pollutants measured in the inventories include relevant U.S. Environmental Protection Agency (EPA) criteria pollutants and precursors, including carbon monoxide, nitrogen oxides, sulfur dioxides, volatile organic compounds and fine particulate matter, as well as greenhouse gases, and diesel particulate matter. The 2011 inventory update is an activity-based inventory following a similar methodology as the 2005 baseline inventory.

Data was gathered for the following six major source categories associated with marine sectors:

- > Ocean-going vessels (OGV): cargo and cruise ships, tankers;
- ➤ Harbor vessels: commercial harbor vessels, government (non-military) vessels, and recreational vessels;
- Eargo handling equipment: cranes, straddle carriers, yard trucks, forklifts;
- > Off-terminal and on-road heavy-duty trucks;
- Fleet vehicles which consist primarily of light-duty vehicles and some on-terminal heavy-duty vehicles not associated with direct cargo movement; and
- ➤ Locomotive operations.

Military operations and equipment of the U.S. Department of Defense have not been included due to national security considerations.

Figure O.1: Georgia Basin/Puget Sound International Airshed

Why does the inventory focus on diesel engines?

Marine diesel engines, like all diesel engines, are significant generators of fine particles and toxic emissions. Exposure to these pollutants can contribute to increased rates of lung cancer, chronic respiratory and cardiovascular disease, and other health effects. Diesel emissions also contribute to acid deposition, climate change and impaired visibility. Given the implications for public health and the environment, reducing and minimizing these emissions is a top priority for the Forum. This inventory will help identify where pollution prevention efforts could provide the best public health and environmental benefits.

While the EPA has not listed diesel exhaust emissions as a hazardous air pollutant, it is important to note that effective federal regulations require dramatically cleaner fuels and lower-emitting diesel engines. In the meantime, members are proactively working together to achieve early emissions reductions from maritime-related operations to protect public health and the environment.

Technical Approach

The technical approach used for the 2011 inventory is consistent with the 2005 baseline report with updates to source category activities and emissions modeling methods or parameters (where applicable). The inventory is activity-based using 2011 annual activity data collected from ports, individuals, agencies and companies (or their representatives) that own, operate, maintain and/or charter equipment and vessels. When there are emissions modeling methods or parameter updates that differ from the 2005 inventory and affect the comparison of 2011 results with 2005 results, the 2005 emissions have been updated using the same modeling parameters to allow a direct comparison between the baseline year and 2011. This approach avoids misrepresentation of emissions changes dues to modeling methods or parameter updates and is used in other marine-related inventories to compare among years and monitor emission reduction progress.

What's being done now to reduce maritime air pollution?

In addition to participating in the emissions inventory project, the Forum partners are also working within their own organizations on local initiatives and nationally and internationally on efforts to reduce emissions. The Forum partners and their customers are switching to cleaner fuels, using shore power instead of ship engines when cruise and cargo ships are in port, replacing old engines with cleaner engines, retrofitting older engines with advanced pollution control devices, rebuilding engines to lower emission standards, and implementing systems to use equipment more efficiently.

The Northwest Ports Clean Air Strategy (CAS) was developed collaboratively in 2007 by the Port of Tacoma, the Port of Seattle and Port Metro Vancouver, British Columbia, along with the Puget Sound Clean Air Agency (PSCAA), EPA, the Washington State Department of Ecology (WDOE) and Environment Canada. The CAS defines emission reduction initiatives, potential actions and sets air emission reduction goals.

Through the implementation of the CAS over the last four years, the ports have achieved significant progress in reducing emissions in several areas: at berth emissions for ocean going vessels through the use of low-sulfur fuels and shore power; reduced cargo handling equipment emissions, reduced on-terminal truck emissions through engine retrofits and scrap-and-replace incentive programs, and reduced locomotive emissions through application of idle-reduction technologies.

What are the findings?

Total emissions from the inventoried maritime-related sources in the greater Puget Sound region airshed are summarized in Table O.1. Contributions by source category are summarized in Figure O.2. Harbor vessels emissions include commercial harbor vessels, government (non-military), and recreational vessels.

Table O.1: 2011 Total Airshed Emissions, tpy

Source Category	NO _x	voc	СО	SO_2	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
OGV, transit	9,424	363	840	7,333	616	493	593	452,613
OGV, hotelling & maneuvering	2,234	79	196	4,376	264	211	118	285,028
Harbor vessels	7,050	1,124	9,672	5	292	272	278	481,123
Locomotives	1,264	80	200	11	45	41	45	75,289
Cargo handling equipment	594	37	297	1	33	32	33	64,275
Heavy-duty vehicles	2,340	143	666	3	55	44	55	375,071
Fleet vehicles	6	3	34	0	0	0	0	2,828
Total	22,912	1,830	11,905	11,729	1,304	1,092	1,122	1,736,226

NOx **VOC** CO SO₂ **PM10** PM2.5 **DPM** CO₂e 0% 20% 40% 60% 80% 100% OGV, transit ■ OGV, hotelling & maneuvering ■ Harbor vessels Locomotives ■ Cargo-handling equipment ■ Heavy-duty vehicles

Figure O.2: 2011 Total Airshed Emissions

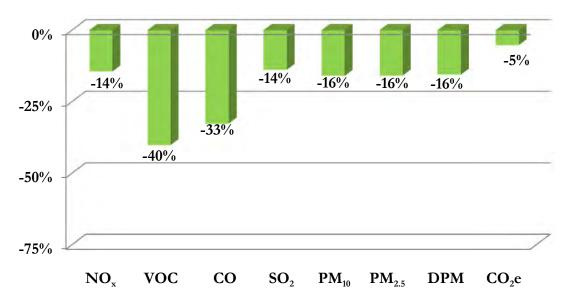

Please read the full report for details regarding emissions from each source category.

Table O.2 and Figure O.3 compare the 2011 airshed total maritime-related air emissions to the 2005 emissions. In 2011, emissions decreases ranged from 5% to 40% as compared to 2005, depending on pollutant. These reductions are primarily from activity level changes, switching to ultra low sulfur diesel, and the various efforts associated with the implementation of the CAS, as detailed in Section 10 of the report.

Table O.2: 2011 vs 2005 Total Airshed Emissions Comparison, tpy

Year	NO_x	voc	СО	SO_2	\mathbf{PM}_{10}	$PM_{2.5}$	DPM	CO_2e
2011	22,912	1,830	11,905	11,729	1,304	1,092	1,122	1,736,226
2005	26,790	3,060	17,686	13,621	1,552	1,298	1,329	1,831,684
Change, tpy	-3,877	-1,230	-5,781	-1,892	-248	-206	-208	-95,457
Change, %	-14%	-40%	-33%	-14%	-16%	-16%	-16%	-5%

Figure O.3: 2011 vs 2005 Total Airshed Emissions Change

Note: 2005 emissions were recalculated using the same methods used for the 2011 emission estimates. The above figure accounts for these changes so that a direct comparison can be made between 2011 vs 2005.

2011 Puget Sound Maritime Air Emissions Inventory Overview

What's next?

This inventory provides the most complete picture to date of maritime-related emissions in the greater Puget Sound region airshed. Review and assessment of this data will enable the maritime community to better plan, design, implement and evaluate the effectiveness of fact-based air pollution control strategies to help maintain air quality, minimize health risks, and protect the environment.

In 2008 the International Maritime Organization (IMO) amended international rules to lower worldwide fuel sulfur content for ocean-going vessels from 4.5% to 3.5% beginning in 2012. Fuel sulfur limits will lower again to 0.5% as early as 2020, but no later than 2025 (subject to a fuel availability study to be conducted in 2018). New NOx engine emission standards require vessels constructed after 2011 to meet Tier 2 levels (14.4 gram NOx/kilowatt-hour [kW-hr]); a reduction of 20% from current levels. Vessels constructed after 2016 are required to meet Tier 3 levels (3.4 gram NOx/kW-hr); a reduction of 80% below current Tier 1 standards.

On 26 March 2010, the IMO officially designated waters off North American coasts (except for Mexico) as an Emission Control Area (ECA) in which stringent international fuel content limitations and engine emission standards will apply to ships. The North American ECA went into effect on August 1, 2012. The second phase of the ECA will reduce sulfur content of fuels an additional 90% from the August 2012 levels. These standards will dramatically reduce ship sulfur and particulate related emissions and deliver substantial air quality and public health benefits that extend hundreds of miles inland.

Since the implementation of the CAS in 2008, the ports, stakeholders and partners have achieved considerable progress toward emission reduction measures. The ports will continue to encourage the spirit of collaboration and cooperation among their partners to promote proactive engagement of stakeholders and implement innovative approaches for reducing emissions. The ports also recognize the need to review and adjust the CAS on a regular basis in light of new standards, technology advancement, air emissions data, and evolving climate change policy frameworks. A five-year review and update of the CAS is currently underway to incorporate these external changes and to integrate lessons learned.

EXECUTIVE SUMMARY

The 2011 Puget Sound Maritime Air Emissions Inventory was developed by members of the Puget Sound Maritime Air Forum (Forum) to provide an update to the 2005 baseline and to assess the changes in maritime-related air emissions in the greater Puget Sound region since the baseline year. With the exception of a portion of Pierce County, which has been designated as nonattainment for the 24-hr fine particulate standard, PM_{2.5}, the region is currently in attainment with federal, state and local ambient air quality standards.

On April 30, 2012, U.S. Environmental Protection Agency (EPA) finalized a rule that redirects the implementation of the 2008 National Ambient Air Quality Standards (NAAQS) for ozone including 0.075 parts per billion (ppb) 8-hour ozone standards requirement in 2032¹. The more stringent ozone standard may result in the region being designated as nonattainment for ozone.

Effective focus of air pollution prevention resources on maritime-related emissions requires a good understanding of the nature, location, and magnitude of emissions, which include ocean-going vessels (OGV), harbor vessels, heavy-duty and light-duty vehicles, locomotives, and cargo handling equipment. This report is not a policy document and does not include policy recommendations. The purpose of this 2011 emissions inventory update is to provide scientifically valid data to determine changes since the 2005 baseline and aid in the planning and prioritization of pollution prevention investments in the region.

Project partners are motivated by a commitment to protect the environment and public health in the Puget Sound region and elsewhere. Public and private organizations with maritime operations could have prepared separate inventories of their own operations and effectively reduced their emissions, but success in protecting ambient air quality standards and reducing the public health risks from exposure to diesel emissions relies on the larger maritime community working together to address the issue from an industry-wide perspective. One example is the Northwest Ports Clean Air Strategy (CAS) which was developed in 2007 and adopted in 2008 by the Port of Tacoma, Port of Seattle and Port Metro Vancouver, British Columbia to reduce maritime-related air emissions in the region. The Forum partners also are working within their own organizations on local initiatives, with other West Coast entities on national efforts and with the Pacific Ports Clean Air Collaborative to reduce emissions.

¹EPA, http://www.epa.gov/glo/actions.html.

2011 Puget Sound Maritime Air Emissions Inventory Executive Summary

The 2011 Puget Sound Maritime Air Emissions Inventory includes quantified emissions from most U.S. maritime-related sources within a portion of the Georgia Basin/Puget Sound International Airshed (see Figure ES.1) for the year 2011. It includes sources such as cargo and cruise ships, fishing boats, tugboats, tankers, recreational vessels, ferries, cargo handling equipment, locomotives, buses, trucks and light-duty vehicles. Military operations and U.S. Department of Defense equipment were not included due to national security considerations. Pollutants in the inventory include relevant EPA criteria pollutants and precursors (carbon monoxide [CO], nitrogen oxides [NO_x], sulfur oxides [SO₂], volatile organic compounds [VOC], particulate matter [PM]); greenhouse gases (carbon dioxide [CO₂], methane [CH₄], nitrous oxide [N₂O], and carbon dioxide equivalents [CO₂e]); and diesel particulate matter[DPM].

This activity-based emissions inventory provides detailed information on the major source categories associated with the marine activities, which are ocean-going vessels, harbor vessels, cargo handling equipment, on-road heavy-duty and light-duty vehicles, and rail operations.

Emissions inventories that are updated over time are very useful tools to quantify mass emissions and track emission changes from the various sources of emissions in a geographic area and to help prioritize those sources for potential emission reductions. Furthermore, the regional emissions inventory, including the maritime-related portion, is a critical component of an overall air quality assessment and mitigation strategy development process employed by air regulatory agencies to ensure the area complies with local, state and national air quality standards.

Diesel fueled engines and boilers, like many other mobile, stationary, and area sources, are significant generators of criteria pollutants, their precursors and toxic emissions. Excessive exposure to these pollutants can contribute to increased rates of lung cancer, chronic respiratory disease, impaired lung development in children, cardiovascular disease, and other health effects. Given the implications for public health, the reduction and minimization of these emissions are a top priority for the Forum as well as the American Lung Association, the Puget Sound Clean Air Agency (PSCAA), the Olympic Region Clean Air Agency (ORCAA), the Northwest Clean Air Agency (NWCAA), the Washington Department of Ecology (WDOE), EPA, and others. This emission inventory will support that effort by increasing the understanding of the emission contributions from the maritime-related sources, one component of the state's air quality concerns. Because the health impacts of toxic emissions can be proximity dependent, this inventory will contribute to a better understanding of where emission reductions could provide the best public health benefit. While the EPA has not yet officially designated diesel emissions as a hazardous air pollutant, and there are no established regulatory standards for diesel particulate emissions beyond inclusion in the PM₁₀ and PM_{2.5} ambient air standards, it is important to note that federal regulations are in place to require dramatically cleaner fuels and new diesel engines in the In addition, in its Health Assessment Document for Diesel Engine Exhaust [EPA/600/8-90/057F May 2002, page ii, pdf p.3] EPA concludes that "long-term (i.e., chronic) inhalation exposure is likely to pose a lung cancer hazard to humans, as well as damage the lung in other ways depending on exposure."

2011 Puget Sound Maritime Air Emissions Inventory Executive Summary

The Forum participants are committed to proactively working with regulatory agencies and others to achieve early emissions reductions from maritime-related operations to protect public health and the environment.

ES.1.1 Maritime-Related Source Categories

Maritime-related air emission source categories included in this inventory are:

- Ocean-going vessels
- ➤ Harbor vessels
- > Cargo handling equipment
- > Locomotives
- ➤ Heavy-duty vehicles
- ➤ Fleet vehicles

Ocean-going vessels include containerships, ocean-going tug boats, refrigerated vessels (reefers), roll-on roll-off (RoRo) ships, passenger cruise vessels, auto carriers, general cargo ships, dry bulk ships, bulk liquid tankers and miscellaneous vessels. There were a total of 2,582 inbound ocean-going vessel calls to the Puget Sound region in 2011. Military vessels were not included due to security considerations.

Harbor vessels include commercial, recreational, and government vessels that spend the majority of their operational time within or near ports, harbors, and coastal areas. Vessel parameters and/or activity data was updated for 263 vessels out of 709 total harbor vessels including commercial fishing vessels, ocean tugs, harbor tugs, towboats, excursion vessels, government (non-military) vessels, ferries, tank barges, work boats, and assist and escort tugs. Vessels that were not updated were assumed to operate at their 2005 activity levels.

Non-road cargo handling equipment includes equipment used to move cargo (containers, general cargo, and bulk cargo) to and from marine vessels, railcars and on-road trucks. This category includes cranes, straddle carriers, yard tractors, top and side handlers, forklifts and other related equipment not designed for use on public roads. A total of 1,196 pieces of cargo handling equipment was inventoried at Puget Sound terminals.

The locomotive category includes switching or yard locomotives serving marine cargo terminals, and line-haul or Class 1 locomotives carrying cargo to or from marine terminals to out-of-area destinations. Marine cargo transported by rail may be loaded at on-dock or near-dock rail yards. Emissions from line-haul and related switch locomotives serving maritime-related facilities were included in the inventory.

On-road heavy-duty vehicles include the heavy-duty trucks that are used to move cargo to and from terminals, local and national destinations and between terminals and off-port railcar loading facilities. This category also includes the buses that are used to transport passengers to and from cruise ship terminals and the airport or other locations in the region.

Fleet vehicles consist primarily of light-duty vehicles and some on-terminal heavy-duty vehicle not associated with direct cargo movement. There are three categories of fleet vehicles: terminal fleet vehicles, cruise terminal vehicles, and import/export vehicles. There were approximately 805 terminal fleet vehicles were used on cargo terminals in 2011.

ES.1.2 Puget Sound Maritime Air Emissions Inventory Findings

ES.1.2.1 Emissions Inventory Domain

The red solid line in Figure ES.1 illustrates the entire Georgia Basin/Puget Sound International Airshed. The southern portion of which, below the dashed black line and within the solid red line as shown in Figure ES.1, represents the geographical domain of this emissions inventory. This domain includes the U.S. portions Georgia Basin/Puget Sound International Airshed as well as the entire Straits of Juan de Fuca and the waters east of Vancouver Island (stopping at the U.S./Canada Boarder to the north). Specifically, the Georgia Basin portion of the emissions inventory includes Whatcom and San Juan Counties and the southern coastline of the Strait of Juan de Fuca, while the Puget Sound portion encompasses the counties to the south of Whatcom County in Washington State. The specific emissions inventory over-water domain is detailed in Section 3.2.

Figure ES.1: Georgia Basin/Puget Sound International Airshed

2011 Puget Sound Maritime Air Emissions Inventory Executive Summary

In 2005, the geographical domain of the emissions inventory was considered one emissions zone, the airshed. In 2011, in an effort to gain a deeper understanding of port-related emissions, the Port of Tacoma and Port of Seattle allocated 2011 emissions into three geographical zones, compared to using only one zone in 2005. For comparison purposes, the allocations were also retroactively applied to the 2005 emissions results. The three geographical zones are:

- Port emissions within port terminals and adjacent waterways
- ➤ Air district emissions within the PSCAA boundaries (Pierce, King, Kitsap, and Snohomish counties)
- ➤ Airshed emission within the inventory domain

The other participating port's specific port emissions and comparisons remain consistent with the 2005 approach.

ES.1.2.2 2011 Airshed Total Emissions

Total emissions from U.S. maritime-related sources (expressed in tons per year or tpy) in the inventory domain or airshed, are presented in Table ES.1. Distribution of emissions by emissions source category is presented in Table ES.2 and Figure ES.2. Greenhouse gases are presented as carbon dioxide equivalents (CO₂e), which include the contributions of carbon dioxide, nitrous oxide, and methane. Details regarding emissions from each source category are provided in relevant sections of this report as noted below. The 2011 airshed total emissions include the following:

- ➤ Ocean-going vessel emissions include hotelling (i.e., dockside), maneuvering, and transiting emissions, which are detailed in Section 3. The emissions inventory overwater domain is detailed in Section 3.2.
- ➤ Harbor vessel emissions include commercial harbor vessels (i.e., assist tugs, private ferries including Washington State Ferries [WSF], harbor tugs, excursion vessels, workboats, etc.), government vessels (local, state, federal non-military, and portowned vessels), and recreational vessels, which are detailed separately in Section 4.
- ➤ Cargo handling equipment emissions include emissions from all terminal equipment including yard trucks, top picks, side picks, rubber-tired gantry cranes and other heavy-duty and light-duty equipment, which are detailed in Section 5.
- ➤ Locomotive emissions include switch and line-haul operations, which are detailed in Section 6.
- ➤ Heavy-duty vehicle emissions include on-road drayage and long-haul trucks, which are detailed in Section 7.
- Fleet vehicles consist primarily of light-duty vehicles and some on-terminal heavyduty vehicles not associated with direct cargo movement. There are three categories of fleet vehicles: terminal fleet vehicles, cruise terminal vehicles, and import/export vehicles, which are detailed in Section 8.

Table ES.1: 2011 Total Airshed Emissions, tpy

Source Category	NO_x	voc	СО	SO_2	\mathbf{PM}_{10}	PM _{2.5}	DPM	CO_2e
OGV, transit	9,424	363	840	7,333	616	493	593	452,613
OGV, hotelling & maneuvering	2,234	79	196	4,376	264	211	118	285,028
Harbor vessels	7,050	1,124	9,672	5	292	272	278	481,123
Locomotives	1,264	80	200	11	45	41	45	75,289
Cargo handling equipment	594	37	297	1	33	32	33	64,275
Heavy-duty vehicles	2,340	143	666	3	55	44	55	375,071
Fleet vehicles	6	3	34	0	0	0	0	2,828
Total	22,912	1,830	11,905	11,729	1,304	1,092	1,122	1,736,226

Table ES.2: 2011 Total Airshed Emissions Contribution by Source Category

Source Category	NO _x	voc	СО	SO_2	\mathbf{PM}_{10}	PM _{2.5}	DPM	CO ₂ e
OGV, transit	41%	20%	7%	62%	47%	45%	53%	26%
OGV, hotelling & maneuvering	10%	4%	2%	37%	20%	19%	11%	16%
Harbor vessels	31%	61%	81%	0%	22%	25%	25%	28%
Locomotives	5%	4%	2%	0%	3%	4%	4%	4%
Cargo handling equipment	< 3%	<2%	<2%	0%	<2%	<3%	<3%	<4%
Heavy-duty vehicles	10%	8%	6%	0%	4%	4%	5%	22%
Fleet vehicles	<1%	<1%	<1%	<1%	<1%	<1%	<1%	<1%
Total	100%	100%	100%	100%	100%	100%	100%	100%

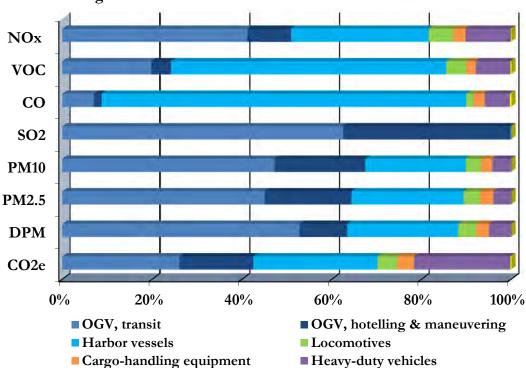


Figure ES.2: 2011 Total Airshed Emissions Distribution

In table ES.3, the 2011 airshed total emissions from U.S. maritime-related sources in the emissions inventory domain are allocated by regional clean air agency jurisdiction. The NWCAA includes Island, Skagit and Whatcom counties. The ORCAA includes Clallam, Grays Harbor, Jefferson, Mason, Pacific, and Thurston counties. The PSCAA includes Pierce, King, Kitsap, and Snohomish counties.

Table ES.3: 2011 Total Airshed Emissionsby Clean Air Agency, tpy

Agency	NO _x	VOC	CO	SO_2	PM_{10}	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
NWCAA	2,988	442	3,663	3,076	233	191	140	296,048
ORCAA	8,074	428	1,970	6,056	521	421	472	465,699
PSCAA	11,851	959	6,271	2,597	550	480	510	974,479
Total	22,912	1,830	11,905	11,729	1,304	1,092	1,122	1,736,226

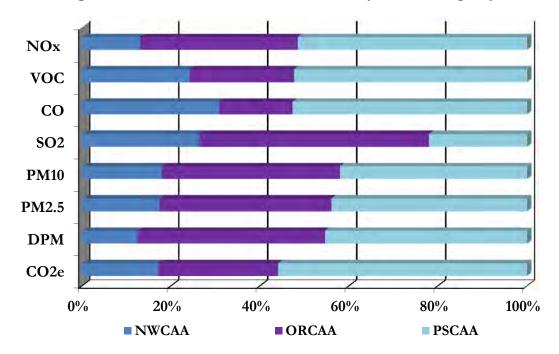


Table ES.4 and Figure ES.3 presents the 2011 U.S. maritime-related clean air agency distribution of emissions by regional clean air agency boundaries. The PSCAA region comprises half of the U.S. maritime-related emissions due to having the two major ports in the region located within PSCAA as well as having significant portion of the over-water boundary. ORCAA has the next highest percentage of emissions which is due to the long ocean-going vessel transits associated with the Straits of Juan de Fuca.

Table ES.4: Distribution of 2011 Total Airshed Emissionsby Clean Air Agency

Agency	NO _x	voc	СО	SO ₂	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
NWCAA	13%	24%	31%	26%	18%	17%	12%	17%
ORCAA	35%	23%	16%	52%	40%	39%	42%	27%
PSCAA	52%	53%	53%	22%	42%	44%	46%	56%

Figure ES.3: 2011 Total Airshed Emissions by Clean Air Agency

ES.1.3 Overview of Comparison, 2011 vs 2005

Table ES.5 compares the 2011 and 2005 ship inbound activity², cargo throughput in twenty-foot-equivalent units (TEU), and total cargo tonnage in metric tons (tonnes) for the Ports of Anacortes, Everett, Olympia, Seattle, and Tacoma. Due to the worldwide economic downturn, the overall activity and throughput was down in 2011 for the Puget Sound ports when compared to 2005. The Port of Seattle and Port of Tacoma had lower vessel call counts and TEU throughput. The exceptions are the Port of Everett and Port of Olympia, which increased their vessel calls and tonnage in 2011 as compared to 2005. Overall, the inbound calls decreased 9%, TEU decreased 15% and tonnage decreased slightly by 1%.

Table ES.5: 2011 vs 2005 Port Activity Comparison

	2011	2005	2011	2005	2011	2005
Port	Inbound	Inbound	Throughput	Throughput	Cargo	Cargo
	Activities	Activities	(TEU)	(TEU)	(tonnes)	(tonnes)
Anacortes	38	29	na	na	na	na
Everett	103	47	20,918	9,561	152,995	103,757
Olympia	26	20	0	903	711,536	129,512
Seattle	1,136	1,197	2,033,535	2,087,929	22,762,678	20,564,860
Tacoma	875	1,093	1,488,795	2,070,000	17,270,252	20,400,000
Total	2,178	2,386	3,543,248	4,168,393	40,897,461	41,198,129
Change, %	-9%		-15%		-1%	

_

²Inbound activity counts are based on MarEx data and only include ocean-going vessel counts arriving directly from sea and shifts from other ports in the inventory domain to the designated port. Barge calls are not included in the ocean-going vessel inbound activity.

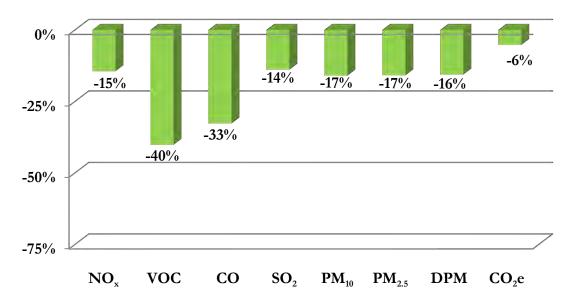

2011 Puget Sound Maritime Air Emissions Inventory Executive Summary

Table ES.6 and Figure ES.4 compare the total 2011 maritime-related air emissions to the 2005 emissions. In 2011, the emissions decreased 5% to 40% as compared to 2005, depending on pollutant. These reductions are primarily from activity level changes, switching to ultra low sulfur diesel (ULSD), and the various efforts associated with the implementation of the CAS, as detailed in Section 10.

Table ES.6: 2011 vs 2005 Total Airshed Emissions Comparison, tpy

Year	NO _x	voc	СО	SO ₂	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO_2e
2011	22,912	1,830	11,905	11,729	1,304	1,092	1,122	1,736,226
2005	27,059	3,070	17,708	13,621	1,565	1,310	1,342	1,845,912
Change, tpy	-4,146	-1,240	-5,804	-1,892	-261	-218	-220	-109,686
Change, %	-15%	-40 %	-33%	-14%	-17%	-17%	-16%	-6%

Figure ES.4: 2011 vs 2005 Total Airshed Emissions Change

Note: 2005 emissions were recalculated using the same methods used for the 2011 emission estimates. The above figure accounts for these changes so that a direct comparison can be made between 2011 vs 2005.

2011 Puget Sound Maritime Air Emissions Inventory Executive Summary

For some of the source categories, the emissions calculation methodology was different in 2011 compared with 2005. In order to compare 2011 emissions to 2005 emissions, for those source categories with methodology changes, the 2005 emissions were updated with the 2011 emissions modeling parameter changes or were otherwise adjusted so the two inventories can be directly compared. Thus, the 2005 emissions included in this report are, in some cases, different from the published emissions in the 2005 Puget Sound Emissions Inventory (PSEI) report. The changes to the 2005 methodology are as follows:

- ➤ 2005 cargo handling equipment emissions were recalculated to include the updated 2011 load factors for yard tractors and rubber tired gantry (RTG) cranes. The RTG crane load factor changed from 43% to 21% in 2011; while the yard tractor load factor changed from 59% to 39% in 2011. These load factors have a direct impact on emissions and by applying the lower load factors in 2011 to the 2005 activity, the 2005 CHE emissions included in this 2011 PSEI report for comparison to 2011 emissions are lower than what was presented in the 2005 PSEI.
- ➤ 2005 commercial harbor vessels and government vessel emissions were recalculated to include the updated 2011 load factors for harbor tug, ferry, excursion and workboats. Please refer to section 4.9 for a comparison of the various load factors used in 2005 and the 2011 PSEI. The 2011 load factors are lower than the load factors used in 2005, thus the 2005 harbor vessel emissions included in this 2011 PSEI report for comparison to 2011 emissions are lower than what was presented in the 2005 PSEI. Recreational vessel counts and assumptions used in the 2005 inventory were rerun in the EPA non-road equipment emission modeling software, NONROAD2008a model, used for the 2011 inventory to enable direct comparisons.
- ➤ 2005 heavy-duty vehicle emissions were recalculated for on-terminal and total portrelated emissions due to differences in source of heavy-duty vehicle model year distribution, truck size class and the version of the EPA on-road vehicle emission modeling software, model MOBILE, used for 2005 emissions and 2011 emissions.

Ocean-going vessels, locomotives, and fleet vehicle emission calculation methodology used in 2011 inventory is similar to the methodology used in 2005, except for a minor change in switching locomotive CO₂ emission estimates resulting from a change to the EPA's value for brake-specific fuel consumption. Thus 2005 total emissions for these categories remained the same as the published 2005 PSEI emissions, except for locomotive CO₂ emissions.

It's important to note that changes in activity have direct impacts on emissions when comparing 2011 vs 2005. In each of the source category sections, Sections 2 and 9, all present the changes in activities related to each section along with the emission changes between 2011 and 2005.

2011 Puget Sound Maritime Air Emissions Inventory Executive Summary

Table ES.7 summarizes the total maritime-related emissions for 2011 and 2005 and the 2011 vs 2005 comparison by source category.

Table ES.7: 2011 vs 2005 Total Airshed Emissionsby Source Category, tpy

	NO_x	voc	СО	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
2011								
Ocean-going vessels	11,658	442	1,036	11,709.00	879.65	703.72	711.12	737,640
Harbor vessels	7,050	1,124	9,672	5.34	291.52	271.64	277.72	481,123
Locomotives	1,264	80	200	10.51	45.15	41.35	45.15	75,289
Cargo handling equipment	594	37	297	0.60	32.60	31.70	32.60	64,275
Heavy-duty vehicles	2,340	143	666	3.40	55.00	43.50	55.00	375,071
Fleet vehicles	6	3	34	0.05	0.09	0.08	0.04	2,828
Total	22,912	1,830	11,905	11,728.90	1,304.01	1,092.00	1,121.63	1,736,226
2005								
Ocean-going vessels	14,551	509	1,200	12,923.71	1,030.66	822.51	841.99	812,391
Harbor vessels	6,497	2,217	14,477	380.31	306.34	282.15	272.17	464,362
Locomotives	2,156	109	269	168.60	59.11	54.39	59.11	98,495
Cargo handling equipment	832	81	814	61.84	54.89	53.25	54.64	79,581
Heavy-duty vehicles	3,012	148	899	86.70	114.00	97.60	114.00	387,846
Fleet vehicles	10	5	50	0.04	0.08	0.08	0.08	3,237
Total	27,059	3,070	17,708	13,621.18	1,565.08	1,309.97	1,341.99	1,845,912
% Change								
Ocean-going vessels	-20%	-13%	-14%	-9%	-15%	-14%	-16%	-9%
Harbor vessels	9%	-49%	-33%	-99%	-5%	-4%	2%	4%
Locomotives	-41%	-27%	-25%	-94%	-24%	-24%	-24%	-24%
Cargo handling equipment	-29%	-54%	-64%	-99%	-41%	-40%	-40%	-19%
Heavy-duty vehicles	-22%	-3%	-26%	-96%	-52%	-55%	-52%	-3%
Fleet vehicles	-34%	-48%	-31%	24%	8%	3%	-47%	-13%
Total	-15%	-40%	-33%	-14%	-17%	-17%	-16%	-6%

2011 Puget Sound Maritime Air Emissions Inventory Executive Summary

A summary of the changes listed above and the leading actions that led to the changes are presented below:

- ➤ Ocean-going vessel emissions decreased 9% to 20% across all pollutants compared to 2005. The reductions were due to decreased vessel calls, use of shore power, and use of lower sulfur fuel in the auxiliary engines by some vessels/shipping lines while at berth.
- ➤ Harbor vessel SO₂, and PM emissions decreased compared to 2005 due to the use of ULSD. NO_x, DPM and CO₂ emissions increased due to the increased activity and changes in the fleet characteristics associated with harbor vessels.
- Locomotive emissions decreased compared to 2005 due to lower throughput, improved fuel efficiency, idle reduction, lower sulfur fuel, cleaner locomotive engines, and more fuel-efficient routing of trains within the air basin.
- ➤ Cargo handling equipment emissions decreased 19% to 99% across all pollutants compared to 2005. The reductions were due to decreased activity, use of ULSD, emission reduction retrofits such as diesel particulate filters (DPFs) and diesel oxidation catalysts (DOCs), engine repowers, and equipment turnover which includes the purchase of newer equipment.
- ➤ Heavy-duty vehicle emissions decreased compared to 2005, except for CO₂e which remained essentially the same in 2011 as in 2005. The reduction in heavy-duty vehicle emissions is due to fleet turnover, the implementation of the clean truck programs by the Ports of Tacoma and Seattle, and the use of ULSD.
- For fleet vehicles, the varying emission changes compared to 2005 are due to the different fleet mix of gasoline, propane and diesel powered vehicles included in the two inventories.

As an addition to the 2011 Puget Sound Maritime Air Emissions Inventory, estimates have been developed of the emission reductions achieved in 2011 calendar year by the Port of Seattle and the Port of Tacoma through the implementation of Strategy measures. The 2011 emission reductions are discussed in Section 10.

2011 Puget Sound Maritime Air Emissions Inventory Executive Summary

Tables ES.8 and ES.9 summarize the 2011 emission reductions for ocean-going vessels, harbor craft, CHE, switching locomotives, and heavy duty vehicles for the Port of Seattle and Port of Tacoma, respectively.

Table ES.8: Port of Seattle 2011 Emission Reductions, tpy

Source Category	NO _x	VOC	CO	SO_2	\mathbf{PM}_{10}	PM _{2.5}	DPM	CO ₂ e
Ocean-going vessels	38.5	0.8	2.3	371.0	23.5	18.8	19.1	1,778
Harbor craft	4.8	0.0	0.0	56.1	3.3	3.0	3.3	0
Cargo handling equipment	91.8	7.8	15.4	0.0	2.7	2.6	2.7	0
Locomotives	2.6	0.0	0.0	20.0	0.1	0.1	0.1	137
Heavy duty vehicles	135.9	1.3	0.0	0.0	8.2	7.3	8.2	0
Total	273.6	9.4	17.7	447.1	37.7	31.8	33.3	1,915

Table ES.9: Port of Tacoma 2011 Port Direct Emission Reductions, tpy

Source Category	NO _x	voc	CO	SO_2	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
Ocean-going vessels	21.4	0.5	1.3	132.7	8.5	6.8	6.1	1,159
Harbor craft	4.8	0.0	0.0	34.1	2.1	1.9	2.1	0
Cargo handling equipment	15.7	5.2	17.3	0.0	2.4	2.4	2.4	0
Locomotives	3.1	0.2	0.0	16.9	0.1	0.1	0.1	59
Heavy duty vehicles	58.2	0.8	0.0	0.0	3.6	3.2	3.6	0
Total	103.1	6.6	18.7	183.7	16.7	14.3	14.3	1,218

SECTION 1 INTRODUCTION

This section describes the rationale behind the Puget Sound Maritime Air Emissions Inventory, introduces the Puget Sound Maritime Air Forum (Forum) that sponsored the effort, provides an overview of this and related efforts, describes maritime-related entities in the Puget Sound area, including ports, petroleum refineries, ferry terminals, and military installations, and discusses emission reduction efforts identified at these entities.

1.1 Reason for Study

Comprehensive air quality planning requires quality emissions inventories as a foundation. An emissions inventory identifies and quantifies by means of engineering calculations the pollutants emitted by sources in a geographic area or airshed and their relative contributions to total emissions within that airshed. The emissions inventory is the foundation or baseline for other activities such as air quality analysis and strategy development.

This activity-based emissions inventory provides detailed information on the five major source categories associated with the marine activities, which are ocean-going vessels (OGVs), harbor vessels, cargo handling equipment (CHE), on-road heavy-duty vehicles (HDVs), and locomotive operations.

The maritime-related inventory must be viewed in context with the other sources of air emissions in the region. Maritime-related sources are one component of total air emissions sources present in the greater Georgia Basin/Puget Sound International Airshed. Other (non-marine) categories that contribute to emissions include point sources (refineries, manufacturing facilities, etc.), on-road mobile sources (cars, trucks, buses and motorcycles), non-road equipment (construction equipment, farming equipment, etc.), and stationary area sources (home wood heating, open burning, auto body shops etc.).

An emissions inventory by itself is a very useful tool to quantify mass emissions and track emission changes through time from a variety of sources of pollution in a geographic area and to help prioritize those sources for potential emission reductions. Furthermore, the regional emissions inventory, including the maritime-related portion, is a critical component of an overall air quality assessment and mitigation strategy development process employed by air regulatory agencies to ensure the area complies with local, state and national air quality standards.

In addition to assuring continued compliance with air quality standards, air agencies work to protect public health and the environment. Adverse health impacts can occur from toxic air emissions (e.g., diesel particulate matter) even if a region is in compliance with air quality standards. Environmental impacts such as visibility impairment can occur at levels significantly less than those standards. Since health impacts are directly related to the concentration and duration of public exposure to specific air pollutants, agencies use additional tools to help them understand the impacts of air pollution. Agencies operate air quality monitoring networks to measure ambient concentrations at representative locations. They also perform computer modeling based on local meteorological data to convert emissions inventory data to estimated ambient concentrations across specific areas. Air quality managers use the data from monitors and modeling to plan and select strategies that reduce emissions sufficiently to meet air quality standards and protect health and environmental goals everywhere in the greater airshed.

The greater Puget Sound region is a significant airshed encompassing a large population. A portion of the region located in Pierce County was designated as nonattainment with respect to U.S. Environmental Protection Agency's (EPA's) PM_{2.5} National Ambient Air Quality Standard (NAAQS) in 2009 (known as the Tacoma, Pierce County Nonattainment Area).³ The fine particle pollution (PM_{2.5}) in the Tacoma, Pierce County nonattainment area comes mainly from smoke due to burning in fireplaces and wood stoves, but maritime activities also contribute a portion of fine particle pollution in the designated area. The Puget Sound Clean Air Agency (PSCAA) worked with a group of community stakeholders and developed a set of strategies to reduce the fine particle pollution in the nonattainment area. The recommended strategies included reducing wood smoke emissions through replacing older, highly-polluting wood stoves and increasing the amount of enforcement of residential burn bans. In addition, the stakeholders supported reductions in other sources of pollution, including maritime-related diesel equipment through cleaner fuels and cleaner equipment.

-

 $^{^{3}}$ In 2007, Ecology recommended to EPA that a portion of Pierce County, including Tacoma, be designated as nonattainment for PM_{2.5} based on the 24hr standard applied to 2004-2006 Tacoma L-Street Monitoring data. EPA designated the area as nonattainment in 2009.

Diesel engines, like many other mobile, stationary, and area sources, are significant generators of criteria pollutants and toxic emissions. Excessive exposure to these pollutants can contribute to increased rates of lung cancer, chronic respiratory disease, impaired lung development in children, cardiovascular disease, and other health effects. implications for public health, the reduction and minimization of these emissions are a top priority for the Forum. This emission inventory will support this effort by increasing the understanding of the emission contributions from the maritime-related sources, one component of the state's air quality concerns. Because the health impacts of toxic emissions can be proximity dependent, this inventory will contribute to a better understanding of where emission reductions could provide the best public health benefit. While the EPA has designated diesel emissions as a hazardous air pollutant, it is important to note that federal regulations are in places that require dramatically cleaner fuels and new diesel engines. In addition, in its Health Assessment Document for Diesel Engine Exhaust [EPA/600/8-90/057F May 2002, page ii, pdf p.3] EPA concludes that "long-term (i.e., chronic) inhalation exposure is likely to pose a lung cancer hazard to humans, as well as damage the lung in other ways depending on exposure."4

Forum participants are committed to proactively working to achieve early emissions reductions from maritime-related operations to protect public health and the environment.

The Forum proactively commissioned this 2011 air emissions inventory to document the progress made since 2005 in reducing Puget Sound maritime-related emissions and to better understand how the Forum may adjust its focus and continue its emission reduction efforts. During the inventory process, information on the nature, quantity, and sources of air pollutants released from maritime sources has been collected. As the understanding of maritime-related emissions sources improves, the maritime community will be better able to design, implement, and evaluate the effectiveness of fact-based air pollution control strategies and deliver air quality benefits to the region.

⁴ Email correspondence, Wayne Elson, Office of Air, Waste, and Toxics, EPA and Ron Stuart, Project Manager, Port of Tacoma, September 6, 2012.

1.2 Scope of Study

The scope of the study is described in terms of the pollutants quantified, the year of operations used as the basis of emission estimates (2011), the included and excluded source categories, and the geographical extent.

1.2.1 Pollutants

Exhaust emissions of the following pollutants are estimated:

- Criteria pollutants, surrogates, and precursors
 - Oxides of nitrogen (NO_x)
 - Sulfur dioxide (SO₂)
 - Particulate matter (PM) (10-micron, 2.5-micron)
 - Volatile organic compounds (VOCs)
 - Carbon monoxide (CO)
- ➤ Toxic⁵ air pollutant, diesel particulate matter (DPM), which is the particulate matter emitted from diesel internal combustion engines
- ➤ Greenhouse gases
 - Carbon dioxide equivalent (CO₂e)

⁵In 1998, the California Air Resources Board(CARB) identified diesel particulate matter as a toxic air contaminant. CARB, Resolution 98-35, 27 August 1998. See: http://www.arb.ca.gov/regact/diesltac/res98-35.pdf.

Table 1.1: Pollutant Description

Pollutant	Ambient Standard Compliance Status	Sources	Health & Environmental Effects
Ozone (O ₃)* is a pungent-smelling, colorless gas produced in the atmosphere when nitrogen oxides (NO _x) and volatile organic compounds (VOC) chemically react under sunlight. The highest O ₃ levels occur on hot summer afternoons. This inventory does not include O ₃ because it is not directly emitted; this inventory does include the O ₃ precursors nitrogen oxides and volatile organic	region was re-designated to "attainment" status by EPA. O ₃ levels have not decreased significantly. Concentrations often exceed, but don't violate, standards a few times	come from the transportation sector: cars and light trucks, marine vessels, and heavy-duty diesel vehicles. Other sources include gasoline-powered yard equipment, gasoline refueling, industrial solvents, and auto-body paint shops, among others. Natural	reduce lung function, cause respiratory irritation, aggravate asthma symptoms, and weaken the immune system. O ₃ has environmental impacts as well; studies show that O ₃ can damage
compounds.		formation.	
Oxides of Nitrogen (NO _x) is the generic term for a group of highly reactive gases; all of which contain nitrogen and oxygen in varying amounts. Most NO _x are colorless and odorless. Nitrogen dioxide (NO ₂)* is one form of NO _x . NO ₂ , along with particles in the air can often be seen as a reddish-brown layer over many urban areas.	air quality standards in the Puget Sound Region. See above for information about the role of NO _x in O ₃ formation.	temperatures, as in a combustion process. The primary manmade sources of NO _x are motor vehicles, electric utilities, and other industrial, commercial, and residential sources that burn fuels. Other sources include industrial boilers and processes, home heaters, and gas stoves. NO _x can also be formed	connected to a range of respiratory diseases and infections. NO ₂ plays an essential role in the photochemical reactions that produce O ₃ , the major component in smog. NO _x can react with other compounds in the air to form tiny particles
* Indicates a criteria pollutant which Natio	nal Ambiant Air Quality Standard	naturally.	

Starcrest Consulting Group, LLC 5 September 2012

Table 1.1: Pollutant Description (cont'd)

Pollutant	Ambient Standard	Sources	Health & Environmental
	Compliance Status		Effects
Volatile organic compounds (VOC)	No ambient standards. VOCs	See ozone information above.	In addition to contributing to the
VOC are included in the emissions	are not classified as criteria		formation of ozone, some VOC
inventory because they are an ozone	pollutants but can contribute		are air toxics which can contribute
ingredient, see ozone information above	to the formation of ozone.		to a wide range of adverse health
			effects.
Carbon monoxide (CO) Carbon	CO levels are well below		CO combines with hemoglobin in
monoxide is a colorless, odorless, toxic	federal standards and no	, ,	red blood cells and decreases the
gas commonly formed when carbon-	longer considered a pollutant		oxygen-carrying capacity of the
containing fuel is not burned			blood. CO weakens heart
completely. Motor vehicles are the		e e	contractions, reducing the amount
predominant source of carbon	designated as "attainment"		of blood pumped through the
monoxide in the Puget Sound region.	status in 1996 and has not	1 * *	body. It can affect brain and lung
	violated the carbon monoxide	burning and industrial sources.	function. People with heart
	standard since 1990.		disease and pregnant women are
			especially at risk.
Sulfur dioxide (SO ₂)* is a colorless,	SO ₂ levels in the Puget Sound	Over the past decade the area has	SO ₂ is associated with a variety of
corrosive gas produced by burning fuel	region are well below federal	1	respiratory diseases. Inhalation of
containing sulfur, such as coal and oil,	standards.	SO ₂ from sources such as pulp mills,	SO ₂ can cause increased airway
and by industrial processes such as		cement plants, and smelters.	resistance by constricting lung
smelters, paper mills, power plants and		Additionally, levels of sulfur in diesel	passages. Some of the SO ₂
steel manufacturing plants. Sulfur		and gasoline fuels are decreasing due	become sulfate particles in the
dioxide $(SO_2)^*$ is one form of SO_x .		to federal regulations set by the	atmosphere adding to measured
		Environmental Protection Agency.	PM levels.
* Indicates a criteria pollutant which Nati	ional Ambient Air Quality Standa	rds have been established by EPA.	

Starcrest Consulting Group, LLC September 2012 6

Table 1.1: Pollutant Description (cont'd)

Pollutant	Ambient Standard	Sources	Health & Environmental	
	Compliance Status		Effects	
Particulate Matter (PM ₁₀ * & PM _{2.5} *)	The region is in attainment	In the winter, most PM comes from	Fine particles are a concern	
refers to tiny, discrete solid or aerosol	with federal air quality	wood burning in fireplaces and wood	because their very tiny size allows	
particles in the air. Dust, dirt, soot, and	standards for PM ₁₀ . Excess	stoves particularly in residential	them travel more deeply into	
smoke are considered particulate matter	wood smoke in the winter	neighborhoods. During the summer,	lungs, increasing the potential for	
(PM). Two types of PM are included in	caused a portion of Pierce	vehicle exhaust (cars, trucks, buses,	health risks. Exposure to PM _{2.5} is	
this emissions inventory: PM_{10} , which	County around Tacoma to be	among others) are the predominant	linked with respiratory disease,	
consists of particles measuring up to 10	designated nonattainment for	sources of fine particles in urban	decreased lung function, asthma	
micrometers in diameter; and PM _{2.5} ,	the 24-hr PM _{2.5} standard.	areas. In rural areas, land-clearing	attacks, heart attacks and	
which consists of fine particles		burning and backyard burning of yard	premature death. Home PM,	
measuring 2.5 micrometers in diameter		waste contribute to summer time	such as diesel particulate matter,	
or smaller.		levels.	and smoke from wood and waste	
			burning, are classified as toxic due	
			to the concentrations of harmful	
			chemicals bound to the particles.	
Diesel Particulate Matter (DPM) is a	No ambient standards - Air	Sources of diesel emissions include	DPM has been shown to	
significant component of PM. Diesel	agencies have made it a	diesel-powered trucks, buses and cars	contribute up to 80% of the	
exhaust also includes more than 40	priority to lower DPM	(on-road sources); diesel-powered	carcinogenic health risk related to	
substances that are listed as hazardous	emissions as soon and as	marine vessels, construction	the portion of outdoor air	
pollutants. DPM is considered a			pollutants classified as "toxics".	
surrogate for the effects of both the PM	, ,	equipment (non-road sources).	DPM is linked with health effects	
and gaseous component of diesel	the total tons of DPM in this		typical of all PM, including heart	
exhaust. Because of their microscopic	and other inventories are		problems, aggravated asthma,	
size, DPM can become trapped in the	usually much lower than other		chronic bronchitis and premature	
small airways of the lungs.	pollutants.		death.	
* Indicates a criteria pollutant which National Ambient Air Quality Standards have been established by EPA.				

Table 1.1: Pollutant Description (cont'd)

Pollutant	Ambient Standard Compliance Status	Sources	Health & Environmental Effects	
Greenhouse Gases (GHG) included in this emissions inventory are carbon dioxide, methane, and nitrous oxide. Additional gases that are not significantly emitted by maritime-related sources or included in this inventory also contribute to climate change.	No ambient standards	GHG come from both natural processes and human activities, although increases of human-made GHG are most responsible for disrupting the balance of the atmosphere. Most GHG come from transportation and electricity	global warming, occurs when excessive amounts of GHG accumulate in our atmosphere. These gases trap heat, causing the	
* Indicates a criteria pollutant which National Ambient Air Quality Standards have been established by EPA.				

1.2.2 Temporal Extent

The activity year for the Puget Sound Maritime Air Emissions Inventory is calendar year 2011. To the extent practicable, the emission estimates are based on activities that occurred during this period. If information specific to 2011 was not available, reasonable estimates of operational characteristics were developed; these cases are identified.

1.2.3 Emission Source Categories

The Puget Sound Maritime Air Emissions Inventory includes the following source categories:

- Ocean-going vessels
- Harbor vessels, including commercial harbor vessels, government (non-military) vessels, and recreational vessels
- Cargo handling equipment
- Locomotives
- ➤ Heavy-duty vehicles
- > Fleet vehicles

1.2.4 Geographical Extent

The Puget Sound Maritime Air Emissions Inventory covers activities within delineated geographical areas depending on emission source type. In general, the area covered includes the U.S. portions of the Georgia Basin/Puget Sound International Airshed, as illustrated in Figure 1.1. The Georgia Basin airshed comprises mostly the Canadian portion of the Georgia Basin/Puget Sound International Airshed, plus Whatcom and San Juan Counties and the southern coastline of the Strait of Juan de Fuca in Washington State, while the Puget Sound airshed encompasses the counties to the south of Whatcom County in Washington State (see Figure 1.2). The solid red line is the boundary of the Georgia Basin/Puget Sound International Airshed.

The 2011 and 2005 emissions inventory domain, as agreed by Steering Committee decision, is the area bounded by the black dotted line to north and the red line to the south, as illustrated in Figure 1.1. The emissions inventory domain includes the U.S. portions Georgia Basin/Puget Sound International Airshed as well as the entire Straits of Juan de Fuca and the waters east of Vancouver Island (stopping at the U.S./Canada Boarder to the north). The specific emissions inventory over-water domain is detailed in Section 3.2.

For 2011, the Port of Tacoma and Port of Seattle increased the resolution from the previous report to get a better understanding of port-related emissions by allocating them into three geographical zones, compared to one zone in 2005. For comparison purposes the 2011 and 2005 emissions were allocated into the following three geographical zones for their port-specific emissions and comparisons:

- Port emissions within port terminals and adjacent waterways
- ➤ Air district emissions within the PSCAA boundaries (Pierce, King, Kitsap, and Snohomish Counties)
- ➤ Airshed emission within the inventory domain

The other participating ports, their port specific emissions and comparisons are consistent with the 2005 approach.

Figure 1.1: Georgia Basin/Puget Sound International Airshed

The following twelve counties are located within the emissions inventory domain or airshed and some U.S. maritime-related activities for the six emissions source categories operating in these counties are included in the inventory, as shown in Figure 1.2:

- Clallam County
- ➤ Island County
- > Jefferson County
- ➤ King County
- ➤ Kitsap County
- Mason County

- ➤ Pierce County
- > San Juan County
- Skagit County
- > Snohomish County
- > Thurston County
- ➤ Whatcom County

Figure 1.2: Puget Sound Counties and Major Ports

The major ports in the inventory domain include:

- Port of Anacortes in Skagit County
- ➤ Port of Everett in Snohomish County
- ➤ Port of Olympia in Thurston County
- ➤ Port of Seattle in King County
- ➤ Port of Tacoma in Pierce County

The Port of Port Angeles and Port of Bellingham declined participation in the 2011 inventory update.

An overview of the geographical extent for each of the source categories is provided below.

Ocean-going Vessels

For OGVs, data was collected for the greater Puget Sound area and associated waterways, and the Strait of Juan de Fuca out to the JA buoy (located at the entrance to the Strait of Juan de Fuca).

Emissions have been estimated from OGVs that arrived at a U.S. berth from sea or departed to sea from a U.S. berth, regardless of whether the vessels traveled on the U.S. side or the Canadian side of the international border. For OGVs that shifted to Canadian berths, or shifted from Canadian berths to U.S. berths, this inventory includes emissions only in U.S. waters. Guidelines were established for both emissions inventories to follow for all vessel trips that transit through the over-water international boundary (see Section 3.2). After completion of the emission estimates, the results will be shared between Environment Canada and the Forum on a geographically specified basis, to allow appropriate allocation for modeling and other purposes.

Harbor Vessels

The geographical scope for harbor vessels is the same as for OGVs. Emissions from vessels such as ferries that routinely cross the international border have been estimated for the U.S. portions of their routes. Emissions from U.S.-based harbor vessels that traverse the Strait of Juan de Fuca are estimated regardless of whether the vessels travel on the U.S. side or the Canadian side of the international border, using the same approach as for OGVs.

Cargo Handling Equipment

The geographical scope for cargo handling equipment is the ports and associated terminals or other facilities on which they operate (for example, near-dock railroad switching yards).

Locomotives

Emissions from switching and line-haul locomotives were estimated for on-dock rail yards, off-dock rail yards, intermodal yards, the rail lines linking these facilities, and off-terminal port-related locomotive emissions to the edge of the study area.

Heavy-duty Vehicles

Emissions from heavy-duty on-road trucks hauling cargo were estimated for queuing at terminal entry gates, traveling and idling within the terminals, queuing at the terminal exit gates, and on-road port-related activity from point of pick-up in the case of port-bound cargo and to the first drop or the edge of the study area in the case of cargo outbound from a port.

Idling emissions from buses that transport cruise line customers between airports and/or hotels and the cruise terminals were also included in the HDV source category. Emissions were estimated for idling at terminal drop-offs or pick-ups, consistent with the 2005 PSEI. Trips to and from the airport and/or hotels were not included in the emission estimates.

Fleet Vehicles

Fleet vehicles consist primarily of light-duty vehicles and some on-terminal heavy-duty vehicles not associated with direct cargo movement. There are three categories of fleet vehicles: terminal fleet vehicles, cruise terminal vehicles, and import/export vehicles. There were approximately 805 terminal fleet vehicles were used on cargo terminals in 2011. Emissions from personal vehicles that are owned by employees and are not used in terminal operations were not included in the inventory.

1.3 Background Air Quality Conditions and Regulations

This section presents changes to air quality conditions and regulations since the development of the 2005 Puget Sound Maritime Air Emissions Inventory. The air quality changes include designation of PM_{2.5} nonattainment status for Tacoma, located in Pierce County. There have also been changes to federal and state regulations such as EPA cleaner fuel regulations and Washington State updates to general regulation for air pollution sources and reporting of GHG emissions.

1.3.1 Air Quality Conditions

Areas that have experienced persistent air quality problems are designated by the EPA as nonattainment areas. The federal Clean Air Act requires additional air pollution controls in these areas. Each nonattainment area is declared for a specific pollutant; however, nonattainment areas for different pollutants may overlap each other or share common boundaries. At the time of this 2011 study, the only nonattainment area is Tacoma, Pierce County for PM_{2.5}.

In 2009, Tacoma, Pierce County was designated by EPA as a PM_{2.5} nonattainment area. The nonattainment designation was a result of a stronger air pollution limit set by the EPA in 2006 and spikes in fine particle pollution levels during the winter that violate the limit. The fine particle pollution in Tacoma, Pierce County is due to smoke from fireplaces, wood stoves, industrial sources, and exhaust from motor vehicles such as cars, trucks, buses, and ships. The Department of Ecology and PSCAA have worked with a community-based task force to evaluate possible solutions to improving air quality and prepared a report with the air task force findings⁶.

⁶ PSCAA, Tacoma-Pierce County Clean Air Task Force Report and Recommendations to Puget Sound Clean Air Agency, December 2011.

Finally, on April 30, 2012, EPA finalized a rule that redirects the implementation of the 2008 National Ambient Air Quality Standards (NAAQS) for ozone including the 0.075 ppb 8-hour ozone standards requirement in 20327. The more stringent ozone standard may result in the region being designated as nonattainment for ozone.

1.3.2 Washington State Regulations

On March 1, 2011, the Department of Ecology adopted the final rule to Chapter 173-400 WAC – General regulation for air pollution sources. The amendments brought the rule into compliance with the EPA regulations including standards for excess emissions; major stationary sources located in nonattainment areas, and updated the date of federal regulations adopted by reference. The rule set a new exemption level for GHG and PM_{2.5} emissions in addition to housekeeping updates, corrections and changes.

On December 1, 2010, the Department of Ecology adopted Chapter 173-441 WAC-Reporting of Emissions of Greenhouse Gases. The rule became effective January 1, 2011 and the reporting requirement began January 1, 2012. The rule adopts mandatory GHG reporting for facilities that emit at least 10,000 metric tons of GHG per year in Washington and for suppliers of liquid motor vehicle fuel that supply products equivalent to at least 10,000 metric tons of CO₂ per year in Washington.

1.3.3 Federal Regulations

EPA regulations governing the sulfur contents in the highway diesel fuel, fuel used in non-road equipment and locomotive, and marine diesel fuel play a significant impact in the 2011 PSEI emissions. Since 2005, the following changes have occurred:

- A 15 parts per million (ppm) sulfur specification, known as ultra-low sulfur diesel (ULSD), was phased in for highway diesel fuel from 2006-2010.
- ➤ Low sulfur (500 ppm) and ULSD fuel are being phased in for non-road, locomotive, and marine engines from 2007-2014.

EPA also finalized other regulations which are summarized below.

EPA's Final Regulation — Control of Emissions of Air Pollution from Locomotive and Marine Compression Ignited Engines Less than 30 Liters Per Cylinder

On March 14, 2008, the EPA finalized a three part program designed to dramatically reduce emissions from marine diesel engines with displacement (i.e. swept volume) less than 30 liters per cylinder. EPA lists the following categories for compression ignition diesel marine engines based on engine displacement per cylinder:

- Category 1: less than 5 liters
- Category 2: equal to 5, less than 30 liters

⁷EPA, http://www.epa.gov/glo/actions.html.

The EPA regulation impacts some marine propulsion engines and the marine auxiliary engines used on vessels. When fully implemented, this rule will cut PM emissions from these engines by as much as 90% and NO_x emissions by as much as 80%.

The regulations introduced two tiers of standards – Tier 3 and Tier 4 – which apply to both new and remanufactured marine diesel engines, as follows:

- Newly-built engines: Tier 3 standards apply to engines used in commercial, recreational and auxiliary power applications (including those below 37 kW that were previously covered by non-road engine standards). The emission standards for newly-built engines are phasing in, beginning in 2009. Tier 4 standards apply to engines above 600 kW (800 hp) on commercial vessels based on the application of high-efficiency catalytic after-treatment technology, phasing in beginning in 2014.
- Remanufactured engines: The standards apply to commercial marine diesel engines above 600 kW when these engines are remanufactured and will take effect as soon as certified systems become available.

EPA's Emission Standards for Marine Diesel Engines Above 30 Liters per Cylinder (Category 3 Engines)

EPA is pursuing two parallel, related actions for establishing emission standards for Category 3 marine diesel engines: (1) EPA is a member of the United States delegation that participated in negotiations at the International Maritime Organization (IMO) with regard to amendments to Annex VI that were adopted in October 2008,including additional NO_x limits for new engines, additional sulfur content limits for marine fuel, methods to reduce PM emissions, NO_x and PM limits for existing engines, and volatile organic compounds (VOCs) limits for tankers; (2) In January 2003, EPA adopted Tier 1 standards for Category 3 marine engines, which went into effect in 2004, establishing NO_x standards based upon internationally negotiated emissions rates and readily available emissions-control technology. In December 2009, EPA finalized emission standards for Category 3 marine diesel engines installed on U.S. flagged vessels as well as marine fuel sulfur limits which are equivalent to the amendments adapted by the International Convention for the Prevention of Pollution from Ships (MARPOL) Annex VI in 2008. The final regulation establishes stricter standards for NO_x, in addition to standards for hydrocarbons and carbon monoxide.

The final near-term Tier 2 NO_x standards for newly built engines applied beginning in 2011 and required more efficient use of current engine technologies, including engine timing, engine cooling, and advanced computer controls. The Tier 2 standards will result in a 15% to 25% NO_x reduction below the current Tier 1 levels. The final long-term Tier 3 standards for newly built engines will apply beginning in 2016 in Emission Control Areas and will require the use of high efficiency emission control technology such as selective catalytic reduction to achieve NO_x reductions 80% below the current levels. These standards are part of EPA's coordinated strategy for addressing emissions from ocean-going vessels. This strategy also includes implementation of recent amendments to MARPOL Annex VI and designation of U.S. coasts as an Emission Control Area.

EPA's Emission Standards for Harbor Vessel Engines

On March 14, 2008, EPA finalized the latest regulation establishing new emission standards for new Category 1 and Category 2 diesel engines rated over 50 horsepower (hp) used for propulsion in most harbor vessels. The new Tier 3 engine standards began phasing in starting in 2009. The more stringent Tier 4 engine standards (based on the application of high-efficiency catalytic after-treatment technologies) will phase in beginning in 2014 and will apply only to commercial marine diesel engines greater than 800 hp. The regulation also includes requirements for remanufacturing commercial marine diesel engines greater than 800 hp.

Emission Standards for Non-road Diesel Powered Equipment

The EPA's Tier 1, Tier 2, Tier 3, and Tier 4 (interim Tier 4 and final) emission standards for non-road diesel engines require compliance with progressively more stringent standards for hydrocarbon, CO, DPM, and NO_x. Tier 4 standards for non-road diesel powered equipment complement the 2007+ on-road heavy-duty engine standards which require 90% reductions in DPM and NO_x compared to current levels. In order to meet these standards, engine manufacturers will produce new engines with advanced emissions control technologies similar to those already in place for on-road heavy-duty diesel vehicles. These standards for new engines are being phased in starting with smaller engines in 2008 until all but the very largest diesel engines meet NO_x and PM standards in 2015. Currently, the interim Tier 4 standards include a 90% reduction in PM and a 60% reduction in NO_x.

EPA's Emission Standards for New and Remanufactured Locomotives and Locomotive Engines- Latest Regulation Finalized on 14 March 2008⁸

In March 1998, EPA adopted Tier 0 (1973-2001), Tier 1 (2002-2004), and Tier 2 (2005+) emission standards applicable to newly manufactured and remanufactured railroad locomotives and locomotive engines. These standards require compliance with progressively more stringent standards for emissions of hydrocarbon, CO, NO_x, and DPM. Although the most stringent standard, Tier 2, results in over 40% reduction in NO_x and 60% reduction in DPM compared to Tier 0, the full potential of these reductions will not be realized in the next five years because of the long life of diesel locomotive engines.

In March 2008, EPA finalized the regulation, "Control of Emissions of Air Pollution from Locomotive and Marine Compression Ignited Engines Less than 30 Liters per Cylinder." When fully implemented, this rule will cut PM emissions from these engines by as much as 90% and NO_x emissions by as much as 80%.

⁸EPA,http://www.epa.gov/otaq/regs/nonroad/420f08004.htm.

The regulation introduces two tiers of standards – Tier 3 and Tier 4 – which apply to new locomotives as well as standards for remanufactured locomotives, as follows:

- Newly-Manufactured Locomotives: The new Tier 3 emission standards will achieve 50% reduction in PM beyond the current Tier 2 standards and will become effective in 2012. The longer term Tier 4 emission standards which are based on the application of high efficiency catalytic after-treatment technologies for NO_x and PM will become effective in 2015 and will achieve over 80% reduction in PM and NO_x compared with the current Tier 2 standards.
- Remanufactured Locomotives: The regulation also establishes emission standards for remanufactured Tier 0, 1, and 2 locomotives which would achieve approximately 50% reduction in PM and up to 20% reduction in NO_x.

Emission Standards for New 2007+ On-road Heavy-Duty Vehicles

This regulation requires HDV engine manufacturers to meet a 0.01 gram per brake horsepower-hour (g/bhp-hr) PM standard starting in 2007, which is 90% lower than the 2004 PM standard of 0.1 g/bhp-hr. The regulation requires a phase-in of a 0.2 g/bhp-hr NO_x standard between 2007 and 2010. Since 2010, all engines have been required to meet the 0.2 g/bhp-hr NO_x standard, which represents a greater than 90% reduction compared to the 2004 NO_x standard of 2.4 g/bhp-hr. It is assumed that between 2007 and 2010, on average, manufacturers produced HDV engines meeting a PM standard of 0.01 g/bhp-hr and a NO_x standard of 1.2 g/bhp-hr. The latter is referred to as the 2007 interim standard.

1.3.4 International Regulations

International regulations relating to ocean-going vessels come out of the IMO under the MARPOL convention, as discussed below.

MARPOL Annex VI

The worldwide fuel sulfur limitations under MARPOL Annex VI was lowered to 3.5% beginning in 2012 and 0.5% as early as 2020, but no later than 2025 (subject to a fuel availability study to be conducted in 2018). New NOx engine emission standards require vessels constructed after 2011 to meet Tier 2 levels (14.4 gm-NOx/kW-hr); a reduction of 20% from current levels. Vessels constructed after 2016 are required to meet Tier 3 levels (3.4 gram-NOx/kilowatt-hour [kW-hr]); a reduction of 80% below current Tier 1 standards.

North American Emission Control Area

The North American Emission Control Area (ECA) extends 200nm of shore of the United States and Canada. ECA Phase I began August 1, 2012 requiring 1.0% sulfur fuel oil for all vessels operating within the ECA. This will reduce sulfur oxide emissions by over 60% and particulate by over 75%.

ECA Phase II requirements begin on January 1, 2015. Phase 2 requires 0.1 sulfur fuel oil for all vessels operating within the ECA. This will reduce sulfur oxide (SOx) emissions by 99% and particulate by 75%.

MARPOL Annex VI also requires that vessels constructed after 2016 and operating within the ECA meet Tier 3 NOx levels; an 80% reduction in oxides of nitrogen (NOx) from current Tier 1 levels.

1.4 Emission Reduction Strategies

Emission reduction strategies identified during the inventory process are listed below for participating ports and maritime partners.

1.4.1 BNSF Railway Company (BNSF)

BNSF has implemented a number of strategies system-wide to reduce emissions from rail operations. BNSF is committed to improving air quality across its system. The railway has been aggressively acquiring new locomotives and retiring older and less efficient ones. Between 2005 and the end of 2011, BNSF acquired 2,071 Tier II cleaner- burning and fuel-efficient locomotives.

BNSF is also reducing emissions by:

- Installing idle control mechanisms on switch engines, including auxiliary power units, diesel-driven heating system, and automatic start-stop technology on locomotives. Approximately 90% of the fleet has these systems.
- ➤ Increasing the number of cleaner-burning locomotives.
- Reducing train resistance (drag) through low torque bearings.
- Adjusting train speeds.
- ➤ Implementing the wheel/rail lubrication (especially on curved track and turnouts) to reduce friction and aerodynamic drag rail lubrication extends rail and wheel life and increases fuel efficiency
- ➤ Implementing an operator incentive program to reward operators who save locomotive fuel
- Performing routine stack opacity tests on locomotives to ensure engines are in good operating condition.
- Monitoring the performance of locomotive engineers and rewards them for good fuel savings (and emissions) operations
- Working with several manufacturers on systems to aid in optimizing train operations.

BNSF is also reducing emissions at intermodal yards by:

- ➤ Being the first U.S. rail carrier to install electrically-powered wide-span cranes. These cranes produce zero emissions on site while generating power each time they lower a load. Additionally, the wide span design of these new cranes also reduces the numbers of diesel trucks (hostlers) for shuttling containers within the intermodal facility, reducing emissions and improving fuel efficiency. This system is currently operating at the Seattle International Gateway (SIG) Intermodal Facility.
- ➤ Installing semi-automated gate system for trucks as they enter and exit SIG Intermodal Facility, thereby reducing truck idling time and emissions by 50%.

1.4.2 Port of Everett

The Port of Everett has implemented several emission reduction initiatives.

- Operated more than 20% of its cargo handling equipment (14 of 62 pieces) on nondiesel fuels, including six electric forklifts, five propane forklifts, and three gasoline forklifts.
- > Purchased and took delivery, in 2006, of an electric vehicle for use by the Harbor Attendant in marina operations, replacing a fossil-fuel vehicle. The Global Electric vehicle is ideally suited for slow-speed, stop-and-go type travel.
- Department of Ecology to retrofit a fleet vehicle with emission control technology. The Port retrofitted its boom truck with this grant.
- > Specified the use of an electric rail mounted gantry crane for cargo at the Rail/Barge Transfer facility, instead of a diesel-powered crane.
- ➤ Obtained two electric gantry cranes in 2003, which are operating at Pacific Terminal.
- ➤ Developed an Environmental Management System (EMS) in 2008 through an American Association of Port Authorities-sponsored training program. The EMS program serves the purpose of integrating and managing existing environmental programs, including air emissions.

1.4.3 Port of Olympia

The Port of Olympia has included the following Seaport (and some Port-wide) air quality elements:

- Used ultra-low sulfur diesel fuel in Port machinery.
- ➤ Received grant money in 2007 from the Olympic Region Clean Air Agency (ORCAA) to retrofit a log loader with a catalytic muffler.
- Purchased two electric vehicles and one hybrid vehicle.
- Installed an electric vehicle charging station adjacent to the seaport.
- ➤ Implemented a commute trip reduction policy offering alternative work schedules; partial reimbursement on monthly public transit tickets and in accordance with the Bicycle Commuter Benefits Act, providing monetary benefit to employees who bike to work.
- Encourage non-vehicle transportation by purchasing one men's and one women's bicycle for the use of interoffice commuting and errands. Bicycle racks are available around the public facilities.
- ➤ Built a 1.2 mile pedestrian path (East Bay Trail) adjacent to the seaport that connects restaurants, the Swantown Marina, Swantown Boatworks and other facilities.

1.4.4 Port of Seattle

The Port of Seattle has implemented a variety of projects and programs, and is participating in several collaborative projects, to reduce emissions from maritime sources.

Freight Mobility Emission Reduction Strategies

The Port of Seattle has implemented a number of emission reduction strategies related to freight mobility:

- ➤ Completed radio frequency identification (RFID) pilot project with Stevedoring Services of America to equip 1,200-1,500 trucks with RFID tags and Terminal 18 with RFID readers, which can be used to reduce gate wait times and improve terminal efficiency.
- Terminal operators have initiated cargo handling equipment fleet modernization programs and are encouraged to purchase equipment with 2007 on-road standard engines.
- Coordinated draw bridge openings with truckers so they can route accordingly to minimize idling.
- ➤ Piloted computer tracking systems at cargo terminals to quickly locate containers and thus reduce truck wait times.
- ➤ Provided electric plug-ins instead of diesel units for refrigerated containers on the docks.
- ➤ Purchased bigger cranes to load and unload more efficiently, so ships are at the dock for less time.
- Partnered in a regional anti-idling effort.

Clean Trucks Program

- Adopted requirements for drayage trucks entering port terminals to have 1994 or newer engines, as of January 1, 2011. All trucks entering port terminals must be enrolled in the Port's Drayage Truck Registry, which documents these newer, cleaner trucks that service Seattle container terminals. A model year 1994 truck is 2.5 to 6 times cleaner than older trucks. Through a buy-back, scrap and replacement effort, and other fleet turnover, all pre-1994 engine trucks retired from the fleet as of January 2011.
- ▶ Begun planning for installation of RFID at all terminal in-gates, as well as a conversion from the clean truck sticker program to use of RFID tags. The tags will provide a way to gather more accurate information on trucks accessing the port terminal. The RFID program will be rolled out in 2012.
- ➤ Implemented Clean Truck benchmarks requiring 80% of all tucks entering Port of Seattle facilities to meet emission standards for engine-year 2007 by the end of 2015.
- ➤ Launched a truck scrappage and replacement program between November of 2007 and July 2011 resulting in the scrappage of 280 pre-1994 trucks.

Cargo Handling Equipment Diesel Emissions Reduction Project

- ➤ Received a grant from the Washington State Department of Ecology (WDOE) to initiate a pilot program to install idle reduction equipment on cargo handling equipment.
- Implemented retrofits (retrofit, replace, repower, repair, refuel) for diesel-powered vehicles and equipment.
- ➤ Purchased 169 diesel oxidation catalysts (DOCs) to retrofit cargo handling equipment. This represents all eligible cargo handling equipment that is operated on the container terminals and reduced DPM emissions from this equipment by 25%.

- Encouraged voluntary use of cleaner and alternative fuels.
- ➤ Implemented education and outreach programs to equipment owners/operators on strategies for reducing emissions.

Ocean-Going Vessel Emission Reduction Efforts

- Through its At-Berth Clean Fuels program, the Port of Seattle, in collaboration with the PSCAA, has provided incentives to shipping and cruise lines that burn reduced sulfur distillate fuel while at berth. Since 2009, this program has eliminated 626 metric tons of sulfur emissions. Out of 791 "frequent callers" vessel calls in 2011, 73% used cleaner fuels or shore power while at berth.
- The Port initiated the Green Gateway Partners' Awards which are given to selected cruise and container lines. In order to be eligible for an award, applicants must either participate in the ABC Fuel program or plug into shore power, and demonstrate environmental stewardship initiatives above and beyond existing regulations.

Cruise Ships Emissions Reduction Efforts

- ➤ Cruise Vessel Shore Power Project Most Princess Cruises and Holland America Line cruise vessels home ported in Seattle now turn off their engines and "plug in" at berth effectively reducing emissions to zero while at the dock. If not using shore power, cruise ships are required through Port tariffs to burn a maximum 1.5% sulfur fuel while at berth. Several cruise lines continue to participate in the ABC Fuels program and burn fuel with 0.5% or lower sulfur content at berth.
- Cruise Vessel Seawater Scrubber Study Holland America Line and Krystallon completed their sea water scrubber technology demonstration project after more than five years. The scrubber was installed on one of the five engines aboard the Zaandam in April 2007 to reduce sulfur and particulate matter from engine exhaust. The Zaandam was an important test-bed for sea water scrubbing technology and this project demonstrated that sea water scrubbing is a viable technology for removing sulfur dioxide and particulate matter from marine diesel engine exhaust. After project completion, the scrubber was decommissioned because its limited application could not sufficiently provide for ECA compliance.
- North West & Canada Cruise Ship Association Use of Low Sulfur Fuel The members of the North West & Canada Cruise Association (NWCCA) have committed to procure and use low sulfur fuel while at berth in Seattle and at sea in Washington, British Columbia and in Alaska waters. In support of this study, NWCCA has received reports on fuel purchases from all the lines operating out of Seattle and reviewed those reports. NWCCA will continue to procure and burn low sulfur fuel while operating in the Pacific Northwest.

Port Administration

- Received a grant from the WDOE to retrofit all eligible heavy-duty diesel equipment at Seaport Maintenance with diesel oxidation catalysts.
- ➤ Installed Stage II Vapor Recovery Equipment at the Seaport Maintenance refueling station.
- Made biodiesel available at the Shilshole Bay Marina Fuel Dock, and boaters are encouraged by the Port to use it.

- Encouraged cleaner vehicle purchases. A hybrid electric vehicle is used for high vehicle-miles-traveled mail runs between Port facilities, and the Seaport Environmental Program staff replaced fleet minivans with hybrid vehicles.
- ➤ Implemented an award-winning employee trip reduction program.
- ➤ Built bike and pedestrian paths across and adjacent to terminals.
- ➤ Created programs to educate Port employees, tenants, and customers regarding actions they can take to protect air quality.

1.4.5 Port of Tacoma

The Port of Tacoma has been actively pursuing projects to make immediate reductions in emissions from maritime-related sources. These include:

- The Port of Tacoma has been using ULSD fuel in port-operated equipment since 2005. This practice preceded EPA mandated use of ULSD fuel in non-road equipment by five years reducing diesel particulate emissions by 50%. Since 2008 the Port has been using biodiesel and is currently using 5% Biodiesel blend in port-operated diesel equipment.
- ➤ Since 2004, the Port of Tacoma's ocean carrier customers have voluntarily switched to the use of low sulfur distillate in the auxiliary engines for ocean going vessels while at berth. Between 2008 and 2011, 35% to 50% of frequently calling vessels routinely used low sulfur fuel reducing their diesel particulate emission by approximately 60%.
- ➤ In 2011, the Port installed EPA-verified diesel particulate filters (DPFs) on 13 portowned and operated straddle carriers. The Port received a \$490,000 WDOE's Clean Diesel Grant to fund the retrofits. The diesel particulate filters reduce emissions in excess of 85%.
- ➤ Prior to 2011, six Port of Tacoma heavy-duty forklifts were powered by old two cycle Detroit diesel engines. With assistance from \$145,000 WDOE's Clean Diesel Grant, they were repowered with new low emission EPA Tier 3 diesel engines reducing particulate emission by nearly 1 ton per year.
- ➤ Between 2007 and 2011, Port of Tacoma's terminal operator tenants received over \$525,000 in EPA and Ecology grant findings to install EPA-verified diesel particulate filters on 22 heavy-duty diesel cargo handling equipment reducing emissions in excess of 85% and 65 diesel oxidation catalysts reducing emissions by 25%.
- ➤ Since 2005 Port of Tacoma terminal operator tenants installed EPA-verified diesel oxidation catalysts on over 100 heavy-duty diesel cargo handling equipment reducing diesel particulate emissions in excess of 25%.
- The Port of Tacoma Clean Drayage Truck Program was established in 2008 to ban old diesel drayage trucks from serving marine terminals at the Port. In 2010, pre-1994 drayage trucks were banned from the port terminals reducing diesel particulate emissions between 1-2 tons per year. The port is currently working with the trucking community to ban pre-2007 trucks by 2017. The City of Tacoma, in collaboration with the Port of Tacoma, the Clean Air Agency, and WDOE, launched a Truck Scrappage Program in 2011. The goal of the program is to replace 135 regional trucks with newer low emission engine trucks. This program will work in synergy with the Port of Tacoma Clean Truck Program to further reduce drayage truck emissions at the Port.

➤ The Port and WDOE have collaborated to develop and implement a voluntary idle reduction program that reduces diesel engine idle time for vehicles and equipment operating on Port properties.

Totem Ocean Trailer Express Terminal

- ➤ In 2010, the Port of Tacoma partnered with Totem Ocean Trailer Express (TOTE) to provide ship-side retrofits and install a shorepower infrastructure at the TOTE Terminal. The shorepower project received \$1.4 million EPA grant and leveraged funds through in-kind contributions from the Port of Tacoma and direct matching fund from TOTE. TOTE contributed \$283,000 in matching funds in addition to \$891,000 that has already been expended for the purchase of ship-side equipment.
- > TOTE is currently conducting a diesel particulate filter retrofit trial on one diesel yard truck. Demonstration of a successful Level 3 retrofit on their equipment is may lead to further installations of diesel particulate filters on the fleet of over 30 yard trucks.

Evergreen Marine at Pierce County Terminal (PCT)

- ➤ The Evergreen Marine, the leaseholder at Pierce County Terminal installed diesel particulate filters on two side picks reducing diesel particulate emissions from these units by over 85%.
- Since 2004, all Evergreen Marine vessels have switched to using lower sulfur distillate in their vessel's auxiliary engines while at berth at the Pierce County Terminal.

APM Terminal

- APM Terminal retired the majority of their older, non-tiered engine cargo handling equipment and replaced new yard trucks with cleaner on-road engines.
- APM Terminal, with assistance from a PSCAA grant and a WDOE Clean Diesel Grant, retrofitted 36 pieces of heavy-duty cargo handling equipment with diesel oxidation catalysts, reducing diesel particulate emissions by 25%.

Husky Terminal

- Since 2006, all Kawasaki Kisen Kaisha (K-Line) vessels have switched to using lower sulfur distillate in their vessel's auxiliary engines while at berth at the Husky Terminal.
- Husky Terminal & Stevedoring has installed diesel particulate filters on seven top picks and one yard truck reducing diesel particulate emissions by over 85%.

Washington United Terminal

- Washington United Terminal (WUT) retrofitted 4 reach stackers, 2 top picks and 10 yard trucks with diesel particulate filters. The terminal also replaced an additional 6 yard trucks and 1 top pick with low emission EPA Tier 4 units.
- ➤ WUT is conducting an idle reduction equipment trial expected to significantly reduce diesel equipment idling and emissions from equipment cold starts.

Horizon Lines

➤ Horizon Lines replaced 30 model year 2000 drayage trucks with fleet of 30 new Tier 4 Class 8 trucks reducing diesel particulate emissions by over 85%.

Pacific Rail Service

➤ PRS with assistance from a Department of Ecology Grant retrofitted 11 pieces of cargo handling equipment with diesel oxidation catalysts reducing diesel particulate emissions by 25%.

Northwest Container Services

Northwest Containers has retrofitted two reach stackers with diesel particulate filters reducing diesel particulate emissions by over 85%.

TEMCO Grain Terminal

➤ In 2011 three switching locomotives at the TEMCO were equipped with Automatic Engine Start Stop devices to limit excess idling. In addition to reducing GHG emissions the project eliminated approximately 3.4 tons per year of particulate emissions.

1.4.6 Tacoma Public Utilities – Locomotives

- ➤ Since July 2006, ULSD has been used in the locomotives for switching operations at the Port of Tacoma. In the port sector, use of regular low-sulfur fuel containing up to 500 ppm sulfur in switching operation is standard; the use of ULSD eliminates up to 97% of sulfur oxides emission from the yard switching operations.
- Tacoma Rail partnered with PSCAA in 2007 to install idle reduction equipment on their locomotives. By 2011 Tacoma Rail reduced its fleet from 18 to 14 locomotives and installed idle reduction equipment on all but two locomotives. Tacoma Rail has saved more than 440,000 gallons of diesel fuel and reduced greenhouse gas emissions by 209 tons since 2007.
- Tacoma Rail partnered with EPA and PSCAA to retire three circa 1950's locomotives and replace them with remanufactured locomotives equipped with EPA Tier 2and Tier 3 compliant diesel engines. The repower project reduces NOx by 30 tons per year, CO by 25 tons per year, PM by 2 tons per year, and hydrocarbons (HC) by close to 7 tons per year.

1.4.7 Union Pacific

- ➤ Union Pacific limits train speeds and shut down idle locomotives to save fuel. The locomotive shutdowns can save 15-24 gallons of fuel per locomotive, per day.
- All new Union Pacific locomotives have automatic stop-start equipment that eliminates unnecessary idling, and the company is retrofitting older locomotives with this technology as well. More than 70% of Union Pacific's locomotive fleet is now outfitted with automatic stop-start equipment.
- Union Pacific is performing additional aerodynamic tests and evaluations of the Aero Wedge, an aerodynamic structure placed on the top of the first rail car of a double-stack container train. Preliminary results from wind tunnel, computer and test track analyses are promising for fuel savings and corresponding emissions reductions.

➤ Union Pacific created and pioneered genset locomotive technology and has 165 genset locomotives in its system-wide fleet at present.

1.4.8 Washington State Ferries

Since 2002, Washington State Ferries (WSF) has worked to reduce maritime air emissions through both internal programs and collaborative projects to upgrade engine equipment, convert to clean fuels and implement operational changes.

Engine Equipment Upgrades

In 2002, WSF initiated a program of engine equipment upgrades throughout the fleet to meet MARPOL standards. This effort has included upgrading fuel injectors, upgrading or replacing main engines and replacing ship-service generators. Upgrades completed include fuel injectors for 44 Electro-Motive-Diesel (EMD) engines, 12 General Electric engine replacements and 30 ship-service generator replacements.

Clean Fuels

In 2003, WSF began an ongoing process of evaluating, and adopting when practicable, the use of cleaner fuels in the ferry fleet.

- ➤ 2003 Conducted preliminary operational and emissions tests of low sulfur diesel, ULSD and biodiesel.
- ➤ 2004 Converted entire ferry fleet to low sulfur diesel.
- ➤ 2004 and 2005 Undertook pilot test of B20 biodiesel (in partnership with PSCAA and Seattle City Light).
- ➤ 2004 and 2005 Undertook pilot test of ULSD (in partnership with the PSCAA and the EPA).
- ➤ 2006 Partnered with PSCAA and Seattle City Light on a biodiesel research project and second biodiesel pilot test.
- ➤ 2006 Started conversion of the ferry fleet to ULSD.

Operational Fuel Conservation Measures

The majority (89%) of the ferry fleet power down main and auxiliary engines, and connect to shore-power during tie-up at night.

A WSF working group, focused on fuel conservation efforts fleet-wide, is exploring the following initiatives:

- ➤ Route profiling, identifying optimum speeds to meet schedules and save fuel.
- ➤ Positive restraint system while vessel is in dock alleviating need to run engines while loading/unloading.
- Reducing to two engine operation on certain vessel classes.
- Reducing on-board fuel storage to minimize weight load.
- Installation of heat recovery systems that would alleviate need for heating boilers.

SECTION 2 SUMMARY RESULTS

This section presents the summary results for the 2011 Puget Sound Maritime Air Emissions Inventory. Detailed information and data on each source category, including the methodology for developing the emission estimates presented here, are provided in subsequent sections. Section 2.1 presents the results, Section 2.2 provides regional comparisons of the maritime-related emissions presented in this report to the agency regional emissions, Section 2.3 presents the emissions associated with selected entities, such as ports and petroleum facilities and comparisons of maritime and non-maritime related emissions for HDV and locomotives for the PSCAA Region, and Section 2.4 presents concluding remarks.

2.1 Results

This section presents the findings by source category (2.1.1) and by regional clean air agency and county (2.1.2).

2.1.1 U.S. Maritime-Related Emissions by Source Category

The U.S. maritime-related source categories include all activities associated with U.S. related maritime operations and include the following source categories:

- Ocean-going vessels (including hotelling, maneuvering, and transiting modes)
- ➤ Harbor vessels (including commercial harbor vessels, government vessels, and recreational vessels)
- > Cargo handling equipment
- Locomotives (including switch and line-haul operations)
- ➤ Heavy-duty vehicles (including on-terminal and first drop activities within the inventory domain)
- ➤ Fleet vehicles (including terminal fleet vehicles, cruise terminal vehicles, and import/export vehicles)

Table 2.1 and Figures 2.1 and 2.2 present the 2011 total (all sources inventoried) U.S. maritime-related airshed emissions by source category. Figures 2.3 through 2.10 illustrate the contribution of the various source categories to the maritime-related emissions for NO_x, VOC, CO, SO₂, PM₁₀, PM_{2.5}, DPM and greenhouse gases, respectively. Greenhouse gases are presented in CO₂e for carbon dioxide, nitrous oxide, and methane, combined.

Table 2.1: 2011 Total Airshed Emissions, tpy

Source Category	NO _x	voc	СО	SO_2	PM ₁₀	PM _{2.5}	DPM	CO_2e
OGV, transit	9,424	363	840	7,333	616	493	593	452,613
OGV, hotelling & maneuvering	2,234	79	196	4,376	264	211	118	285,028
Harbor vessels	7,050	1,124	9,672	5	292	272	278	481,123
Locomotives	1,264	80	200	11	45	41	45	75,289
Cargo handling equipment	594	37	297	1	33	32	33	64,275
Heavy-duty vehicles	2,340	143	666	3	55	44	55	375,071
Fleet vehicles	6	3	34	0	0	0	0	2,828
Total	22,912	1,830	11,905	11,729	1,304	1,092	1,122	1,736,226

Figure 2.1: 2011 Total Airshed Emissions, tpy

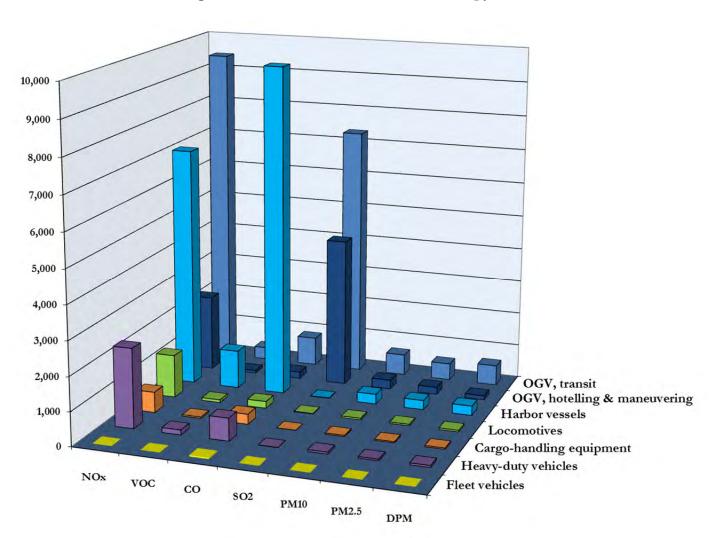
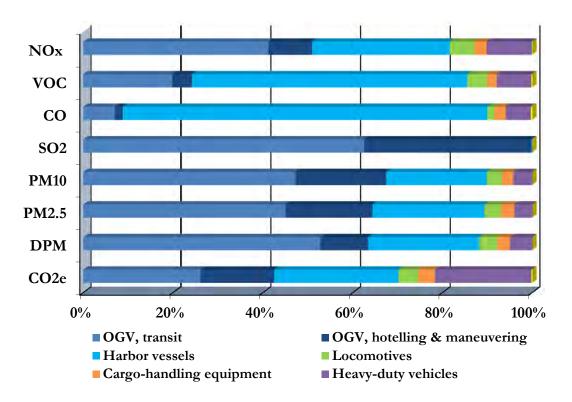



Table 2.2: Contirbution of 2011 Total Airshed Emissions by Source Category

Source Category	NO _x	voc	CO	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
OGV, hotelling & maneuvering	10%	4%	2%	37%	20%	19%	11%	16%
OGV, transit	41%	20%	7%	62%	47%	45%	53%	26%
Harbor vessels	31%	61%	81%	0%	22%	25%	25%	28%
Locomotives	5%	4%	2%	0%	3%	4%	4%	4%
Cargo handling equipment	<3%	<2%	<2%	0%	<2%	<3%	<3%	<4%
Heavy-duty vehicles	10%	8%	6%	0%	4%	4%	5%	22%
Fleet vehicles	<1%	<1%	<1%	<1%	<1%	<1%	<1%	<1%
Total	100%	100%	100%	100%	100%	100%	100%	100%

Figure 2.2: Contribution of 2011 Total Airshed Emissions by Source Category

In the pie charts below, Figures 2.3 through 2.10, the fleet vehicles percentage is so small that it is hardly visible. Due to space constraints, it is not labeled in the pie charts.

Figure 2.3: 2011 Total Airshed NO_x Emissions by Source Category

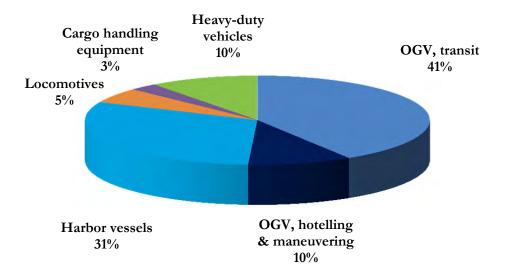


Figure 2.4: 2011 Total Airshed VOC Emissions by Source Category

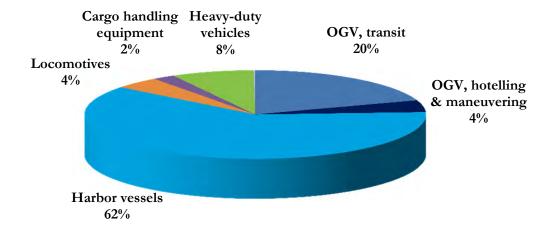


Figure 2.5: 2011 Total Airshed CO Emissions by Source Category

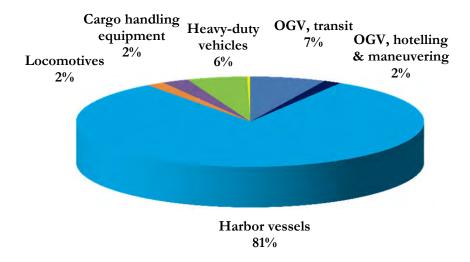


Figure 2.6: 2011 Total Airshed SO₂ Emissions by Source Category

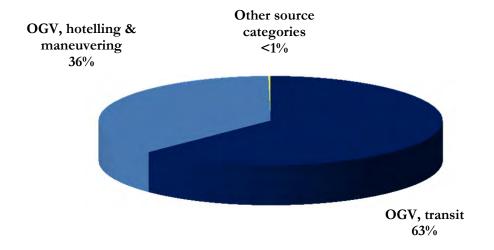


Figure 2.7: 2011 Total Airshed PM₁₀ Emissions by Source Category

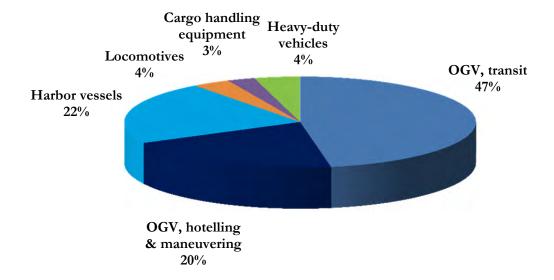


Figure 2.8: 2011 Total Airshed PM_{2.5} Emissions by Source Category

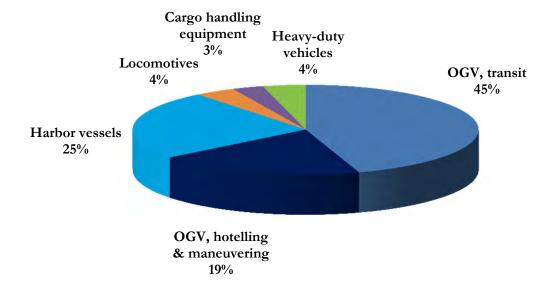


Figure 2.9: 2011 Total Airshed DPM Emissions by Source Category

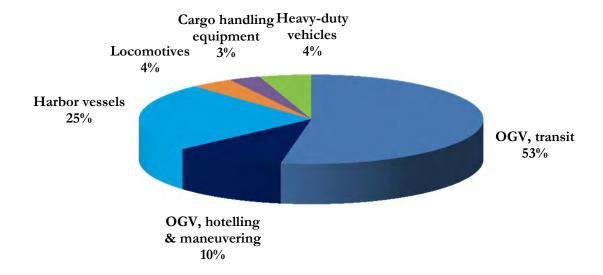
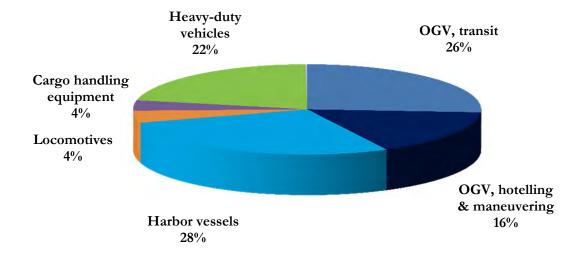



Figure 2.10: 2011 Total Airshed CO2e Emissions by Source Category

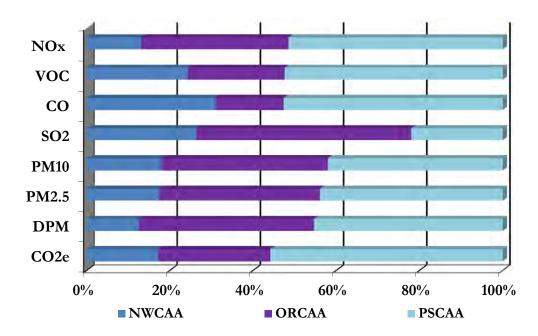
2.1.2 Maritime Emission by Regional Clean Air Agency

Table 2.3 presents maritime-related emissions by regional clean air agency jurisdiction. Figures 2.11 through 2.18 illustrate emissions by regional clean air agency for NO_x, VOC, CO, SO₂, PM₁₀, PM_{2.5}, DPM, and greenhouse gases, respectively. The regional clean air agencies, their acronyms as used in the tables that follow, and the counties within their jurisdictions are:

- Northwest Clean Air Agency (NWCAA) Island, Skagit, Whatcom, San Juan
- ➤ Olympic Region Clean Air Agency (ORCAA) Clallam, Jefferson, Mason, Thurston
- Puget Sound Clean Air Agency (PSCAA) Pierce, King, Kitsap, and Snohomish

Maritime-related emissions for San Juan County are included in the totals for the Northwest Clean Air Agency (NWCAA) even though the air program in San Juan County is administered by the WDOE. Pacific and Grays Harbor Counties, which are in the ORCAA jurisdiction, are outside the Puget Sound airshed and this emissions inventory study area.

Table 2.3: 2011 Total Airshed Emissions by Regional Clean Air Agency, tpy


Agency	NO _x	voc	CO	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
NWCAA	2,988	442	3,663	3,076	233	191	140	296,048
ORCAA	8,074	428	1,970	6,056	521	421	472	465,699
PSCAA	11,851	959	6,271	2,597	550	480	510	974,479
Total	22,912	1,830	11,905	11,729	1,304	1,092	1,122	1,736,226

Note: Total recreational vessel emissions were allocated based on the location of the marinas and the air district in which the marina is located in, consistent with 2005 allocation approach.

The 2011 maritime-related emissions are distributed 13-31% for NWCAA, 16-52% for ORCAA, and 22-56% for PSCAA, depending on pollutant.

Figure 2.11: Distribution of Total Airshed Emissions by Regional Clean Air Agency

2.2 Emission Comparison, 2011 vs 2005

Table 2.4 compares the 2011 and 2005 ship inbound activity⁹, cargo throughput in twenty-foot-equivalents (TEU), and total cargo tonnage in metric tons (tonnes) for the Ports of Anacortes, Everett, Olympia, Seattle, and Tacoma. Due to the worldwide economic downturn, the overall activity and throughput was down in 2011 for most of the Puget Sound Ports when compared to 2005. Two major container ports in Puget Sound, the Port of Seattle and Port of Tacoma, had lower vessel call counts and TEU throughput. The exceptions are the Port of Everett and Port of Olympia, which increased their vessel calls and tonnage in 2011 as compared to 2005. Overall, the ship inbound activity decreased 9%, TEU decreased 15% and tonnage decreased slightly by 1%.

Table 2.4: 2011 vs 2005 Port Activity Comparison

	2011	2005	2011	2005	2011	2005
Port	Inbound	Inbound	Throughput	Throughput	Cargo	Cargo
	Activities	Activities	(TEU)	(TEU)	(tonnes)	(tonnes)
Anacortes	38	29	na	na	na	na
Everett	103	47	20,918	9,561	152,995	103,757
Olympia	26	20	0	903	711,536	129,512
Seattle	1,136	1,197	2,033,535	2,087,929	22,762,678	20,564,860
Tacoma	875	1,093	1,488,795	2,070,000	17,270,252	20,400,000
Total	2,178	2,386	3,543,248	4,168,393	40,897,461	41,198,129
Change, %	-9%		-15%		-1%	

-

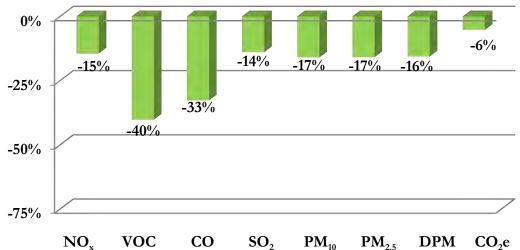

⁹Inbound activity counts are based on MarEx data and only include ocean-going vessel counts arriving directly from sea and shifts from other ports in the inventory domain to the designated port. Barge calls are not included in the ocean-going vessel inbound activity.

Table 2.5 and Figure 2.12 compares the total 2011 maritime-related airshed emissions to 2005 airshed emissions. Airshed emissions reductions ranged from 5% CO₂e to 40% VOC in 2011 as compared to 2005.

Table 2.5: 2011 vs 2005 Total Airshed Emissions Comparison, tpy

Year	NO _x	voc	СО	SO_2	PM_{10}	$\mathbf{PM}_{2.5}$	DPM	CO_2e
2011	22,912	1,830	11,905	11,729	1,304	1,092	1,122	1,736,226
2005	27,059	3,070	17,708	13,621	1,565	1,310	1,342	1,845,912
Change, tpy	-4,146	-1,240	-5,804	-1,892	-261	-218	-220	-109,686
Change, %	-15%	-40%	-33%	-14%	-17%	-17%	-16%	-6%

Figure 2.12: 2011 vs 2005 Total Airshed Emissions Change

Note: 2005 emissions were recalculated using the same methods used for the 2011 emission estimates. The above figure accounts for these changes so that a direct comparison can be made between 2011 vs 2005.

For some of the source categories, the emissions calculation methodology was different in 2011 than in 2005 due to improvements or updates to data collection or modeling methods. In order to compare 2011 emissions to 2005 emissions, for those source categories with methodology changes, the 2005 emissions were updated with the 2011 emissions modeling parameter changes, or were otherwise adjusted, in order to compare the directly. For example, 2005 cargo handling equipment and harbor vessel emissions were recalculated to include the updated 2011 load factors. Thus, the 2005 emissions included in this report are different from the published emissions in the 2005 PSEI report, but are more compatible with the 2011 estimates.

Table 2.6 summarizes the maritime related emissions by source category. The ocean-going vessel emissions decreased due to decreased vessel calls, use of shore power, and use of lower sulfur fuel by some vessels/shipping lines while at berth. For harbor vessels, which include commercial harbor, government (non-military), and recreational vessels, VOC and CO emissions decreased because the majority of VOC and CO is contributed by recreational vessels which have lower 2011 emissions due to assumed fleet turn over by the EPA model The EPA's assumed fleet turnover was used because used to calculate emissions. information on actual makeup of the fleet in the Puget Sound region was not available. The harbor vessel SO₂ and PM emissions decreased due to the use of ULSD. Emissions of NO_x. DPM and CO₂ increased due to the increased activity for commercial harbor vessels especially for category 2 engines and assumed fleet turnover of recreation vessels with 2stroke engines to 4-stroke engines by the EPA model used to calculate emissions. Locomotive emissions decreased due to lower throughput, improved fuel efficiency, and cleaner locomotive engines. Cargo handling equipment emissions decreased due to decreased activity, use of ULSD, emission reduction retrofits such as DPFs and diesel oxidation catalysts (DOCs), and equipment turnover. Heavy-duty vehicles emissions decreased, except for CO₂e, which remained essentially the same in 2011 as in 2005. The heavy-duty vehicles emissions decrease is due to fleet turnover, the implementation of the clean truck programs by the Ports of Tacoma and Seattle, and the use of ULSD. For fleet vehicles, the varying emission changes are due to the different fleet mix, reported activity levels, and vehicle fuel types included in the two inventories.

Table 2.6: 2011 vs 2005 Total Airshed Emissions by Source Category, tpy

	NO_x	voc	CO	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO_2e
2011								
Ocean-going vessels	11,658	442	1,036	11,709.00	879.65	703.72	711.12	737,640
Harbor vessels	7,050	1,124	9,672	5.34	291.52	271.64	277.72	481,123
Locomotives	1,264	80	200	10.51	45.15	41.35	45.15	75,289
Cargo handling equipment	594	37	297	0.60	32.60	31.70	32.60	64,275
Heavy-duty vehicles	2,340	143	666	3.40	55.00	43.50	55.00	375,071
Fleet vehicles	6	3	34	0.05	0.09	0.08	0.04	2,828
Total	22,912	1,830	11,905	11,728.90	1,304.01	1,092.00	1,121.63	1,736,226
2005								
Ocean-going vessels	14,551	509	1,200	12,923.71	1,030.66	822.51	841.99	812,391
Harbor vessels	6,497	2,217	14,477	380.31	306.34	282.15	272.17	464,362
Locomotives	2,156	109	269	168.60	59.11	54.39	59.11	98,495
Cargo handling equipment	832	81	814	61.84	54.89	53.25	54.64	79,581
Heavy-duty vehicles	3,012	148	899	86.70	114.00	97.60	114.00	387,846
Fleet vehicles	10	5	50	0.04	0.08	0.08	0.08	3,237
Total	27,059	3,070	17,708	13,621.18	1,565.08	1,309.97	1,341.99	1,845,912
% Change								
Ocean-going vessels	-20%	-13%	-14%	-9%	-15%	-14%	-16%	-9%
Harbor vessels	9%	-49%	-33%	-99%	-5%	-4%	2%	4%
Locomotives	-41%	-27%	-25%	-94%	-24%	-24%	-24%	-24%
Cargo handling equipment	-29%	-54%	-64%	-99%	-41%	-40%	-40%	-19%
Heavy-duty vehicles	-22%	-3%	-26%	-96%	-52%	-55%	-52%	-3%
Fleet vehicles	-34%	-48%	-31%	24%	8%	3%	-47%	-13%
Total	-15%	-40%	-33%	-14%	-17%	-17%	-16%	-6%

2.3 Port and Petroleum Facility Summaries

This section includes summaries of U.S. maritime-related emissions associated with the Ports of Anacortes, Everett, Olympia, Seattle, Tacoma, and the petroleum facilities group. For these summaries, the source category emissions were tabulated to be consistent with the 2005 PSEI report format, with the specifics for each port described below.

For the Port of Anacortes, Port of Everett, Port of Olympia, and petroleum facilities comparisons, the source category emissions are tabulated similar to the 2005 report, as follows:

- ➤ Port emissions within port terminals, adjacent rail yards, and adjacent waterways
 - Ocean-going vessel emissions (hotelling and maneuvering activities)
 - Harbor vessel emissions (includes only 10% of total recreational vessel emissions related to port-owned marinas Ports of Anacortes, Everett, and Olympia)
 - Cargo handling equipment emissions
 - Locomotive emissions (switching activities on-terminal and adjacent rail yards)
 - Heavy-duty vehicle emissions (queuing and on-terminal activities)
 - Fleet vehicle emissions (on-terminal activities)

The following were not included in the Port of Anacortes, Port of Everett, Port of Olympia, and petroleum facilities summaries:

- ➤ Ocean-going vessels transiting mode emissions and emissions from activities that are not directly associated with the operations at port terminals or petroleum facilities.
- ➤ Harbor vessel emissions from activities that are not directly associated with the operations at Ports of or Anacortes, Everett, or Olympia terminals or petroleum facilities.
- Line-haul locomotive emissions (line-haul activities were not identified at these ports).
- Heavy-duty vehicles on-road emissions outside the ports' terminals.

For 2011, the Port of Seattle and Port of Tacoma increased the resolution from the previous report to get a better understanding of port-related emissions allocating them into three geographical zones, compared to one zone in 2005. For comparison purposes the 2011 and 2005 emissions were allocated into the following three geographical zones:

- Port emissions within port terminals, adjacent rail yards, and adjacent waterways
 - Ocean-going vessel emissions (hotelling and maneuvering activities)
 - Harbor vessel emissions (port-related commercial harbor and government vessel activities)
 - Harbor vessel emissions (10% of total recreational vessel emissions related to port-owned marinas)
 - Cargo handling equipment emissions

- Locomotive emissions (switching and line haul activities)
- Heavy-duty vehicle emissions (queuing and on-terminal activities)
- Fleet vehicle emissions (on-terminal activities)
- Air District emissions within PSCAA four county boundary (Pierce, King, Kitsap, and Snohomish Counties)
 - Ocean-going vessel emissions (hotelling, maneuvering, and transit emissions)
 - Harbor vessel emissions (port-related commercial harbor and government vessel activities)
 - Harbor vessel emissions (50% of total recreational vessel emissions related to port-owned marinas)
 - Cargo handling equipment emissions
 - Locomotive emissions
 - Heavy-duty vehicle emissions
 - Fleet vehicle emissions
- Airshed emissions within the entire emissions inventory domain
 - Ocean-going vessel emissions (hotelling, maneuvering, and transit emissions)
 - Harbor vessel emissions (port-related commercial harbor and government vessel activities)
 - Harbor vessel emissions (100% of recreational vessel emissions related to port-owned marinas)
 - Cargo handling equipment emissions
 - Locomotive emissions
 - Heavy-duty vehicle emissions
 - Fleet vehicle emissions

The following were not included in the Port of Seattle and Port of Tacoma summaries:

- ➤ Ocean-going vessel emissions from activities that are not directly associated with the operations at either the Port of Tacoma or Port of Seattle terminals.
- ➤ Harbor vessel emissions from activities that are not directly associated with the operations at either the Port of Tacoma or Port of Seattle terminals

Each port above is highlighted in the following subsections.

2.3.1 Port of Anacortes

Table 2.7 and Figures 2.13 presents 2011 emissions associated with the Port of Anacortes.

Table 2.7: Port of Anacortes 2011 Port Emissions, tpy

Source Category	NO _x	voc	СО	SO_2	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
OGV, hotelling	9.5	0.3	0.8	11.37	0.82	0.65	0.66	653
OGV, maneuvering	0.1	0.0	0.0	0.06	0.01	0.00	0.01	3
Recreational vessels	3.4	3.7	36.4	0.01	0.08	0.08	0.02	420
Locomotives	na	na	na	na	na	na	na	na
Cargo handling equipment	0.4	0.1	1.4	0.00	0.00	0.00	0.00	22
Heavy-duty vehicles	0.1	0.0	0.1	0.00	0.00	0.00	0.00	8
Terminal fleet vehicles	0.1	0.0	0.4	0.00	0.00	0.00	0.00	22
Total	13.5	4.1	39.0	11.43	0.91	0.74	0.69	1,129

Figure 2.13: Port of Anacortes 2011 Port Emissions

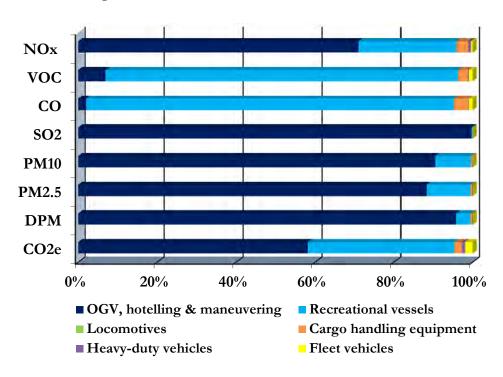
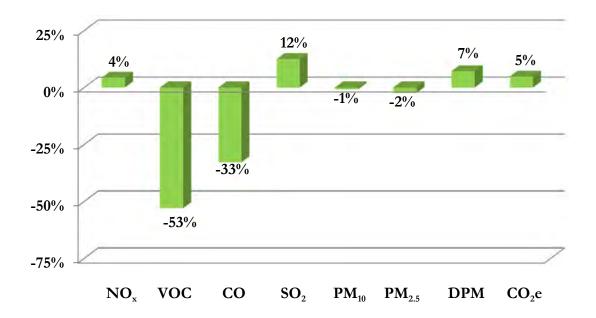


Table 2.8 presents 2011 and 2005 emissions comparison for the Port of Anacortes. For Port of Anacortes, there are no switching locomotive emissions associated with the port, thus not applicable or "na" for locomotives.


Table 2.8: Port of Anacortes 2011 vs 2005 Port Emissions Comparison, tpy

	NO _x	voc	CO	SO_2	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
2011								
OGV, hotelling & maneuvering	9.57	0.29	0.77	11.427	0.822	0.657	0.663	657
Recreational vessels	3.35	3.69	36.39	0.007	0.081	0.075	0.024	420
Locomotives	na	na	na	na	na	na	na	na
Cargo handling equipment	0.40	0.10	1.40	0.000	0.003	0.003	0.003	22
Heavy-duty vehicles	0.10	0.01	0.06	0.000	0.001	0.001	0.001	8
Terminal fleet vehicles	0.06	0.04	0.40	0.000	0.001	0.001	0.000	22
Total	13.48	4.13	39.02	11.434	0.907	0.737	0.691	1,129
2005								
OGV, hotelling & maneuvering	8.62	0.26	0.70	10.054	0.731	0.585	0.603	577
Recreational vessels	3.87	8.41	56.40	0.091	0.171	0.159	0.029	453
Locomotives	na	na	na	na	na	na	na	na
Cargo handling equipment	0.24	0.04	0.40	0.019	0.010	0.009	0.009	15
Heavy-duty vehicles	0.14	0.01	0.09	0.003	0.003	0.003	0.003	13
Terminal fleet vehicles	0.06	0.06	0.48	0.000	0.000	0.000	0.000	19
Total	12.92	8.77	58.06	10.166	0.914	0.755	0.644	1,077
% Change								
OGV, hotelling & maneuvering	11%	11%	11%	14%	12%	12%	10%	14%
Recreational vessels	-13%	-56%	-35%	-93%	-53%	-52%	-19%	-7%
Locomotives	na	na	na	na	na	na	na	na
Cargo handling equipment	68%	174%	252%	-98%	-70%	-69%	-69%	43%
Heavy-duty vehicles	-28%	-13%	-36%	-100%	-66%	-63%	-66%	-36%
Terminal fleet vehicles	-8%	-30%	-17%	na	na	na	na	18%
Total	4%	-53%	-33%	12%	-1%	-2%	7%	5%

Figure 2.14 presents the Port of Anacortes's port emissions change for 2011 vs 2005.

Figure 2.14: Port of Anacortes 2011 vs 2005 Port Emissions Change

2.3.2 Port of Everett

Table 2.9 and Figure 2.15 present emissions associated with the Port of Everett.

Table 2.9: Port of Everett 2011 Port Emissions, tpy

Source Category	NO _x	voc	CO	SO_2	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
OGV, hotelling	46	1	4	52.60	3.88	3.11	3.30	3,019
OGV, maneuvering	1	0	0	0.71	0.06	0.05	0.06	41
Recreational vessels	8	8	83	0.02	0.18	0.17	0.05	956
Locomotives	62	5	9	0.50	2.20	2.00	2.20	3,298
Cargo handling equipment	23	2	25	0.01	2.30	2.20	2.30	1,375
Heavy-duty vehicles	0	0	0	0.00	0.00	0.00	0.00	12
Terminal fleet vehicles	1	1	7	0.00	0.01	0.01	0.00	273
Total	141	18	128	53.85	8.64	7.53	7.92	8,972

Figure 2.15: Port of Everett 2011 Port Emissions

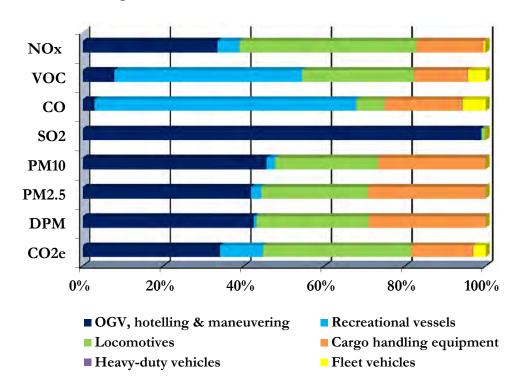


Table 2.10 presents 2011 and 2005 emissions comparison for the Port of Everett.

Table 2.10: Port of Everett 2011 vs 2005 Port Emissions Comparison, tpy

	NO _x	voc	CO	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
2011								
OGV, hotelling & maneuvering	47.2	1.4	3.8	53.31	3.94	3.15	3.36	3,059
Recreational vessels	7.6	8.4	82.8	0.02	0.18	0.17	0.05	956
Locomotives	62.1	5.0	9.0	0.50	2.20	2.00	2.20	3,298
Cargo handling equipment	23.4	2.4	24.6	0.01	2.30	2.20	2.30	1,375
Heavy-duty vehicles	0.1	0.0	0.1	0.00	0.00	0.00	0.00	12
Terminal fleet vehicles	0.8	0.8	7.4	0.00	0.01	0.01	0.00	273
Total	141.2	18.0	127.7	53.85	8.64	7.53	7.92	8,972
2005								
OGV, hotelling & maneuvering	21.7	0.7	1.7	33.64	2.20	1.76	1.38	1,983
Recreational vessels	7.9	17.2	115.6	0.19	0.35	0.33	0.06	929
Locomotives	79.8	4.6	8.4	4.91	2.03	1.87	2.03	3,057
Cargo handling equipment	23.0	2.4	22.1	1.66	2.46	2.38	2.45	1,406
Heavy-duty vehicles	1.0	0.1	0.7	0.02	0.02	0.02	0.02	90
Terminal fleet vehicles	0.7	0.4	3.1	0.01	0.01	0.01	0.01	126
Total	134.2	25.4	151.6	40.42	7.07	6.36	5.95	7,590
% Change								
OGV, hotelling & maneuvering	117%	114%	121%	59%	79%	79%	143%	54%
Recreational vessels	-4%	-51%	-28%	-92%	-48%	-47%	-10%	3%
Locomotives	-22%	8%	7%	-90%	8%	7%	8%	8%
Cargo handling equipment	2%	1%	11%	-99%	-6%	-8%	-6%	-2%
Heavy-duty vehicles	-88%	-88%	-91%	-100%	-90%	-95%	-90%	-87%
Terminal fleet vehicles	8%	96%	138%	0%	-10%	-20%	-78%	116%
Total	5%	-29%	-16%	33%	22%	18%	33%	18%

Figure 2.16 presents the Port of Everett's port emissions change for 2011 vs 2005, while Figure 2.17 presents a simple metric of tons of emissions (excluding port-related recreational vessels) per 10,000 tonnes of cargo in 2011 and 2005. The port tons of emissions per 10,000 tonnes of cargo decreased in 2011, representing an improvement in air emissions-related efficiencies from 2005.

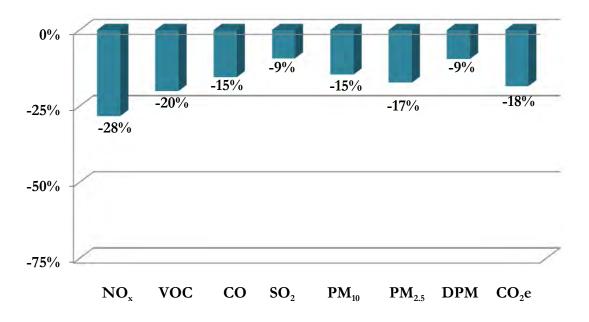

75% 50% 33% 33% 22% 18% 18% 25% 5% 0% -16% -25% -29% -50% -75% SO_2

Figure 2.16: Port of Everett 2011 vs 2005 Port Emissions Change

Figure 2.17: Port of Everett 2011 vs 2005 Port Emissions 10,000 Tonnes of Cargo Change

 PM_{10}

 PM_{25}

NO_x

VOC

 \mathbf{CO}

 CO_2e

DPM

2.3.3 Port of Olympia

Table 2.11 and Figures 2.18 present emissions associated with the Port of Olympia.

Table 2.11: Port of Olympia 2011 Port Emissions, tpy

Source Category	NO _x	voc	СО	SO_2	\mathbf{PM}_{10}	PM _{2.5}	DPM	CO ₂ e
OGV, hotelling	7.39	0.24	0.63	13.18	0.84	0.67	0.50	771
OGV, maneuvering	0.16	0.00	0.01	0.14	0.01	0.01	0.01	8
Recreational vessels	2.35	2.58	25.48	0.00	0.06	0.05	0.02	294
Locomotives, near-port	3.70	0.20	0.40	0.00	0.10	0.10	0.10	164.0
Cargo handling equipment	42.90	2.70	17.40	0.04	2.60	2.50	2.60	4,408
Heavy-duty vehicles, on-terminal	0.09	0.00	0.06	0.00	0.00	0.00	0.00	8
Terminal fleet vehicles	0.01	0.00	0.03	0.00	0.00	0.00	0.00	2
Total	56.58	5.73	44.02	13.37	3.61	3.34	3.23	5,654

Figure 2.18: Port of Olympia 2011 Port Emissions

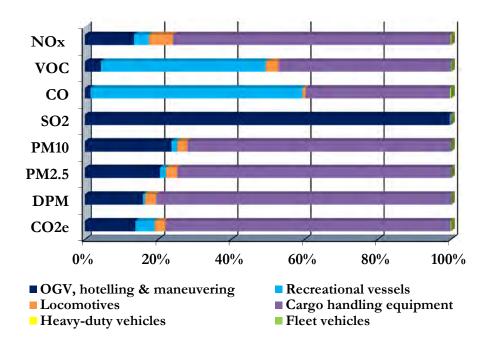


Table 2.12 presents 2011 and 2005 emissions comparison for the Port of Olympia.

Table 2.12: Port of Olympia 2011 vs 2005 Port Emissions Comparison, tpy

	NO _x	VOC	СО	SO_2	PM_{10}	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
2011								
OGV, hotelling & maneuvering	7.5	0.2	0.6	13.33	0.853	0.682	0.511	779
Recreational vessels	2.3	2.6	25.5	0.00	0.056	0.053	0.017	294
Locomotives	3.7	0.2	0.4	0.00	0.100	0.100	0.100	164
Cargo handling equipment	42.9	2.7	17.4	0.04	2.600	2.500	2.600	4,408
Heavy-duty vehicles	0.1	0.0	0.1	0.00	0.001	0.001	0.001	8
Terminal fleet vehicles	0.0	0.0	0.0	0.00	0.000	0.000	0.000	2
Total	56.6	5.7	44.0	13.37	3.610	3.336	3.229	5,654
2005								
OGV, hotelling & maneuvering	10.7	0.3	0.8	14.60	0.990	0.792	0.700	846
Recreational vessels	2.7	5.9	39.5	0.06	0.120	0.111	0.021	317
Locomotives	15.0	0.9	1.6	0.92	0.381	0.350	0.381	574
Cargo handling equipment	25.8	2.7	17.5	3.23	2.256	2.188	2.253	1,774
Heavy-duty vehicles	1.3	0.1	0.9	0.02	0.027	0.025	0.027	119
Terminal fleet vehicles	na	na	na	na	na	na	na	na
Total	55.5	9.9	60.2	18.84	3.773	3.466	3.381	3,630
% Change								
OGV, hotelling & maneuvering	-30%	-22%	-23%	-9%	-14%	-14%	-27%	-8%
Recreational vessels	-13%	-56%	-35%	-93%	-53%	-52%	-19%	-7%
Locomotives	-75%	-77%	-75%	-100%	-74%	-71%	-74%	-71%
Cargo handling equipment	66%	0%	0%	-99%	15%	14%	15%	148%
Heavy-duty vehicles	-93%	-100%	-93%	-100%	-96%	-96%	-96%	-93%
Terminal fleet vehicles	na	na	na	na	na	na	na	na
Total	2%	-42%	-27%	-29%	-4%	-4%	-4%	56%

Figure 2.19 presents the Port of Olympia's port emissions change for 2011 vs 2005, while Figure 2.20 presents a simple metric of tons of emissions (excluding port-related recreational vessels) per 10,000 tonnes of cargo in 2011 and 2005. The port tons of emissions per 10,000 tonnes of cargo significantly decreased in 2011, representing an improvement in air emissions-related efficiencies from 2005.

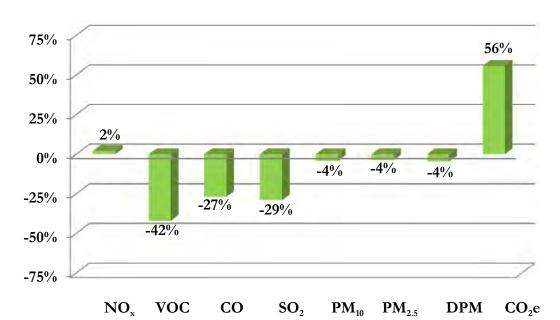
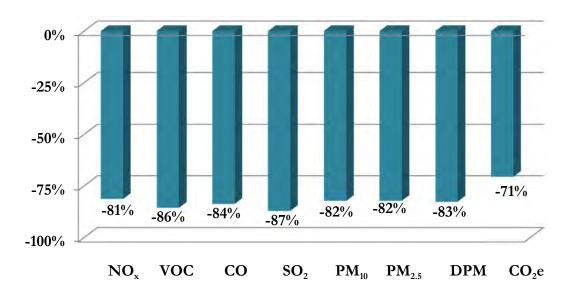



Figure 2.19: Port of Olympia 2011 vs 2005 Port Emissions Change

Figure 2.20: Port of Olympia 2011 vs 2005 Port Emissions per 10,000 Tonnes of Cargo Metric Change

2.3.4 Port of Seattle

Table 2.13 and Figures 2.21 present the 2011 port emissions associated with the Port of Seattle operations.

Table 2.13: Port of Seattle 2011 Port Emissions, tpy

Source Category	NO _x	voc	CO	SO_2	PM_{10}	PM _{2.5}	DPM	CO ₂ e
OGV, hotelling	679	22	59	551.53	42.38	33.90	33.32	51,492
OGV, maneuvering	69	4	8	48.98	5.31	4.25	5.30	2,986
OGV, transit	0	0	0	0.00	0.00	0.00	0.00	0
Harbor vessels	334	22	72	0.21	13.24	12.21	13.04	20,415
Recreational vessels	6	6	61	0.01	0.14	0.13	0.04	708
Locomotives	290	20	45	2.54	10.50	9.60	10.50	16,828
Cargo handling equipment	306	18	158	0.30	16.70	16.20	16.70	34,561
Heavy-duty vehicles	68	6	38	0.07	0.82	0.76	0.82	7,038
Terminal fleet vehicles	3	1	12	0.02	0.03	0.03	0.02	1,053
Total	1,754	99	454	603.65	89.13	77.08	79.74	135,083

Figure 2.21: Port of Seattle 2011 Port Emissions Contribution by Source Category

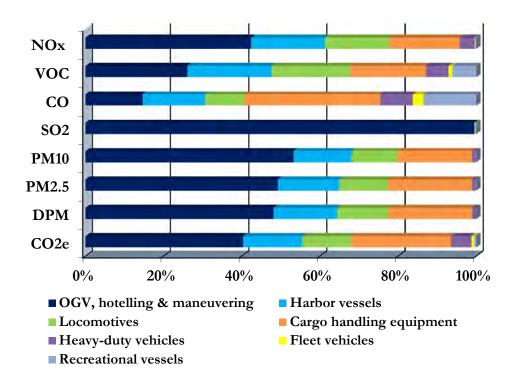


Table 2.14 presents 2011 and 2005 port emissions comparisons for the Port of Seattle.

Table 2.14: Port of Seattle 2011 vs 2005 Port Emissions Comparison, tpy

	NO,	voc	СО	SO ₂	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
_					10	2.3		
2011								
OGV, hotelling & maneuvering	748	26	66	600.51	47.69	38.15	38.62	54,479
OGV, transit	0	0	0	0.00	0.00	0.00	0.00	0
Commercial harbor vessels	334	22	72	0.21	13.24	12.21	13.04	20,415
Recreational vessels	6	6	61	0.05	0.14	0.14	0.04	708
Locomotives	290	20	45	2.54	10.50	9.60	10.50	16,828
Cargo handling equipment	306	18	158	0.30	16.70	16.20	16.70	34,561
Heavy-duty vehicles	68	6	38	0.07	0.82	0.76	0.82	7,038
Terminal fleet vehicles	3	1	12	0.02	0.03	0.03	0.02	1,053
Total	1,754	99	454	603.69	89.12	77.09	79.75	135,083
2005								
OGV, hotelling & maneuvering	861	28	72	978.73	73.84	59.08	58.86	60,474
OGV, transit	0	0	0	0.00	0.00	0.00	0.00	0
Commercial harbor vessels	316	22	66	33.74	13.79	12.71	13.58	18,073
Recreational vessels	7	15	104	0.17	0.31	0.29	0.05	832
Locomotives	448	25	55	40.22	13.27	12.21	13.27	20,561
Cargo handling equipment	418	51	616	52.27	27.62	26.80	27.40	38,135
Heavy-duty vehicles	96	8	67	1.82	1.99	1.83	1.99	8,884
Terminal fleet vehicles	5	3	31	0.02	0.02	0.02	0.02	1,403
Total	2,151	152	1,012	1,106.95	130.85	112.93	115.18	148,362
% Change								
OGV, hotelling & maneuvering	-13%	-7%	-8%	-39%	-35%	-35%	-34%	-10%
OGV, transit	na	na	na	na	na	na	na	na
Commercial harbor vessels	6%	-1%	9%	-99%	-4%	-4%	-4%	13%
Recreational vessels	-20%	-60%	-41%	-71%	-55%	-52%	-14%	-15%
Locomotives	-35%	-19%	-18%	-94%	-21%	-21%	-21%	-18%
Cargo handling equipment	-27%	-64%	-74%	-99%	-40%	-40%	-39%	-9%
Heavy-duty vehicles	-29%	-28%	-43%	-96%	-59%	-59%	-59%	-21%
Terminal fleet vehicles	-43%	-70%	-60%	20%	67%	60%	-19%	-25%
Total	-18%	-35%	-55%	-45%	-32%	-32%	-31%	-9%

Figure 2.22 presents the Port of Seattle's port emissions changes 2011 vs 2005, while Figures 2.23 and 2.24 present the 2011 and 2005 change in a simple metric of TEU and cargo emissions efficiency, expressed in tons of emissions per 10,000 TEU and 10,000 tonnes of cargo basis, respectively. It should be noted that although port-related recreational vessel emissions are included in Table 2.14, they are not included in Figures 2.22, 2.23, and 2.24 because they are not associated with the movement of cargo and that port-related cruise ship emissions are included in these simple metrics.

0% -9% -18% -25% -31% -32% -32% -35% -45% -50% -55% -75% NO_v VOC \mathbf{CO} SO₂ PM_{10} PM_{25} **DPM** CO₂e

Figure 2.22: Port of Seattle 2011 vs 2005 Port Emissions Change

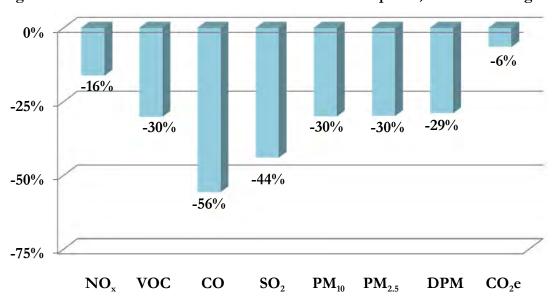


Figure 2.24: Port of Seattle 2011 vs 2005 Port Emissions per 10,000 Tonnes of Cargo Change

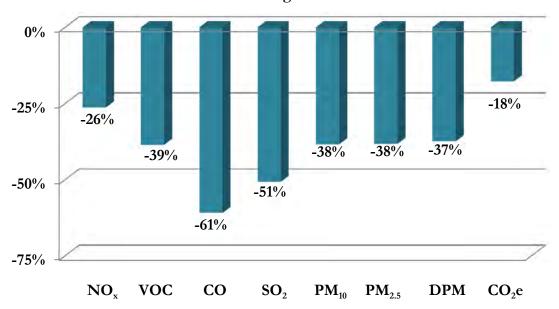


Table 2.15 presents the Port of Seattle's 2011 air district emissions by source category.

Table 2.15: Port of Seattle 2011 Air District Emissions, tpy

Source Category	NO_x	VOC	СО	SO_2	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
OGV, hotelling	679	22	59	552	42	34	33	51,492
OGV, maneuvering	69	4	8	49	5	4	5	2,986
OGV, transit	570	22	52	449	38	30	37	29,033
Commercial harbor vessels	371	23	77	0	15	14	14	22,474
Recreational vessels	28	31	307	0	1	1	0	3,541
Locomotives	617	38	100	6	23	21	23	37,829
Cargo handling equipment	306	18	158	0	17	16	17	34,561
Heavy-duty vehicles	1,052	70	331	2	20	18	20	171,303
Terminal fleet vehicles	3	1	12	0	0	0	0	1,053
Total	3,695	230	1,103	1,058	160	138	149	354,274

Table 2.16 presents a per-county resolution of the Port of Seattle's 2011 ocean-going vessel emissions in the PSCAA air district.

Table 2.16: Port of Seattle 2011 Air District OGV Emissions by County by Mode, tpy

County	Mode	NO _x	voc	СО	SO_2	\mathbf{PM}_{10}	PM _{2.5}	DPM	CO ₂ e
King	hotelling & maneuvering	748	26	66	601	48	38	39	54,479
	transit	152	6	15	119	10	8	10	7,597
Kitsap	transit	382	14	34	302	25	20	24	19,672
Pierce	transit	4	0	1	2	0	0	0	143
Snohomish	transit	33	1	3	26	2	2	2	1,622
Total		1,318	49	118	1,050	85	68	75	83,512

Table 2.17 presents the 2011 airshed emissions associated with the Port of Seattle.

Table 2.17: Port of Seattle 2011 Airshed Emissions, tpy

Source Category	NO_x	VOC	CO	SO_2	\mathbf{PM}_{10}	PM _{2.5}	DPM	CO ₂ e
OGV, hotelling	679	22	59	552	42	34	33	51,492
OGV, maneuvering	69	4	8	49	5	4	5	2,986
OGV, transit	4,106	158	366	3,151	265	212	258	202,078
Commercial harbor vessels	418	24	82	0	16	15	16	25,048
Recreational vessels	57	62	614	0	1	1	0	7,083
Locomotives	679	42	111	6	25	23	25	41,797
Cargo handling equipment	306	18	158	0	17	16	17	34,561
Heavy-duty vehicles	1,270	83	390	2	25	23	25	206,887
Terminal fleet vehicles	3	1	12	0	0	0	0	1,053
Total	7,586	414	1,799	3,760	397	328	380	572,986

Table 2.18 presents 2011 and 2005 airshed emissions comparison for the Port of Seattle.

Table 2.18: Port of Seattle 2011 vs 2005 Airshed Emissions Comparison, tpy

	NO_x	VOC	CO	SO_2	PM_{10}	$\mathbf{PM}_{2.5}$	DPM	CO_2e
2011								
OGV, hotelling & maneuvering	748	26	66	600.51	47.69	38.15	38.62	54,479
OGV, transit	4,106	158	366	3,150.77	264.57	211.66	257.71	202,078
Commercial harbor vessels	418	24	82	0.25	16.43	15.15	16.23	25,048
Recreational vessels	57	62	614	0.11	1.36	1.27	0.40	7083
Locomotives	680	42	111	6.15	24.85	22.85	24.85	41,870
Cargo handling equipment	306	18	158	0.30	16.70	16.20	16.70	34,561
Heavy-duty vehicles	1,27 0	83	390	1.81	25.27	22.55	25.27	206,887
Terminal fleet vehicles	3	1	12	0.02	0.03	0.03	0.02	1,053
Total	7,588	414	1,799	3,759.93	396.90	327.86	379.80	573,059
2005								
OGV, hotelling & maneuvering	861	28	72	978.73	73.84	59.08	58.86	60,474
OGV, transit	5,639	198	461	3,521.17	336.38	269.11	327.21	226,887
Commercial harbor vessels	534	26	96	55.46	22.36	20.59	22.14	29,737
Recreational vessels	71	154	1,035	1.67	3.14	2.91	0.54	8317
Locomotives	1,026	52	131	84.31	28.90	26.59	28.90	47,898
Cargo handling equipment	418	51	616	52.27	27.62	26.80	27.40	38,135
Heavy-duty vehicles	1,506	75	465	42.94	53.60	48.25	53.60	192,389
Terminal fleet vehicles	5	3	31	0.02	0.02	0.02	0.02	1,403
Total	10,060	587	2,907	4,736.54	545.87	453.34	518.69	605,240
% Change								
OGV, hotelling & maneuvering	-13%	-7%	-8%	-39%	-35%	-35%	-34%	-10%
OGV, transit	-27%	-20%	-21%	-11%	-21%	-21%	-21%	-11%
Commercial harbor vessels	-22%	-8%	-14%	-100%	-27%	-26%	-27%	-16%
Recreational vessels	-20%	-60%	-41%	-93%	-57%	-56%	-26%	-15%
Locomotives	-34%	-19%	-15%	-93%	-14%	-14%	-14%	-13%
Cargo handling equipment	-27%	-64%	-74%	-99%	-40%	-40%	-39%	-9%
Heavy-duty vehicles	-16%	10%	-16%	-96%	-53%	-53%	-53%	8%
Terminal fleet vehicles	-43%	-70%	-60%	20%	67%	60%	-19%	-25%
Total	-25%	-29%	-38%	-21%	-27%	-28%	-27%	-5%

Figure 2.25 presents the Port of Seattle's airshed emissions change for 2011 vs 2005, while Figures 2.26 and 2.27 present the 2011 and 2005 change in a simple metric of TEU and cargo emissions efficiency, expressed in tons of emissions per 10,000 TEU and 10,000 tonnes of cargo basis, respectively. It should be noted that port-related recreational vessel emissions are not included because they are not associated with the movement of cargo and that port-related cruise ship emissions are included in these simple metrics.

0% -5% -21% -25% -25% -27% -27% -28% -29% -38% -50% -75% NO_{x} **VOC** CO SO_2 PM_{10} $PM_{2.5}$ **DPM** CO₂e

Figure 2.25: Port of Seattle 2011 vs 2005 Airshed Emissions Change

Figure 2.26: Port of Seattle 2011 vs 2005 Airshed Emissions per 10,000 TEU Change

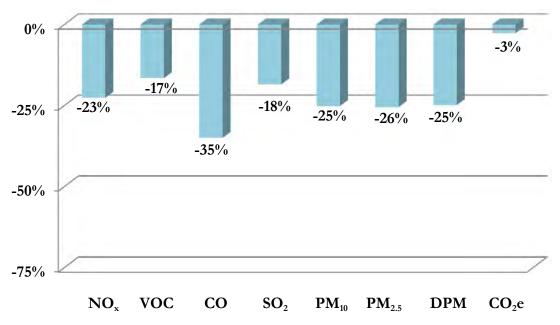
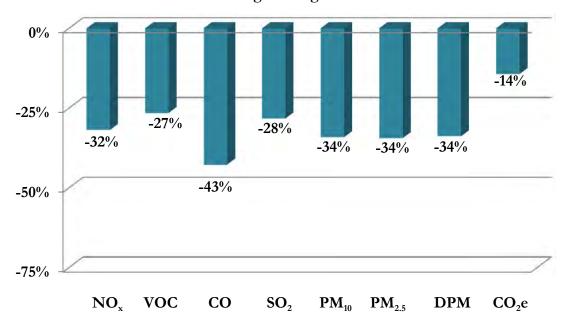



Figure 2.27: Port of Seattle 2011 vs 2005 Airshed Emissions per 10,000 Tonnes of Cargo Change

2.3.5 Port of Tacoma

Table 2.19 and Figures 2.28 represent port emissions associated with the Port of Tacoma.

Table 2.19: Port of Tacoma 2011 Port Emissions, tpy

Source Category	NO_x	voc	СО	SO_2	PM ₁₀	$PM_{2.5}$	DPM	CO ₂ e
OGV, hotelling	339	11	28	381	26	21	18	28,582
OGV, maneuvering	36	1	3	30	3	2	3	1,690
OGV, transit	0	0	0	0	0	0	0	0
Commercial harbor vessels	291	10	44	0	12	11	12	17,485
Locomotives	364	25	54	2	12	11	12	20,015
Cargo handling equipment	206	13	88	0	10	10	10	22,486
Heavy-duty vehicles	24	2	13	0	0	0	0	2,505
Terminal fleet vehicles	3	1	14	0	0	0	0	1,429
Total	1,263	62	245	413	64	55	56	94,192

Figure 2.28: Port of Tacoma 2011 Port Emissions

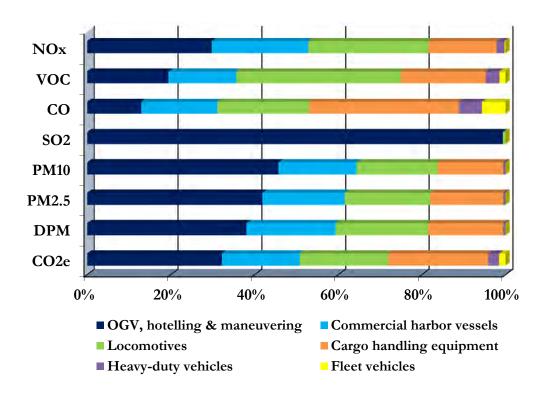


Table 2.20 presents 2011 and 2005 emissions comparison for the Port of Tacoma.

Table 2.20: Port of Tacoma 2011 vs 2005 Port Emissions Comparison, tpy

	NO_x	VOC	CO	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
2011								
OGV, hotelling & maneuvering	375	12	32	410.18	29.00	23.20	21.12	30,273
OGV, transit	0	0	0	0.00	0.00	0.00	0.00	0
Commercial harbor vessels	291	10	44	0.16	11.82	10.88	11.82	17,485
Locomotives	364	25	54	2.37	12.35	11.35	12.35	20,015
Cargo handling equipment	206	13	88	0.20	10.00	9.70	10.00	22,486
Heavy-duty vehicles	24	2	13	0.02	0.29	0.27	0.29	2,505
Terminal fleet vehicles	3	1	14	0.02	0.04	0.04	0.02	1,429
Total	1,263	62	245	412.96	63.50	55.44	55.60	94,192
2005								
OGV, hotelling & maneuvering	645	21	54	676.17	47.05	37.64	33.79	47,465
OGV, transit	0	0	0	0.00	0.00	0.00	0.00	0
Commercial harbor vessels	278	6	38	29.45	12.20	11.23	12.20	15,815
Locomotives	589	33	71	45.66	17.09	15.72	17.09	25,500
Cargo handling equipment	370	26	160	5.40	22.92	22.26	23.01	38,646
Heavy-duty vehicles	21	2	13	0.42	0.46	0.42	0.46	2,049
Terminal fleet vehicles	4	2	15	0.02	0.04	0.04	0.04	1,689
Total	1,907	88	352	757.13	99.76	87.31	86.59	131,163
% Change								
OGV, hotelling & maneuvering	-42%	-41%	-41%	-39%	-38%	-38%	-38%	-36%
OGV, transit	na	na	na	na	na	na	na	na
Commercial harbor vessels	4%	64%	17%	-99%	-3%	-3%	-3%	11%
Locomotives	-38%	-25%	-24%	-95%	-28%	-28%	-28%	-22%
Cargo handling equipment	-44%	-51%	-45%	-96%	-56%	-56%	-57%	-42%
Heavy-duty vehicles	16%	21%	-1%	-95%	-37%	-36%	-37%	22%
Terminal fleet vehicles	-36%	-45%	-9%	33%	0%	-5%	-50%	-15%
Total	-34%	-30%	-30%	-45%	-36%	-37%	-36%	-28%

Figure 2.29 presents the Port of Tacoma's port emissions change for 2011 vs 2005, while Figures 2.30 and 2.31 present the change in port emission efficiencies on a ton of emissions per TEU and tonnes of cargo basis, respectively. Due to a notable decrease in containers volume in 2011 while throughput of non-containerized cargo increased during the same time, the emission based on a tonnes of cargo may be a better representation of emissions related efficiencies.

0%-25% -30% -28% -30% -34% -36% -36% -37% -50% -45% -75% NO_{x} **VOC** \mathbf{CO} SO_2 **DPM** PM_{10} PM_{25} CO₂e

Figure 2.29: Port of Tacoma 2011 vs 2005 Port Emissions Change

Figure 2.30: Port of Tacoma 2011 vs 2005 Port Emissions per 10,000 TEU Change

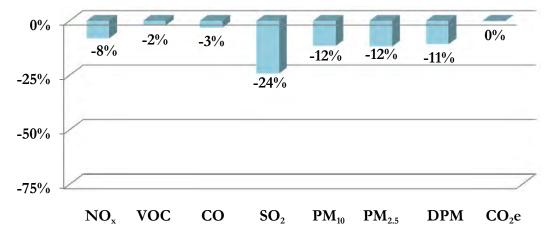


Figure 2.31: Port of Tacoma 2011 vs 2005 Port Emissions per 10,000 Tonnes of Cargo Change

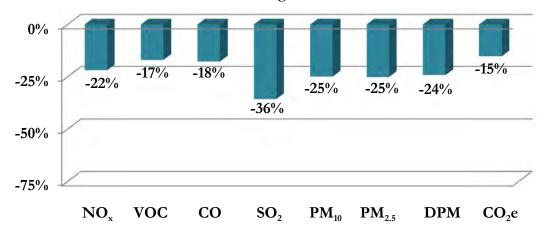


Table 2.21 presents the air district zone emissions associated with the Port of Tacoma.

Table 2.21: Port of Tacoma 2011 Air District Zone Emissions, tpy

Source Category	NO_x	voc	СО	SO ₂	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
OGV, hotelling	339	11	28	381	26	21	18	28,582
OGV, maneuvering	36	1	3	30	3	2	3	1,690
OGV, transit	738	28	64	579	49	39	46	34,676
Commercial harbor vessels	291	10	44	0	12	11	12	17,485
Locomotives	489	32	75	4	17	15	17	28,067
Cargo handling equipment	206	13	88	0	10	10	10	22,486
Heavy-duty vehicles	730	41	184	1	13	12	13	114,620
Terminal fleet vehicles	3	1	14	0	0	0	0	1,429
Total	2,831	136	502	994	130	111	119	249,035

2011 Puget Sound Maritime Air Emissions Inventory Section 2 Summary Results

Table 2.22 presents in greater resolution the Port of Tacoma's OGV emissions for the four counties in the air district zone.

Table 2.22: Port of Tacoma 2011 Air District Zone OGV Emissions by County, tpy

County	Mode	NO _x	VOC	СО	SO_2	PM ₁₀	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
King	transit	283	11	24	224	19	15	18	13,411
Kitsap	transit	428	16	37	335	28	23	27	20,044
Pierce	hotelling & maneuvering	375	12	32	410	29	23	21	30,273
	transit	13	1	2	9	1	1	1	548
Snohomish	transit	14	1	1	11	1	1	1	673
Total		1,113	40	96	989	78	62	67	64,948

Table 2.23 presents the airshed zone emissions associated with the Port of Tacoma.

Table 2.23: Port of Tacoma 2011 Airshed Emissions, tpy

Source Category	NO _x	voc	CO	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
OGV, hotelling	339	11	28	381	26	21	18	28,582
OGV, maneuvering	36	1	3	30	3	2	3	1,690
OGV, transit	3,257	122	280	2,562	216	173	203	153,472
Commercial harbor vessels	291	10	44	0	12	11	12	17,485
Locomotives	520	33	80	4	18	16	18	30,030
Cargo handling equipment	206	13	88	0	10	10	10	22,486
Heavy-duty vehicles	895	51	229	1	17	15	17	141,618
Terminal fleet vehicles	3	1	14	0	0	0	0	1,429
Total	5,546	241	768	2,977	303	249	281	396,792

2011 Puget Sound Maritime Air Emissions Inventory Section 2 Summary Results

Table 2.24 presents 2011 and 2005 airshed emissions comparison for the Port of Tacoma.

Table 2.24: Port of Tacoma 2011 vs 2005 Airshed Emissions Comparison, tpy

	NO	VOC	CO		DM	DM	DDM	CO -
	NO_x	VOC	CO	SO_2	PM_{10}	$\mathbf{PM}_{2.5}$	DPM	CO_2e
2011								
OGV, hotelling & maneuvering	375	12	32	410.18	29.00	23.20	21.12	30,273
OGV, transit	3,257	122	280	2,561.76	216.39	173.12	202.75	153,472
Commercial harbor vessels	291	10	44	0.16	11.82	10.88	11.82	17,485
Locomotives	520	33	80	3.87	18.05	16.45	18.05	30,030
Cargo handling equipment	206	13	88	0.20	10.00	9.70	10.00	22,486
Heavy-duty vehicles	895	51	229	1.24	17.37	15.48	17.37	141,618
Terminal fleet vehicles	3	1	14	0.02	0.04	0.04	0.02	1,429
Total	5,546	241	768	2,977.43	302.68	248.86	281.13	396,792
2005								
OGV, hotelling & maneuvering	645	21	54	676.17	47.05	37.64	33.79	47,465
OGV, transit	4,069	143	332	2,736.89	245.01	196.01	234.39	166,921
Commercial harbor vessels	278	6	38	29.45	12.20	11.23	12.20	15,815
Locomotives	1,035	52	128	78.45	27.80	25.58	27.80	46,082
Cargo handling equipment	370	26	160	5.40	22.92	22.26	23.01	38,646
Heavy-duty vehicles	1,307	63	376	37.79	47.49	42.58	47.49	168,846
Terminal fleet vehicles	4	2	15	0.02	0.04	0.04	0.04	1,689
Total	7,709	312	1,103	3,564.18	402.52	335.33	378.72	485,463
% Change								
OGV, hotelling & maneuvering	-42%	-41%	-41%	-39%	-38%	-38%	-38%	-36%
OGV, transit	-20%	-15%	-15%	-6%	-12%	-12%	-13%	-8%
Commercial harbor vessels	4%	64%	17%	-99%	-3%	-3%	-3%	11%
Locomotives	-50%	-36%	-37%	-95%	-35%	-36%	-35%	-35%
Cargo handling equipment	-44%	-51%	-45%	-96%	-56%	-56%	-57%	-42%
Heavy-duty vehicles	-32%	-20%	-39%	-97%	-63%	-64%	-63%	-16%
Terminal fleet vehicles	-36%	-45%	-9%	33%	0%	-5%	-50%	-15%
Total	-28%	-23%	-30%	-16%	-25%	-26%	-26%	-18%

Figure 2.32 presents the Port of Tacoma's airshed emissions change for 2011 vs 2005, while Figures 2.33 and 2.34 present the change in airshed emission efficiencies on a ton of emissions per 10,000 TEU and 10,000 tonnes of cargo basis, respectively. Due to a notable decrease in containers volume in 2011 while throughput of non-containerized cargo increased during the same time, the emission based on a tonnes of cargo may be a better representation of emissions related efficiencies.

0% -16% -25% -23% -18% -25% -26% -26%-28% -30% -50% **-75%** NO, **VOC** \mathbf{CO} SO_2 PM_{10} PM_{25} **DPM** CO₂e

Figure 2.32: Port of Tacoma 2011 vs 2005 Airshed Emissions Change

Figure 2.33: Port of Tacoma 2011 vs 2005 Airshed Emissions per 10,000 TEU Change

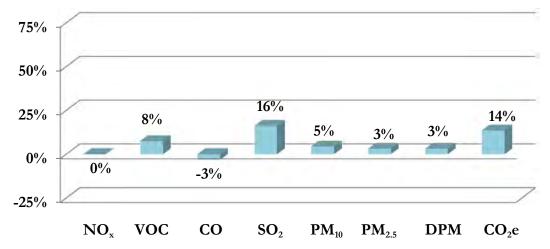
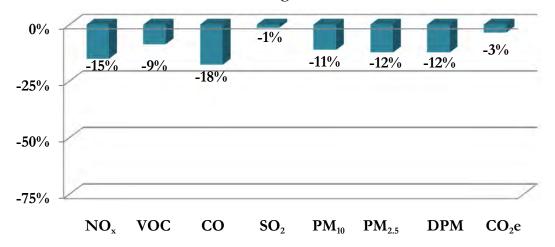



Figure 2.34: Port of Tacoma 2011 vs 2005 Airshed Emissions 10,000 Tonnes of Cargo Change

2.3.6 Petroleum Facilities

Table 2.25 presents emissions associated with the petroleum facilities, which involves only ocean going vessels. For this inventory, that is the only source category that was included for refinery related emissions and is the most significant since there are no recreational vessels associated with the refineries and cargo handling equipment are minimal due to nature of liquid bulk.

Table 2.25: Refinery Related 2011 Port Emissions, tpy

Source Category	NO _x	voc	СО	SO_2	PM ₁₀	PM _{2.5}	DPM	CO_2e
OGV, hotelling	669	25	59	2,360	127	102	32	140,710
OGV, maneuvering	29	2	4	21	2	2	2	1,213
Recreational vessels	na	na	na	na	na	na	na	na
Locomotives	na	na	na	na	na	na	na	na
Cargo handling equipment	na	na	na	na	na	na	na	na
Heavy-duty vehicles	na	na	na	na	na	na	na	na
Terminal fleet vehicles	na	na	na	na	na	na	na	na
Total	698	27	63	2,381	130	104	34	141,923

SECTION 3 OCEAN-GOING VESSELS

Section 3 provides an overview of the ocean-going vessels calling at U.S. maritime facilities located within the Georgia Basin/Puget Sound International Airshed. A description of the methodology used to estimate emissions is provided in this section, as well as the emission estimates for this source category.

3.1 Source Category Description and Operational Characteristics

The ocean-going vessel source category typically consists of cargo carrying vessels equipped with large marine propulsion engines known as slow speed engines. These are in contrast to harbor vessels, which are typically equipped with medium speed and high speed propulsion engines, which are discussed in Section 4. Ocean-going vessels are categorized by the following main vessel types for purposes of this emissions inventory:

- > Auto carriers
- ➤ Bulk carriers
- Containerships
- ➤ Passenger cruise vessels
- ➤ General cargo vessels
- ➤ Integrated tug-barge (ITB) and articulated tug-barge (ATB)
- Miscellaneous vessels
- ➤ Refrigerated vessels (Reefers)
- ➤ Roll-on/roll-off vessels (RoRo)
- > Tankers

The main vessel types are further subdivided for more accurate emissions estimates, as needed. Military vessels, such as aircraft carriers, U.S. Coast Guard vessels, and submarines, are not included in the inventory due to security considerations.

Based on 2011Marine Exchange of Puget Sound (MarEx) data (see Section 3.3.1), there were a total of 2,705 inbound calls of ocean-going vessels making 1,422 shifts in the Puget Sound region in 2011. Containerships made the majority (~42%) of the calls followed by tankers (~17%), bulk carriers (~13%), auto carriers (~8%), cruise vessels (~7%), RoRo (~4%), and general cargo vessels (~3%). Ocean-going tugboats (ITB and ATB only) account for ~5% of the total calls. The reefer vessels account for less than 1% of the vessels. Figure 3.1 presents the percentage of ocean-going vessels for the inbound calls in 2011 in Puget Sound.

General Cargo ITB RoRo 3% Reefer 1% Containership $4\frac{9}{0}$ 5% 42% Cruise **7% Auto Carrier** 8% Bulk 13% Tanker 17%

Figure 3.1: Puget Sound 2011 Distribution of OGV by Inbound Calls

There were a total of 910 discrete vessels that called the Puget Sound study area in 2011. Figure 3.2 presents the distribution of discrete vessels by vessel type.

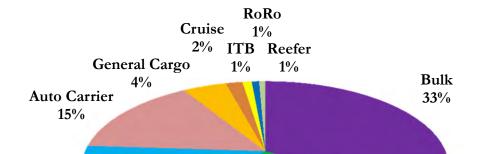
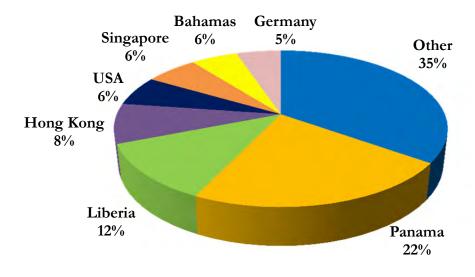


Figure 3.2: Puget Sound 2011 Distribution of Discrete OGV Types

Most OGVs are foreign flagged ships, whereas harbor vessels are almost exclusively domestic. Approximately 94% of the OGVs that visited Puget Sound in 2011 were registered outside the U.S. Although only 6% of the individual OGVs are registered in the U.S., they comprise 27% of all calls. This is most likely because the U.S.-flagged OGVs make shorter, more frequent stops within Puget Sound. Some examples of U.S. vessels that make more than one stop are tankers and ocean-going tugboats.


Figure 3.3 presents the distribution of the ships' registered country or flag by the number of calls. Figure 3.4 presents the distribution of the ships' registered country or flag by discrete vessel. The remaining 35% of "other" ships represents 317 discrete ships from 32 countries. The remaining 24% of "other" vessel calls represents 663 calls from 32 other countries.

Singapore Hong Kong
Bahamas 5% 4% USA
5%
Germany
7%
Liberia
12%

Panama
16%

Figure 3.3: 2011 Distribution of Ships' Flags by Vessel Call

Figure 3.4: 2011 Distribution of Ships' Flags by Discrete Vessel

3.1.1 Auto Carriers

Transportation of imported vehicles is the primary use of the auto carrier, although a few domestic vehicles are exported overseas. Auto carriers are very similar in design to RoRos (discussed below) because they have drivable ramps. Both can have substantial ventilation systems so as to prevent vehicle fuel vapors from pooling in the lower decks, which could present a major risk for explosion or fire. Emissions related to vessel cargo are outside the scope of the study. Auto carriers are typically configured with direct drive propulsion engines and separate auxiliary engines to supply electrical needs. Figure 3.5 presents a typical car carrier.

Figure 3.5: Auto Carrier

3.1.2 Bulk Carriers

Bulk carriers have open holds with giant hatches to carry dry goods that can be loaded from a conveyor belt and chute, such as coal, coke, salt, sugar, cement, gypsum, lime mix, agricultural products, alumina, and other similar fine-grained commodities that can be poured, scooped or augured. Bulk carriers span the range between small "tramp" ships and the Panamax (approximately 50,000+ deadweight tonnes (1,000 kilograms) or DWT) and Capesize (approximately 140,000+ DWT) bulk carriers that can also haul containers as well as general cargo. Bulk carriers are typically configured with direct drive propulsion engines and separate auxiliary engines to supply electrical needs. Figure 3.6 presents a typical bulk carrier.

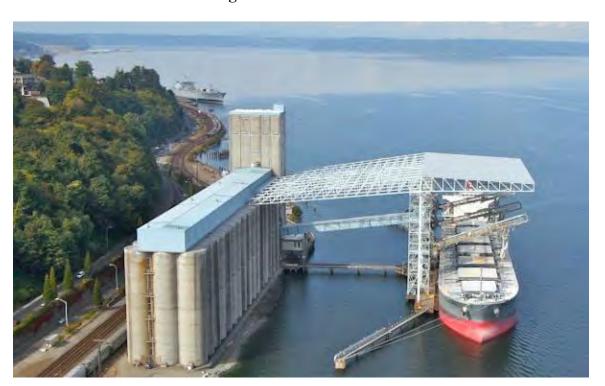


Figure 3.6: Bulk Carrier

3.1.3 Containerships

Ships that carry 20- and 40-foot containers on their decks are known as containerships. These ships are the fastest, largest, and most common OGVs in Puget Sound. These vessels are primarily used by shipping lines to transport retail goods across the Pacific Rim, mostly originating in Asia. Because of their efficiency as a mode of ocean transportation, containership traffic will continue to grow. Cargo types include almost everything that can be made to fit in the 20- or 40-foot containers. The container business operates on tight margins and high volume so OGVs need to be fast and efficient to compete in the market place, thus the trend to newer, larger containerships. The container vessels have been divided into ten subtypes based on their TEU capacity, between 1,000 and 10,000+ TEU. Figure 3.7 presents a typical containership.

Figure 3.7: Containership

3.1.4 Passenger Cruise Vessels

There is a significant passenger cruise service operating from the Port of Seattle. In 2011, shore power was provided for both Holland America Line and Princess Cruises at Terminal 91. Cruise vessels are known not only for their speed but also their heavy auxiliary engine demands, since they often provide heating and electricity for over 1,000 to 3,000 passengers at a time. Cruise vessels vary significantly in overall size, onboard auxiliary power, engine configuration, fuel type and characteristics, and frequency of calls. Typically, newer cruise ships work on a diesel-electric configuration with some using turbines to generate electricity, while older cruise ships use direct drive and auxiliary engines. Figure 3.8 presents a passenger cruise vessel.

Figure 3.8: Cruise Vessels

3.1.5 General Cargo Vessels

Like the bulk carriers, general cargo ships tend to be slower. They can carry diverse cargoes such as steel, palletized goods, turbines, a few containers (usually on the top deck), large excavating machinery, and other heavy loads. Most general cargo ships have electric boom cranes for loading and unloading. General cargo ships are typically configured with direct drive propulsion engines and separate auxiliary engines to supply electrical needs. Figure 3.9 presents a general cargo vessel.

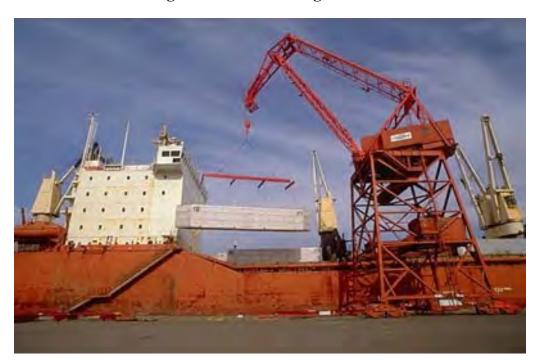


Figure 3.9: General Cargo Vessel

3.1.6 Ocean-Going Tugboats

Ocean-going towboats and tugboats, which are considered harbor vessels, are not included in this section and are discussed in Section 4 of this report. ITB and ATB vessels, however, are included in this section since they are seen as a specialized single vessel. The barge stern is notched to accept a special tug which can be rigidly connected to the barge in the form of a normal ship's hull. The tugboats, like all other ocean-going tugs, are typically configured with two propulsion engines and separate auxiliary engines to supply electrical needs. ITB and ATB may have larger horsepower in their engines than the typical ocean-going tug. Figure 3.10 presents an integrated tug and barge.

Figure 3.10: Integrated Tug and Barge

3.1.7 Refrigerated Vessels

Refrigerated vessels, often called "reefers," are dominated by fruit carriers, which require cooling to prevent cargo spoilage. These are similar to bulk or general cargo carriers, but these ships typically carry fruits, vegetables, meats, and other perishable cargos. Most of the cargo is stored below deck on pallets or transported inside refrigerated containers that are placed on top of the closed cargo hold. Reefers are typically configured with direct drive propulsion engines and separate auxiliary engines to supply electrical needs for the vessel and the refrigeration units. Figure 3.11 presents a typical refrigerated vessel.

Figure 3.11: Refrigerated Vessel

3.1.8 RoRo Vessels

These OGVs are similar to the automobile carrier but can accommodate larger wheeled equipment such as excavators, bulldozers, trucks, and loaders. RoRo ships are typically configured with direct drive propulsion engines and separate auxiliary engines to supply electrical needs. Figure 3.12 presents a typical RoRo vessel.

Figure 3.12: RoRo Vessel

3.1.9 Tanker Vessels

The tanker activity in Puget Sound is comprised mainly of crude oil tankers, as well as a few chemical tankers. Tankers range from approximately 12,000 to over 190,000 DWT. Tankers are typically configured with direct drive propulsion engines, separate auxiliary engines to supply electrical needs, and large boilers that power steam plants to power discharge pumps. The tankers have been divided into subcategories of tanker by size. All tankers calling the Puget Sound fall into one of the following size categories depending on their DWT:

- ➤ Handysize-up to 50,000 DWT
- Panamax 50,000 to 80,000 DWT
- Aframax 80,000 to 120,000 DWT
- Suezmax 120,000 to 200,000 DWT

Figure 3.13: Tanker

3.2 Geographical Delineation

The geographical area for ocean-going vessels for the 2011 emissions inventory includes a portion the Georgia Basin/Puget Sound International Airshed as presented in Figure 3.14.

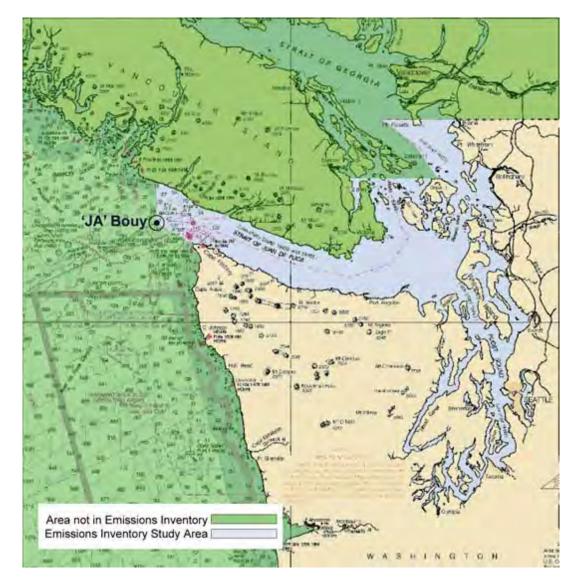
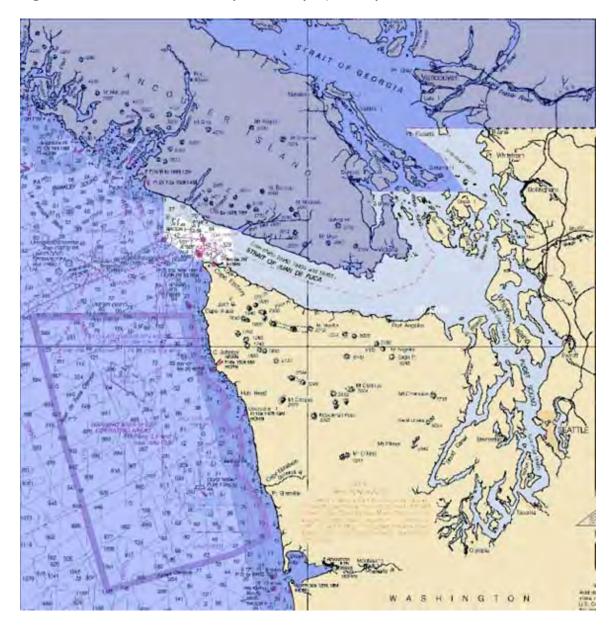


Figure 3.14: 2011 OGV Inventory Boundary

This area includes the twelve counties and six ports described in Section 1.2.4. Other maritime facilities within the geographical boundary are included in this inventory. These facilities include privately-owned facilities, anchorages, ferry terminals and smaller ports in the study area. There are also oil and chemical facilities in the study area located in Cherry Point, Ferndale, March Point, Point Wells, Sandy Point, and Vendovi Island.

Data from the MarEx (see Section 3.3.2) and the Vessel Traffic System (VTS) was used to determine the shipping routes for the purposes of this study within the inventory's geographical area. During the 2005 inventory, the British Columbia Chamber of Shipping (BCCOS) conducted an emissions inventory associated with OGVs calling at Canadian ports in the Georgia Basin/Puget Sound International Airshed. The inventory was coordinated with Environment Canada and the Vancouver-Fraser Port Authority (now known as Port Metro Vancouver), and others, as well as the Forum to assure quality and consistency and avoid duplication and omissions between the two inventories. Using the MarEx data, it was determined that there were five general types of common routing. In an effort to reduce double counting or omissions of ship activity and emissions, an agreement was reached on which inventory would account for which emissions and where those emissions would be counted. The same agreed approach was used for 2011 and is detailed below.


Inbound and outbound vessels travel on specific VTS travel lanes. Since the U.S./Canadian border generally lies between the inbound and outbound vessel travel lanes (i.e., inbound lane lies on the U.S. side of the border, while the outbound lane lies on the Canadian border in Strait of San Juan de Fuca), the agreement included discussion on inbound and outbound transit emissions. Figure 3.15 presents the U.S./Canadian border in the Strait of San Juan de Fuca and the domain captured by U.S. maritime-related activities.

The agreements reached for the five general types of trans-boundary routing included are:

- 1) All inbound ship transits from sea buoy (JA Buoy) to the arrival point be assigned with U.S. or Canadian transit leg for the whole transit based on the arrival point. For example, a vessel that transits from sea to a U.S. marine facility will be assigned as a U.S. transit regardless of which side of the international boundary the ship transits.
- 2) All outbound ship transits from the last departure point to the sea buoy (JA Buoy) will be assigned with U.S. or Canadian transit legs for the whole transit based on the departure point. For example, a vessel that leaves a U.S. maritime facility and transits out to sea will be assigned a U.S. transit regardless of which side of the international boundary the ships transits.

Figure 3.15: 2011 OGV Inventory Boundary – JA Buoy to/from U.S. Marine Facilities

3) All ship transits between Victoria, Canada and a U.S. port will be split between both inventories in the following ways as shown in Figure 3.16:

Victoria -> U.S. Marine Facility

- a) The BCCO inventory will estimate emissions from Victoria Harbor to the international boundary in the Strait of Juan de Fuca (en-route to Port Angeles to pick up a U.S. Pilot).
- b) The Puget Sound Maritime Air Emissions Inventory will estimate emissions from the international boundary to the pickup of U.S. Pilots (north of Port Angeles) and to the arrival point.

U.S. Port -> Victoria

- a) The Puget Sound Maritime Air Emissions Inventory will estimate emissions from the departure point to Port Angeles (to drop off Pilots) and north to the international boundary (heading to Victoria).
- b) The BCCO inventory will estimate emissions on the Canadian side international boundary to Victoria Harbor.

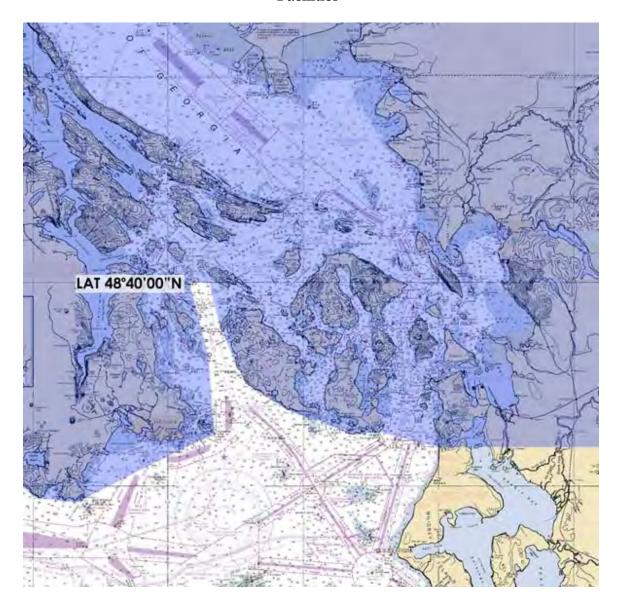
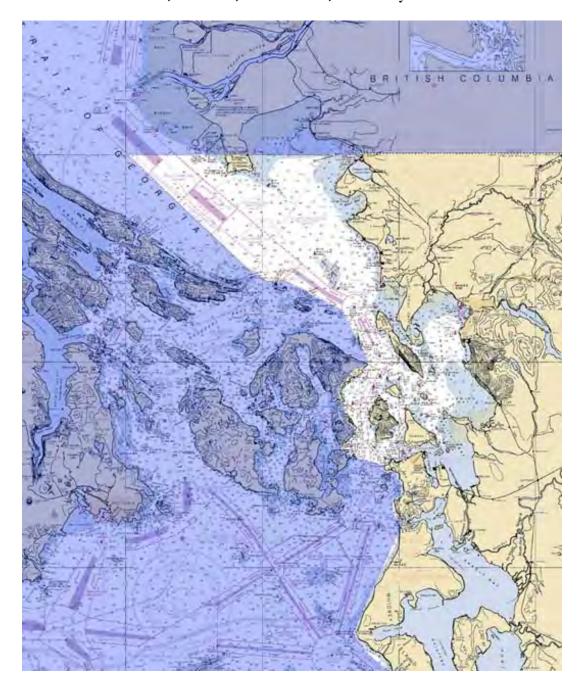


Figure 3.16: 2011 OGV Inventory Boundary - Victoria to/from U.S. Marine Facilities

4) All non-tanker ships transiting between a Canadian marine facility (other than Victoria) and a U.S. marine facility), in either direction, will be divided at latitude 48° 40' 00" north in the Haro Strait. All emissions north of this line will be included in the BCCO inventory and all emissions south of this line will be included in the Puget Sound Maritime Air Emissions Inventory, as shown in Figure 3.17.


Figure 3.17: 2011 OGV Inventory Boundary – Vancouver to/from U.S. Marine Facilities

5) All tanker ships calling to or from Anacortes, Cherry Point, Ferndale, and March Point, to Vancouver, British Columbia will be divided at latitude 48° 55' 08" in the shipping lanes located in the Strait of Georgia. All emissions south of this line will be included in the Puget Sound Maritime Air Emissions Inventory and all emissions north of this line will be included in the BCCO inventory, as shown in Figure 3.18.

Figure 3.18: 2011 OGV Inventory Boundary – Vancouver to/from Anacortes, Cherry Point, Ferndale, March Point, and Sandy Point

For 2011, the Port of Tacoma and Port of Seattle increased the resolution from the previous report to get a better understanding of port-related emissions by allocating them into three geographical zones, compared to one zone in 2005. For comparison purposes the 2011 and 2005 emissions were allocated into the following three geographical zones for their port-specific emissions and comparisons:

- Port emissions within port terminals and adjacent waterways
- ➤ Air district emissions within the PSCAA boundaries (Pierce, King, Kitsap, and Snohomish Counties)
- ➤ Airshed emission within the inventory domain

The other participating ports, their port specific emissions and comparisons are consistent with the 2005 approach.

3.3 Data and Information Acquisition

In the development of the 2005 inventory, there was an extensive data collection effort undertaken relating to OGVs. The routing system was developed, ship operational profiles developed, and other information relating to ship parameters and operations were collected. The 2011 update inventory utilizes the 2005 information as a foundation with updates relating to 2011 operations. There were several sources used to compile the data necessary to define activities and operational profiles which are then used to estimate emissions. These sources included:

- > 2005 Puget Sound Maritime Air Emissions Inventory
- ➤ MarEx
- ➤ Lloyd's Register of Ships
- Puget Sound Pilots
- > Vessel operational data

Each data source is detailed in the following subsections.

3.3.1 2005 Puget Sound Maritime Air Emissions Inventory

The 2011 update builds on the foundation established for the 2005 inventory. The following elements were incorporated and updated:

- Puget Sound system vessel routing and speeds by category (fast, medium, slow)
- Vessel operational profiles
- > Spatial allocation of emissions by county and clean air agency
- > Berth specific operational profiles
- ➤ Port maneuvering profiles
- Reduced speed zones, where applicable

The 2005 data was updated with data from the Marine Exchange, Puget Sound Pilots, vessel operators/owners, and other operational data sources.

3.3.2 Marine Exchange of Puget Sound (MarEx)

The MarEx is a non-profit organization established in 1981 to provide comprehensive communication services for the maritime industry. MarEx maintains a complete database that captures information on every vessel arriving in Puget Sound. It is a founding member of the Maritime Information Service of North America, which is the national organization of the marine exchanges.

MarEx provided 2011 activity data that included: vessel IMO numbers, arrival, shift, and departure dates and times, route information, and berth information. Starcrest took this information and developed unique voyage numbers linking data points into inbound, shift, and outbound activities. Starcrest associated the proper routing and associated port with each activity. From the berth/anchorage arrival and departure records, hotelling times at berths and anchorages were established. This information was then used to estimate all vessel related emissions during transit, maneuvering, and hotelling operational modes.

3.3.3 Lloyd's Register of Ships

The information source commonly known as Lloyd's Register of Ships¹⁰ (Lloyd's) is considered to be the leading resource for obtaining ship characteristics such as tonnage, vessel speed, propulsion engine power, propulsion configuration, age, and other parameters. The company is known as a classification society for the purpose of insuring many of the vessels on an international basis. The data are quite complete for vessels classified by Lloyd's; however; for other ships using a different insurance certification authority, the data are less complete and/or accurate. Lloyd's was used for obtaining information such as main engine power and vessel speed ratings because it is the best available source of such information. Lloyd's data sets for auxiliary engines and boilers are mostly incomplete and other data were used to enhance these source categories. The company IHS has the rights to Lloyd's ship data and sells data containing information on commercial marine vessels, which includes ocean-going vessels.

¹⁰ Lloyd's, *Lloyd's Register of Ships*, January 2012.

3.3.4 Puget Sound Pilots

The Puget Sound Pilots (PSP) provided information on operational changes associated with ship movements since 2005. During the 2005 inventory process, the PSP provided detailed route speed information for various types of ships and details on wake reduction areas. The PSP was engaged to identify any operational changes in the Puget Sound system from 2005 to 2011. The PSP stated that operations were fairly consistent, with some local changes associated with 2011 compared to 2005 which include:

- ➤ Inbound large container ships were typically slower just north of Point No Point to Elliott Bay to reduce impact of wake waves. The routing from 2005 was checked for the affected segments and the change in speed was within 1 to 2 knots. This change was not implemented due to the near alignment of the 2005 data.
- Cruise ship departures were typically slower from Elliott bay to Edmonds due to high numbers of recreational vessels during the summer months in the Puget Sound. This change was not included in the inventory which means that some of the cruise ship emissions along this reach are overestimated. Starcrest does not believe that this overestimate is significant compared to all cruise ship emissions.
- Inbound speeds from the ocean to Port Angeles were typically slightly slower due to slow steaming by the shipping lines trying to save on fuel prices. The percentage of vessels slowing down during this portion of the reach was not known and the MarEx data typically started at Port Angeles. To remain conservative, the speeds were not adjusted in 2011 and therefore most likely providing an overestimate of ship transit emissions in this reach. Starcrest believes that the magnitude of the overestimate will depend on the number of vessels slowing down and by how much.

3.3.5 Vessel Operational Data

Vessel operational data focuses on the operational profiles relating to main engines, auxiliary engines, and auxiliary boilers. A number of sources were used to update these parameters.

The Port of Tacoma and the Port of Seattle provided information relating to 2011 shore power events and fuel switching at-berth relating to their emissions reduction efforts under their CAS.

Main engine operational profiles developed in 2005 were reviewed and used for main engine operation. The most significant of these profiles is at the Ports of Seattle and Tacoma where various narrow channels and restricted waterways require tugs to move the ships without main engine assist. These profiles were used in 2011 as they are still valid.

Auxiliary engine data by operational mode is typically the most difficult data to source as it is not published by traditional data providers. Starcrest has been conducting Vessel Boarding Programs (VBPs) in various ports for the past 13 years including Puget Sound ports, Port of Los Angeles, Port of Long Beach, Port of Houston Authority, and Port Authority of New York & New Jersey. The data collected since the 2005 report data has been significant. During the 2011, limited funding was available to update vessel specific information. The most robust datasets published, which also share several common vessels, are the data presented in the Port of Long Beach (POLB) and Port of Los Angeles (POLA) inventories.

For the 2011 PSEI, the 2010 published data for both POLB and POLA was averaged and used. In addition, specific data collected from Holland America Lines, Maersk, TOTE, Evergreen, K-Line, and CMA-CGM was used.

Based on various vessel boardings conducted by Starcrest since the 2005 inventory, it has been identified that the auxiliary boilers on most ships are not used when main engine loads are at or above 20%. This is due to waste heat recovery systems on ships that take the hot engine exhaust from the main engine and use it to heat water. The resulting rule for auxiliary boilers for most ships is if the main engine load is above 20% then the boilers are considered off. Therefore, most boiler emissions occur during maneuvering and at-berth/at-anchorage modes. This change has been implemented for the 2011 update.

Further information on operational profiles is provided in Section 3.4.

3.4 Operational Profiles

The operational profiles for OGVs are based on vessel activity and routing, as discussed below.

3.4.1 Vessel Activity

Vessel activity is defined as the number of ship trips by trip type and segment. Trip types include arrivals, departures, and shifts. Shifts are vessel movements from one berth within the Puget Sound area to another. The MarEx data was processed to identify arrivals, departures and shifts in a logical sequence. Arrivals were assumed to come from the "last port of call" or from the sea. For departures, vessels were assumed to depart from the designated port and pier and travel to the "next port of call" or travel out to sea. Shifts which involved trips internal to the area of study were processed as being from the last arrival to the next departure. One result of the data processing was the creation of three variables: trip origin, trip destination, and elapsed time (for hotelling estimates).

There are a variety of definitions for "ship call" or "vessel call". For the purpose of this report, the basic definition of a ship call is an arrival from the sea, Canada or another port to a berth or anchorage. Inbound calls to anchorages associated with maritime facilities are also included, and thus the number of calls described in this report may not completely match the port statistics on ship calls for 2011. The arrivals, as determined by this study, approximate the true number of ship calls, but underestimates the number of terminal calls typically reported for port statistics, which include shifts or movements within a port facility. This study separates shifts from arrivals and departures since shifts do not have a "transit" component as do arrivals and departures. Ship movements are tracked as to:

- Arrivals (vessels arriving from the sea or from another facility to a terminal).
- Departures (vessels leaving a terminal to go out to sea or to another facility).
- ➤ Shift (vessels that move within the Puget Sound to another terminal, berth, anchorage, or from one port to another port within the airshed domain).
- Total movements (sum of all the above).

While many vessels make only one arrival and departure at a time, some vessels make multiple terminal calls within a port or maritime facility. There are two broad categories of shifts:

- ➤ Inter-port shifts movements within a port from one terminal or berth to another.
- Anchorage shifts movements between a terminal and anchorage. One example is: a vessel went to a terminal, loaded a partial load, went to anchorage, and then came back to the terminal to complete loading.
- ➤ Intra-port shifts shifts from one port to another port in the airshed domain.

Table 3.1 presents the arrivals, departures, shifts and total movements for the Puget Sound study area in 2011 by vessel type. Due to the complexity of the study area, the number of inbound and outbound trips does not match. For example, in Table 3.1, the total inbound trips are less than the total outbound trips. This is because vessels that shifted from another dock, anchorage or terminal within the port(s) or maritime facilities are counted as shifts instead of arrivals from the sea or another port or maritime facility.

Table 3.1: 2011 OGV Movements by Vessel Type

Vessel Type	Inbound	Outbound	Shift	Movements
Auto Carrier	210	213	18	441
Bulk	341	342	293	976
Bulk - Heavy Load	3	2	6	11
Bulk - Self Discharging	16	17	14	47
Bulk - Wood Chips	1	1	0	2
Container - 1000	223	223	17	463
Container - 2000	142	142	26	310
Container - 3000	45	45	1	91
Container - 4000	141	141	6	288
Container - 5000	243	243	9	495
Container - 6000	115	115	51	281
Container - 7000	87	86	1	174
Container - 8000	137	136	8	281
Container - 9000	2	2	0	4
Container - 10000	1	1	0	2
Cruise	196	196	0	392
General Cargo	94	95	56	245
ITB	127	126	216	469
Reefer	6	6	7	19
RoRo	112	110	2	224
Tanker - Aframax	56	54	129	239
Tanker - Chemical	169	169	144	482
Tanker - Handysize	38	39	47	124
Tanker - Panamax	22	22	32	76
Tanker - Suezmax	179	174	340	693
Total	2,706	2,700	1,423	6,829

Figure 3.19 presents the distribution of 2011 inbound calls by facility type, with 73% of the inbound calls were to the six main public ports in the area. Other maritime facilities, such as privately-owned terminals and anchorages throughout the study area had 13% of the inbound calls in 2011. Petroleum terminals and their associated anchorages had 14% of the inbound calls in 2011.

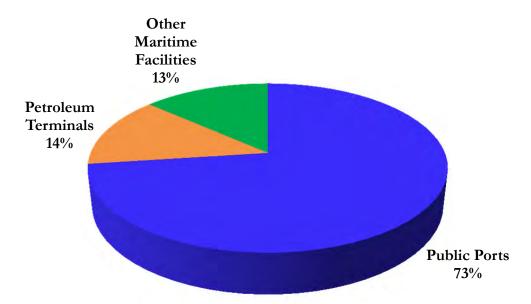


Figure 3.19: 2011 OGV Inbound Calls by Facility Type

Figure 3.20 presents the distribution of shift vs inbound calls by vessel type. Tankers, ocean tugboats, bulk vessels and miscellaneous vessels have a higher percentage of shifts than other vessel types. Tankers tend to use more anchorages and therefore shift from anchorage to oil and chemical terminals instead of coming straight from the sea to the terminal. Bulk vessels make more than one stop at terminals within a port to load and unload their cargo.

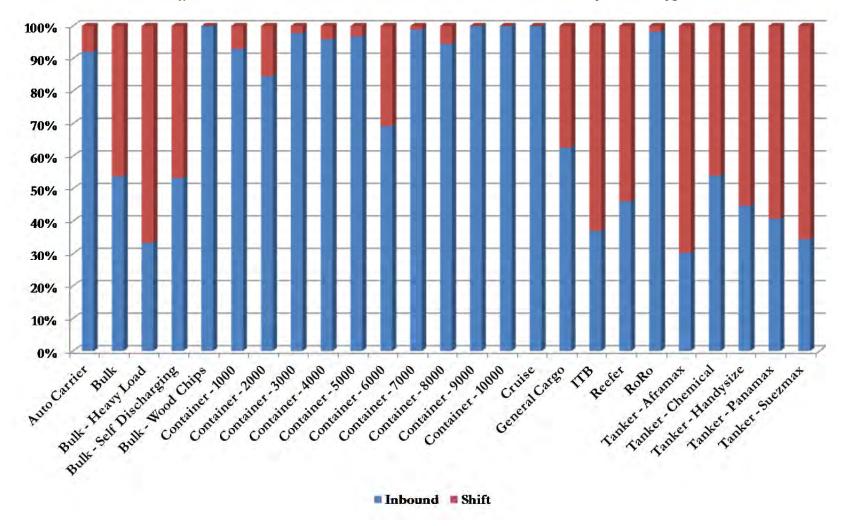


Figure 3.20: 2011 Distribution of OGV Shifts vs Inbound Calls by Vessel Type

Starcrest Consulting Group, LLC 92 September 2012

3.4.2 Vessel Routing

Vessel routing is the underlying geographic element on which the emissions estimates are based. Using the 2011 MarEx of Puget Sound data, distinct trip routes were derived. There were a total of 156 distinct ship routes in the MarEx data. As shown in Table 3.2, 148 distinct ship routes were within the study area and scope.

The term "port" in the following tables refers to any stop made by a vessel and does not necessarily refer to a public port. In Table 3.2, routes that have the same "from port" and "to port" (i.e., Everett to Everett) are included for shifts within the port. Vessels may make a movement or shift within the port from one terminal to another or from an anchorage to a terminal.

Due to the routing complexity of the region and the multiple movements, including arrivals, departures and shifts, some routes may have reciprocal routes included in Table 3.2 (i.e., Tacoma to Seattle and Seattle to Tacoma), while others may not. For example, Anacortes to Seattle is listed, but there is no reciprocal Seattle to Anacortes route listed. This indicates that in 2011, vessels may have traveled from Anacortes to Seattle, but there were no movements from Seattle to Anacortes. The distinct routes are from the 2011 MarEx data and depict the movements made that year.

Table 3.2: OGV Vessel Routes Used in Puget Sound Maritime Air Emissions Inventory

From Port	To Port	From Port	To Port	From Port	To Port		
ANACORTES	CHERRY POINT	OLYMPIA	OUT SEA	TACOMA	CHERRY POINT		
ANACORTES	FERNDALE	OLYMPIA	SEATTLE	TACOMA	MARCH POINT		
ANACORTES	MARCH POINT	OUT SEA	ANACORTES	TACOMA	OLYMPIA		
ANACORTES	OUT SEA	OUT SEA	BELLINGHAM	TACOMA	OUT SEA		
ANACORTES	PORT ANGELE	OUT SEA	BREMERTON	TACOMA	PORT ANGELES		
ANACORTES	SEATTLE	OUT SEA	CHERRY POINT	TACOMA	QUARTERMASTER HBR		
ANACORTES	VENDOVI ISLA		EVERETT	TACOMA	SEATTLE		
BELLINGHAM	BELLINGHAM	OUT SEA	FERNDALE	TACOMA	TACOMA		
BELLINGHAM	CHERRY POINT		INDIAN ISLAND	TACOMA	VANCOUVER BC		
BELLINGHAM	MARCH POINT		MANCHESTER	TACOMA	VENDOVI ISLAND		
BELLINGHAM	OUT SEA	OUT SEA	MARCH POINT	VANCOUVER BC	ANACORTES		
BELLINGHAM	PORT ANGELE		OLYMPIA	VANCOUVER BC	BELLINGHAM		
BELLINGHAM	SEATTLE	OUT SEA	POINT WELLS	VANCOUVER BC	CHERRY POINT		
BREMERTON	TACOMA	OUT SEA	PORT ANGELES	VANCOUVER BC	EVERETT		
CHERRY POINT	BELLINGHAM	OUT SEA	PORT TOWNSEND	VANCOUVER BC	INDIAN ISLAND		
CHERRY POINT	FERNDALE	OUT SEA	QUARTERMASTER I		MARCH POINT		
CHERRY POINT	MANCHESTER		SANDY POINT	VANCOUVER BC	PORT ANGELES		
CHERRY POINT	MARCH POINT		SEATTLE	VANCOUVER BC	QUARTERMASTER HBR		
CHERRY POINT	OUT SEA	OUT SEA	TACOMA	VANCOUVER BC	SANDY POINT		
CHERRY POINT	PORT ANGELE		VENDOVI ISLAND	VANCOUVER BC	SEATTLE		
CHERRY POINT	SEATTLE	OUT SEA	YUKON HARBOR	VANCOUVER BC	TACOMA		
CHERRY POINT	TACOMA	POINT WELLS	MARCH POINT	VANCOUVER BC	VENDOVI ISLAND		
CHERRY POINT	VANCOUVER B		OUT SEA	VENDOVI ISLAND	ANACORTES		
CHERRY POINT	VENDOVI ISLA		PORT ANGELES	VENDOVI ISLAND	BELLINGHAM		
EVERETT	EVERETT OUT SEA	PORT ANGELES	ANACORTES BELLINGHAM	VENDOVI ISLAND VENDOVI ISLAND	CHERRY POINT		
EVERETT		PORT ANGELES			FERNDALE MARCH POINT		
EVERETT EVERETT	SEATTLE	PORT ANGELES PORT ANGELES	CHERRY POINT EVERETT	VENDOVI ISLAND VENDOVI ISLAND	OUT SEA		
EVERETT		PORT ANGELES PORT ANGELES	FERNDALE	VENDOVI ISLAND VENDOVI ISLAND	SEATTLE		
FERNDALE		PORT ANGELES	INDIAN ISLAND	VENDOVI ISLAND VENDOVI ISLAND	TACOMA		
FERNDALE		PORT ANGELES	MARCH POINT	VENDOVI ISLAND	VANCOUVER BC		
FERNDALE	OUT SEA	PORT ANGELES	OUT SEA	VICTORIA	PORT ANGELES		
FERNDALE		PORT ANGELES	POINT WELLS	VICTORIA	SEATTLE		
FERNDALE	SANDY POINT	PORT ANGELES	PORT ANGELES	YUKON HARBOR	OUT SEA		
FERNDALE	TACOMA	PORT ANGELES	SANDY POINT	Tononinambon	0010221		
FERNDALE		PORT ANGELES	SEATTLE				
FERNDALE		PORT ANGELES	TACOMA				
INDIAN ISLAND		PORT ANGELES	VANCOUVER BC				
INDIAN ISLAND	OUT SEA	PORT ANGELES	VENDOVI ISLAND				
MANCHESTER		PORT TOWNSEND	SEATTLE				
MANCHESTER		QUARTERMASTER HE					
MANCHESTER	OUT SEA	QUARTERMASTER HE	SFTACOMA				
MANCHESTER	PORT ANGELE	SANDY POINT	CHERRY POINT				
MANCHESTER	SEATTLE	SANDY POINT	FERNDALE				
MARCH POINT	ANACORTES	SEATTLE	CHERRY POINT				
MARCH POINT	CHERRY POINT	SEATTLE	EVERETT				
MARCH POINT	FERNDALE	SEATTLE	FERNDALE				
MARCH POINT	MARCH POINT	SEATTLE	MANCHESTER				
MARCH POINT	OUT SEA	SEATTLE	MARCH POINT				
MARCH POINT	POINT WELLS	SEATTLE	OLYMPIA				
MARCH POINT	PORT ANGELE		OUT SEA				
MARCH POINT	QUARTERMAST	SEATTLE	PORT ANGELES				
MARCH POINT	SEATTLE	SEATTLE	SEATTLE				
MARCH POINT	TACOMA	SEATTLE	TACOMA				
MARCH POINT	VANCOUVER B		VANCOUVER BC				
MARCH POINT	VENDOVI ISLA		VENDOVI ISLAND				
MARCH POINT	VICTORIA	SEATTLE	VICTORIA				

As shown in Table 3.3 eight distinct routes were outside the scope of the inventory.

Table 3.3: OGV Routes Not Included in Puget Sound Maritime Air Emissions Inventory

Port	Destination
ABERDEEN	ABERDEEN
ABERDEEN	OUT TO SEA
ABERDEEN	VANCOUVER BC
OUT TO SEA	ABERDEEN
OUT TO SEA	WESTPORT
VANCOUVER BC	ABERDEEN
VANCOUVER BC	WESTPORT
WESTPORT	ABERDEEN

In 2005, the trip combinations were applied to specific routes using nautical chart software Maptech Offshore Navigator, v5.07. Each unique trip, inbound or outbound, was mapped and then divided into logical trip segments. These segments were aligned by precautionary zones, places where ships could take different routes, speed reduction zones, curves or bends in the fairway, major channel markers, and county lines. Any updates to the routing for 2011 were done using ArcGIS, v9.3.1. The route coordinates and segments from 2005 were plotted in ArcGIS and updates were made to accommodate new facilities or adjust route speeds. For an added level of assurance, the routing segments were reviewed with the Puget Sound Pilots and modified based on their input. As an example of trip segmentation, the Port of Everett to out to sea route is discussed in more detail. In this effort, there was one trip route and 21 trip segments or links using the partitioning techniques described earlier. For the Port of Everett to the out to sea route:

- The shortest segment was 0.8 nautical miles (miles)
- The longest segment was 34.1 miles (the Strait of San Juan de Fuca)
- The average segment was 5.7 miles

Each port-to-port combination was modeled differently, depending also on whether it was inbound or outbound. Service speeds (knots) for each vessel were taken from Lloyd's data. Reduced speeds were assigned for each vessel type, depending on whether they were:

- Fast containerships, auto carriers, and cruise ships
- ➤ Medium reefers and RoRos
- ➤ Slow tankers and all other vessel types

¹¹ Meeting between Captain Frantz (Andy) Coe, Puget Sound Pilots, and Bruce Anderson and Rose Muller, Starcrest, 10April 2012. Puget Sound Pilots, http://www.pspilots.org.

Although there is no industry standard that assigns ranges for speed category, in general, fast vessels are considered to have a maximum speed range of 20 to 25 knots, while slow vessels have a maximum speed range of 17 knots or less, and the medium speed vessels fall between the speed ranges of 17 to 20 knots.

For the maneuvering, a list of destinations for each port area was derived from the 2011 MarEx data. Some of the destinations listed in the following tables may not be property of the ports listed. These include port-owned berths, private facilities, and anchorages that are located near that port. Tables 3.4 through 3.11 list the destinations by port area, as provided by MarEx:

Table 3.4: 2011 OGV Anacortes Destinations

Port	Destination
ANACORTES	CURTIS WHARF
ANACORTES	PORT DOCK 1
ANACORTES	PORT DOCK 2

Table 3.5: 2011 OGV Everett Destinations

Port	Destination
EVERETT	1-NORTH
EVERETT	1-SOUTH
EVERETT	3-NORTH
EVERETT	3-SOUTH
EVERETT	ANCHOR
EVERETT	DOLPHIN BERTH
EVERETT	HEWITT
EVERETT	PACIFIC TERM
EVERETT	SOUTH TERMINAL

Table 3.6: 2011 OGV Olympia Destinations

Port	Destination
OLYMPIA	PORT DOCK 2
OLYMPIA	PORT DOCK 3

Table 3.7: 2011 OGV Port Angeles Destinations

Port	Destination
PORT ANGELES	1-NORTH
PORT ANGELES	ANCHOR
PORT ANGELES	T PIER

Table 3.8: 2011 OGV Tacoma Destinations

Port	Destination	Port	Destination
TACOMA	3	TACOMA	PCT-A
TACOMA	3-SOUTH	TACOMA	PCT-A&B
TACOMA	4	TACOMA	РСТ-В
TACOMA	4-A	TACOMA	TEMCO
TACOMA	4-A&B	TACOMA	TOTE
TACOMA	7-A	TACOMA	WA UNITED 1
TACOMA	7-B	TACOMA	WA UNITED 2
TACOMA	7-D	TACOMA	WEYCO Log 1
TACOMA	ANCHOR	TACOMA	WEYCO Log 2
TACOMA	BLAIR-A	TACOMA - PRIVATE	PNW TERMINAL
TACOMA	BLAIR-A&B	TACOMA - PRIVATE	SCHNITZER
TACOMA	BLAIR-B	TACOMA - PRIVATE	SOUND OIL
TACOMA	BLAIR-E	TACOMA - PRIVATE	SPERRY
TACOMA	BLAIR-EAST	TACOMA - PRIVATE	US OIL
TACOMA	MAERSK	TACOMA - PRIVATE	VIGOR MARINE

For the Seattle area, there are four anchorages (EBE, EBW, SCE, and SCW) not listed in the Table 3.9, but are included in this study.

Table 3.9: 2011 OGV Seattle Destinations

Port	Destination	Port	Destination
SEATTLE	105	SEATTLE	86
SEATTLE	15	SEATTLE	90-1
SEATTLE	18-1	SEATTLE	90-7
SEATTLE	18-2	SEATTLE	90-I
SEATTLE	18-3	SEATTLE	91-E
SEATTLE	18-4	SEATTLE	91-I
SEATTLE	20-1	SEATTLE - PRIVATE	17
SEATTLE	25-NORTH	SEATTLE - PRIVATE	BP
SEATTLE	30-NORTH	SEATTLE - PRIVATE	CTG
SEATTLE	30-SOUTH	SEATTLE - PRIVATE	GLACIER
SEATTLE	46	SEATTLE - PRIVATE	KINDER MORGAN
SEATTLE	5-CENTER	SEATTLE - PRIVATE	LAFARGE
SEATTLE	5-NORTH	SEATTLE - PRIVATE	SHELL
SEATTLE	5-SOUTH	SEATTLE - PRIVATE	VIGOR-H
SEATTLE	66-2		

Table 3.10 lists "other ports" destinations. The term "other ports" refers to any stop made by a vessel not included in the main port areas and does not necessarily refer to a public port. Some of these "ports" may not be typical vessel stops, (e.g., Blake Island) but were listed in the MarEx and therefore included in the routing for completeness.

Table 3.10: 2011 OGV Other Ports Destinations

Port	Destination
BELLINGHAM	ANCHOR
BELLINGHAM	COLD STORAGE
BELLINGHAM	PORT DOCK 1
BELLINGHAM	PORT DOCK 2
BREMERTON	PSNS
CHERRY POINT	BP
CHERRY POINT	PORT DOCK 2
FERNDALE	INTALCO
FERNDALE	PHILLIPS
FERNDALE	SHELL
INDIAN ISLAND	AMMO
MANCHESTER	FUEL
MARCH POINT	ANCHOR
MARCH POINT	SHELL
MARCH POINT	TESORO
POINT WELLS	ANCHOR
POINT WELLS	PARAMOUNT
PORT TOWNSEND	ANCHOR
QUARTERMASTER HBR	ANCHOR
SANDY POINT	ANCHOR
SEA	NA
VENDOVI ISLAND	ANCHOR
VENDOVI ISLAND	PORT DOCK 2
VENDOVI ISLAND	WEST HYLEBOS 2
YUKON HARBOR	ANCHOR

The Foss Shipyard, Lake Union, Salmon Bay and Northlake piers listed in Table 3.11 are located in Lake Washington which is outside the scope of this study and were not included in the inventory. There were only a few trips made to these piers.

Table 3.11: 2011 Excluded Piers in Lake Washington

Port	Pier
LWSC	FOSS SHIPYAR
LWSC	LAKE UNION
LWSC	NORTHLAKE
LWSC	SALMON BAY

3.5 Emission Reduction Technologies Identified

In 2011, slide fuel valves were used by 330 known vessels that called in the Puget Sound. Slide fuel valves lead to better combustion, less smoke, and lower fuel consumption, resulting in reduced overall NO_x and PM emissions. Propulsion engines manufactured by MAN B&W that have a build year of 2004 or greater are considered to have slide valves. Since the use of slide valves is not called out specifically in the information available for each vessel, the inventory may not have captured all the vessels with slide valves that called at Puget Sound maritime facilities in 2011. The emission reduction estimates for the slide valves have been reported by MAN B&W as based on their diesel engine¹² emission measurements. The reductions are:

- > 30% reduction for NO_x
- ≥ 25% reduction for PM

At the Port of Seattle, Holland America Line, Carnival and Princess Line cruise vessels used shore power during the 2011 cruise season at Terminal 91. At the Port of Tacoma, all vessels operated by Totem Ocean Trailer Express which called at TOTE terminal also used shore power in 2011. These vessels had zero emissions while using shore power at berth. For all vessels that used shore power, a minimum of 1.5 hours was used for hotelling time to allow time for vessels to plug in.

Holland America Line and Westwood Shipping vessels have maintained their 'Clean Class' or 'Environmental Notation' designations from 2005, allowing for lower NO_x emission factors to be applied on specific vessels (See Section 3.6.4 and Table 3.14).

¹²Port of Los Angeles, http://www.portoflosangeles.org/pdf/2010_Air_Emissions_Inventory.pdf.

The Port of Seattle and the Port of Tacoma both had vessel calls which utilized lower sulfur marine gas oil/marine diesel oil while at berth. Many shipping and cruise lines visiting the Port of Seattle participated in the At-Berth Clean (ABC) Fuels program. In 2011, there were 375 vessel calls that used low-sulfur fuel while at berth under the ABC Fuels program. See section 3.6.10 for a full listing of participating lines. At the Port of Tacoma, any vessels operated by Evergreen, as well as all K-line container vessels, switched to low-sulfur fuel while at berth. The use of low-sulfur fuel allows for SO₂ and PM emissions reductions.

3.6 Emissions Estimating Methodology

In developing an activity-based emissions inventory for marine vessels, emissions are estimated as a function of vessel power demand (expressed in kW-hrs) multiplied by an emission factor, where the emission factor is expressed in terms of grams per kilowatt-hour (g/kW-hr). Emission factors and emission factor adjustments for low propulsion engine load were then applied to the various activity data.

Equation 3.1

$$E = Energy \times EF \times FCF$$

Where:

E = emissions from the engine(s) that are included in the "Energy" term discussed below, usually calculated as grams of emissions per unit of time (e.g., per year), but converted to tons of emissions by dividing by 453.6 grams per pound and 2,000 pounds per ton.

Energy = energy demand, in kW-hrs, calculated using Equation 3.2 below as the energy output of the engine (or engines) over the period of time covered by the estimate.

EF = emission factor, usually expressed in terms of g/kW-hr, discussed in more detail in Section 3.6.4.

FCF = fuel correction factor (unitless), used to account for other fuels used and fuel switching, discussed in Section 3.6.10.

The 'Energy' term of the equation is where most of the location-specific information is used. Energy is calculated using Equation 3.2:

Equation 3.2

$$Energy = MCR \times LF \times A$$

Where:

MCR = maximum continuous rated engine power, kW LF = load factor (unitless)

A = activity, hours

The emissions estimation section discusses the methodology used for propulsion engines (Sections 3.6.1 to 3.6.6), auxiliary engines (Sections 3.6.7 and 3.6.8) and auxiliary boilers (Section 3.6.9). Propulsion engines are also referred to as main engines.

Incinerators are not included in the emissions estimates because incinerators are not used within the study area. Interviews with the vessel operators and marine industry, in general, report that vessels do not use their incinerators while at berth or near coastal waters. The PSCAA requires a permit to operate an incinerator on an ocean-going vessel within their jurisdiction and no permits have been issued to date.

3.6.1 Propulsion Engine Maximum Continuous Rated Power

MCR power is defined as the manufacturer's tested engine power; for this study, it is assumed that the Lloyd's 'Power' value is the MCR power. The international specification is to report MCR in kilowatts, and it is related to the highest power available from a ship engine during average cargo and sea conditions. However, operating a vessel at 100% of its MCR power is very costly from a fuel consumption and engine maintenance perspective, so most operators limit their maximum power to about 80% of MCR.

3.6.2 Propulsion Engine Load Factor

Load factor is expressed as the ratio of a vessel's power output at a given speed to the vessel's MCR power. At maximum power (100% MCR) and maximum speed, the load is 100%. Service speed is 94% of the maximum speed.¹³ As suggested above, at normal service speed, a ship probably has a load factor of close to 80%. Every vessel has a different maximum, service, and intermediate speeds (the range is 2% to 83% load on the engine). For the purpose of computation, actual speeds from Lloyd's data are used. For intermediate speeds (2% - 83% load), the Propeller Law¹⁴ is used to estimate ship propulsion engine loads, based on the theory that propulsion power varies by the cube of speed.

Equation 3.3

$$LF = (Speed_{Actual} / Speed_{Maximum})^3$$

Where:

LF = load factor, percent Speed_{Actual} = actual speed, knots Speed_{Maximum} = maximum speed, knots

-

¹³Starcrest, 2005.

¹⁴ Man B & W, Basic Principles of Ship Propulsion.

The output from Equation 3.3 is illustrated in Figure 3.21, showing the load factor curve of a hypothetical ship with 20,000 kW main engine power and a top speed of 22 knots at that power output. The shape of the curve illustrates why vessels typically operate at less than their MCR power – at the top of the curve, the increase in power is much greater than the increase in speed, meaning that the vessel uses comparatively more power (and fuel) to obtain a small increase in speed.

As an example, at a speed of 20 knots, the hypothetical vessel's engine would be operating with a load factor of 75% [$(20/22)^3 = 0.75$, or 75%]. At 21 knots the load factor would be 87% [$(21/22)^3 = 0.87$, or 87%]. That's an increase of 12% of the vessel's power output for a 1-knot increase in speed. At the lower end of the speed range, at a speed of 10 knots, the hypothetical vessel's engine would be operating with a load factor of 9% [$(10/22)^3 = 0.09$, or 9%]. At 9 knots the load factor would be 7% [$(9/22)^3 = 0.07$, or 7%]; this would give a 1-knot speed increase at an increase of only 2% of the vessel's power output. At 6 knots the load factor would be 2% [$(6/22)^3 = 0.02$, or 2%].

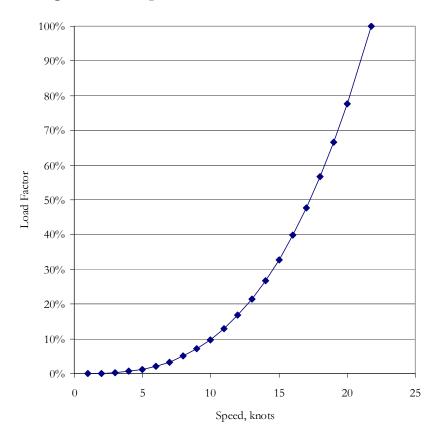


Figure 3.21: Propeller Law Curve of Power Demand

3.6.3 Propulsion Engine Time in Mode

Time in mode or activity is measured in hours of operation. The transit times were estimated by dividing the distance traveled by ship speed. The distance and ship speed are from the routing data discussed in Section 3.4.

Equation 3.4

$Activity = D/Speed_{Actual}$

Where:

Activity = activity, hours
D = distance, nautical miles
Speed_{Actual} = actual ship speed, knots

In addition to transit time, there are also maneuvering and hotelling times that are used. For maneuvering time, the same Equation 3.4 is used to calculate time during maneuvering. For hotelling time, departure time was subtracted from the arrival time to estimate hours of hotelling for both at berth and anchorage.

3.6.4 Propulsion Engine Emission Factors

The main engine emission factors used in this study were reported in a 2002 Entec study¹⁵, except for the PM emission factor. The source and value of each emission factor for the main engines is discussed in this section.

Vessels are assumed to operate their main engines on residual oil (RO) which is intermediate fuel oil (IFO) or one with similar specifications with an average sulfur constant of 2.7%. Exceptions are made for those vessels that are known to use a different fuel other than residual fuel, such as those vessels participating in fuel switch incentive programs. For vessels using a different fuel, a fuel correction factor is applied in the equation and this is discussed in a separate subsection.

Three vessel technologies are reported:

- Slow speed diesel engines, having maximum engine speeds less than 130 revolutions per minute (rpm) based on the EPA definition for ship engines as described in a 1999 Regulatory Impact Analysis (RIA).¹⁶
- Medium speed diesel engines, having maximum engine speeds over 130 rpm (and typically greater than 400 rpm).
- > Gas and steam boiler turbines.

_

¹⁵ Entec, Quantification of Emissions from Ships Associated with Ship Movements between Ports in the European Community, Final Report, July 2002.

¹⁶ EPA, Control of Emissions from Marine Diesel Engines, Regulatory Impact Analysis, November 1999.

The emission factors for main engines using residual fuel are listed in Table 3.12. The emission factors are listed by model year for slow and medium speed engines to list the Tier 1 (2000-2010) and Tier 2 (2011-2015) NO_x emission factor. The Tier 2 engines were determined by using the keel laid dates from Lloyd's data.

Table 3.12: Emission Factors for OGV Main Engines Using RO, g/kW-hr

Engine	Model Year	NO _x	нс	CO	SO_2	PM ₁₀	$\mathbf{PM}_{2.5}$	DPM
Slow speed diesel	<u><</u> 1999	18.1	0.6	1.4	10.5	1.5	1.2	1.5
Medium speed diesel	<u><</u> 1999	14.0	0.5	1.1	11.5	1.5	1.2	1.5
Slow speed diesel	2000 - 2010	17.0	0.6	1.4	10.5	1.5	1.2	1.5
Medium speed diesel	2000 - 2010	13.0	0.5	1.1	11.5	1.5	1.2	1.5
Slow speed diesel	2011 - 2015	14.4	0.6	1.4	10.5	1.5	1.2	1.5
Medium speed diesel	2011 - 2015	10.5	0.5	1.1	11.5	1.5	1.2	1.5
Gas turbine	All	6.1	0.1	0.2	16.5	0.05	0.04	0.0
Steamship	All	2.1	0.1	0.2	16.5	0.8	0.6	0.0

The emission factors for greenhouse gases are listed in Table 3.13. The sources for the CO_2 , N_2O and methane (CH₄) emissions factors is the IVL 2004 report.

Table 3.13: GHG Emission Factors for OGV Main Engines Using RO, g/kW-hr

Engine	Model Year	CO ₂	N ₂ O	CH ₄
Slow speed diesel	all	620	0.031	0.012
Medium speed diesel	all	683	0.031	0.010
Gas turbine	all	970	0.08	0.002
Steamship	all	970	0.08	0.002

NO, Emission Factor

The IMO established ocean-going vessel propulsion engine standards in Annex VI and engine manufacturers have been in compliance with the NO_x Technical Code since 2000. The engine standards are baseline standards to prevent back sliding on emission levels from 2000 and newer engine models. In this study, the 17.0 g/kW-hr NO_x emission factor (Tier 1) is used for slow speed vessels built in year 2000 to 2010; while 14.4 g/kW-hr NO_x emission factor (Tier 2) is used for slow speed vessels with a keel laid date of 2011 and newer.

Medium speed engine standards under the IMO program are based on engine rpm. For medium speed engines built in year 2000 to 2010, the 13.0 g/kW-hr NO_x emission factor is used; while those engines with keel laid date of 2011 and newer use a NO_x emission factor of 10.5 g/kW-hr. Engine manufacturers design their engines to emit well below the calculated standards, but it is difficult to establish an "in-use" average without the benefit of measurements.

Emission Factors for Clean Class or Environmental Notation

Classification societies have introduced environmental standards for vessels and also provide independent verification of shipboard environmental performance. Vessels are assigned an environmental notation once they meet certain environmental requirements. The notation may vary by name and requirement depending on the class society providing the service. Based on interviews in previous inventory with ship owners and engine test data certified on their environmental notation, vessels from two shipping lines, Holland America Line (HAL) and Westwood Shipping, were given a lower NO_{x} emission factor. Table 3.14 lists the NO_{x} emission factors used for these vessels.

Table 3.14: NO_x Emission Factors for Engines on Specific Vessels, g/kW-hr

Engine	NO _x
HAL vessels with medium speed diesel	10
Westwood vessels with slow speed diesel	12.1
Westwood vessels with medium speed diesel	9.4

CO Emission Factor

CO emission factors were developed from information provided in the Entec 2002 appendices because they are not explicitly stated in the text. They were confirmed with IVL Swedish Environmental Research Institute Ltd.¹⁷

¹⁷ IVL Swedish Environmental Research Institute Ltd., 16 January 2004 e-mail correspondence with C.H. Wells, Starcrest Consulting Group, LLC. (IVL 2004)

PM Emission Factor

Recent discussions with EPA have cited PM emission factors in the range of 0.99 to 1.11 g/kW-hr for slow and medium speed engines. In order to be consistent with EPA and the concurrent BCCO inventory, an average emission factor of 1.0 g/kW-hr was used for this study. The PM emission factor is derived from the results of an equation that is based on PM and sulfate relationship¹⁸ since the factor is not explicitly listed in the Entec study. California Air Resource Board (CARB) is using 1.5 g/kW-hr for the PM emission factor in their state emissions inventories, but this value is not being used outside of California. PM₁₀ is assumed to be 100% of PM and fine particulate matter, PM_{2.5}, was estimated to be 80% of PM₁₀¹⁹. For internal combustion diesel engines, the same PM₁₀ emission factor is used for DPM. For other types of engines that do not meet the definition of internal combustion, such as steam boilers and gas turbines, diesel particulate matter is zero.

SO₂ Emission Factor

The SO₂ emission factor is dependent on the fuel used; the baseline emission factor for Puget Sound is based on a sulfur content of 2.7%, which is an average for residual fuel. If lower sulfur fuel content is used, fuel correction factors are applied, as discussed in Section 3.6.10.

3.6.5 Varying Emission Factors for Low Loads for Propulsion Engines

This section addresses emission factors for propulsion engines powered by compression ignition engines. The discussion does not include steamships or ships having gas turbines because Energy and Environmental Analysis, Inc. (EEIA), in a study conducted for EPA, observed a rise in emissions for diesel engines only.²⁰

In general terms, diesel-cycle engines are not as efficient when operated at low loads or very high loads. The EEIA study established a formula for calculating emission factors for low engine load conditions, such as those encountered during harbor maneuvering and when traveling slowly at sea, such as in the reduced speed zone. While mass emissions (e.g., pounds per hour) tend to go down as vessel speeds and engine loads decrease, the emission factors (e.g., g/kW-hr) increase. This is based on observations that compression-cycle combustion engines are less efficient at low loads. Low load emission factor equations were developed from EPA emission factors for marine vessels at full load.

¹⁸ EPA, Exhaust and Crankcase Emission Factors for Nonroad Engine Modeling – Compression Ignition Engines, April 2004.

¹⁹ Lyyranen, Aerosol Characterization in Medium-Speed Diesel Engines Operating with Heavy Fuel Oils, Journal of Aerosol Science, 1999.

²⁰ EEIA, Analysis of Commercial Marine Vessels Emissions and Fuel Consumption Data, February 2000. (EEIA 2000)

These equations work well to describe the low-load effect where emission rates can increase, based on a limited set of data from Lloyd's Maritime Program and the U.S. Coast Guard. It was first cited in a study conducted for the EPA in 2002 by ENVIRON.²¹ The equation is based on the variables provided in Table 3.15.

Table 3.15: Low-Load Emission Factor Regression Equation Variables

Pollutant	Exponent	Intercept (b)	Coefficient (a)
PM	1.5	0.25	0.0059
NO_x	1.5	10.45	0.1255
CO	1.0	0.15	0.8378
VOC	1.5	0.39	0.0667

The equations were used for the entire spectrum of load factors from 1% to 20% for each pollutant, as follows:

Equation 3.5

$$y = a(fractional load) - x + b$$

Where:

y = emissions in g/kW-hr

a = coefficient

b = intercept

x = exponent (negative)

fractional load = derived by the Propeller Law

The EEIA 2000 equations were used to generate emission factors at loads between one and 20% main engine power. Each of the 20 EEIA factors was divided by the emission factor at 20% EEAI load. This resulted in numbers greater than or equal to one, since emissions increased as load decreased. At 20% load, the value was exactly 1.0 since it was divided into itself. These numbers are called low-load adjustment factors (LLA). The LLA multipliers were then applied to any at sea emission factor. The database then computes the resulting emission factor for each pollutant.

Alternative methods were explored, such as using the EEAI equations to span the entire spectrum between 1% and 100% load, using revised emission factors as the intercept (the starting place at 100% load). Unfortunately, such adjustments cause the shape of the graphed curves to change, and such changes could not be validated with empirical or measurement results. Thus the low load adjustments are used in a relative sense, based on the original published data.

_

²¹ EPA, Commercial Marine Inventory Development, July 2002.

The low load adjustment multipliers are reported in Table 3.16.

Table 3.16: Low-Load Adjustment Multipliers for Emission Factors

Load	NO _x	СО	НС	PM
2%	4.63	9.68	21.18	7.29
3%	2.92	6.46	11.68	4.33
4%	2.21	4.86	7.71	3.09
5%	1.83	3.89	5.61	2.44
6%	1.60	3.25	4.35	2.04
7%	1.45	2.79	3.52	1.79
8%	1.35	2.45	2.95	1.61
9%	1.27	2.18	2.52	1.48
10%	1.22	1.96	2.20	1.38
11%	1.17	1.79	1.96	1.30
12%	1.14	1.64	1.76	1.24
13%	1.11	1.52	1.60	1.19
14%	1.08	1.41	1.47	1.15
15%	1.06	1.32	1.36	1.11
16%	1.05	1.24	1.26	1.08
17%	1.03	1.17	1.60	1.06
18%	1.02	1.11	1.18	1.04
19%	1.01	1.05	1.11	1.02
20%	1.00	1.00	1.00	1.00

3.6.6 Propulsion Engine Maneuvering Loads

Maneuvering is the transition between transit and docking or vice versa. Maneuvering includes docking and a small amount of harbor transit which is transit from/to the main channel. Main engines during maneuvering tend to use a small percentage of total power, especially when coasting on the way into port. During docking, when the ship is being positioned against the wharf, the assist tugboats do most of the work. Emissions from assist tugs are included in the harbor vessel section of this report. Estimation of main engine maneuvering loads is the composite of several factors, such as:

- ➤ Variable loads for inbound and outbound segments
- ➤ Variable transit maneuvering time dependent on distance and speed
- ➤ 2% load during docking

The docking aspect is routine with the exception that some ships require extra backing and turning, either on entry or exit. Maneuvering times vary by port, terminal, and ship type.

Docking requires about 2% load on the main engines,²² but the harbor transit load has to be calculated by the Propeller Law. The transit main engine loads are below 20% during the harbor transit mode, therefore the low load adjustments are also applied to the emission factors. Results are then weighted together by percentage of time in docking and harbor transit modes. Results are shown in Table 3.17.

Table 3.17: Composite Maneuvering Load Factors

Vessel Type	Load In	Load Out
Auto Carrier	0.04	0.06
Bulk	0.04	0.05
Containership	0.03	0.03
Cruise	0.03	0.04
General Cargo	0.03	0.04
ITB	0.04	0.06
Reefer	0.02	0.03
RoRo	0.02	0.02
Tanker	0.03	0.05

Load in is an arrival to the harbor and load out is a departure from a dock or pier. The load out is higher than load in because the engine power is used to leave the dock, while the vessel usually coasts in on arrival.

3.6.7 Auxiliary Engine Emission Factors

The process of estimating emissions from auxiliary engines is generally the same as for main engines, with differing details. One main difference is that the load factor is not calculated but rather is estimated from reports in the technical literature (i.e., Entec 2002 and IVL 2004 studies) and from discussions with experts such as ships' engineers. Calculating auxiliary engine load factors from empirical data is theoretically possible but would require detailed fuel consumption data that is not typically available.

²²Starcrest 2005.

The Entec auxiliary engine emission factors used in this study are presented in Tables 3.18 and 3.19 for medium speed engines using residual fuel oil. CO_2 , N_2O and CH_4 emission factors are obtained from IVL 2004 report.

Table 3.18: Auxiliary Engine Emission Factors, g/kW-hr

Engine	Model Year	NO _x	voc	СО	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM
Medium speed diesel	≤ 1999	14.7	0.5	1.1	12.3	1.0	0.8	1.0
Medium speed diesel	2000 - 2010	13.0	0.5	1.1	12.3	1.0	0.8	1.0
Medium speed diesel	2011 - 2015	10.5	0.5	1.1	12.3	1.0	0.8	1.0

Table 3.19: Greenhouse Gas Emission Factors for Auxiliary Engines, g/kW-hr

Engine	\mathbf{CO}_2	N_2O	\mathbf{CH}_{4}
Medium speed diesel	683	0.031	0.008

It is assumed that vessels operate their auxiliary engines on residual fuel oil with an average sulfur content of 2.7%. If it is known that a vessel switches fuel while in Puget Sound to a lower sulfur fuel, a fuel correction factor is used. The fuel correction factors are discussed in Section 3.6.10.

3.6.8 Auxiliary Engine Defaults

As explained earlier, auxiliary engine information is usually not provided to Lloyd's by vessel owners since it is not required by IMO or the classification societies, thus Lloyd's data contains minimal auxiliary engine information. For 2011, the 2010 published data for the Port of Los Angeles and the Port of Long Beach was averaged and used to generate profiles or defaults for the purpose of "gap filling" when there was missing data.

Vessels do not use the total auxiliary engine installed power when at sea, during hotelling and during maneuvering. For each mode and vessel type, a different number of engines may be used and at varying loads depending on several factors, such as temperature and number of reefers onboard. Hotelling load is primarily what is needed to meet the power needs of the lights, heating/ventilation/air conditioning systems, communications, computers, ship cranes, pumps, reefer load, and various other power demands while the vessel is at dock. Maneuvering generally requires the highest auxiliary load mode for OGVs in order to provide power to the bow thrusters that are used intermittently. Transit periods, or "at sea mode," generally requires the lowest auxiliary loads, as additional auxiliary power is not required for maneuvering. Many vessels also have shaft generators and exhaust turbine generators that help provide power to the ship with greater fuel efficiency than auxiliary generators.

From the inception of the Vessel Boarding Program, the average or typical number of auxiliary engines used and the corresponding load at sea, during maneuvering and at berth, have been studied to gain a better understanding of the how the auxiliary engines are used in relation to the total number and total power installed. The load default in kilowatts is based on the percent load, which takes into account the average number of actual engines used and their load. Another way to view auxiliary engine load is the kilowatts actually used as a fraction of the total power available. For example, a 1,000 TEU container vessel equipped with three auxiliary engines may use just one of them at berth at 60% load. The resulting total hotelling load is 0.33 multiplied by 0.6, which equals 0.2 or 20%. The 0.33 figure represents one of the three engines in use, while the 0.6 represents the 60% load on that engine. Table 3.20 summarizes the total power and load defaults used for this study by vessel subtype.

Table 3.20: 2011 Auxiliary Engine Power and Load Defaults, kW

Vessel Type	Sea	Maneuvering	Hotelling
Auto Carrier	514	1,541	876
Bulk	266	705	157
Bulk - Self Discharging	439	1,163	258
Bulk - Heavy Load	231	610	136
Bulk - Wood Chips	266	705	157
Container - 1000	492	1,556	536
Container - 2000	723	1,916	945
Container - 3000	710	2,382	965
Container - 4000	1,162	2,973	1,196
Container - 5000	1,185	4,356	1,202
Container - 6000	1,554	4,815	1,461
Container - 7000	1,446	4,360	1,325
Container - 8000	1,576	4,769	1,449
Container - 9000	1,498	4,551	1,383
Container - 10000	1,767	2,617	887
Cruise	na	na	na
General Cargo	506	1,339	655
ITB	89	234	115
Reefer	467	1,402	900
RoRo	514	1,541	890
Tanker - Aframax	720	990	780
Tanker - Chemical	682	937	739
Tanker - Handysize	504	693	546
Tanker - Panamax	604	830	654
Tanker - Suezmax	702	965	761

The maneuvering load defaults for auxiliary engines are set to 100%, but can be assigned an alternate value in the vessel routing table. This is to account for the complex nature of the routing and the variability of auxiliary engine loads while maneuvering different sections of the Puget Sound.

3.6.9 Auxiliary Boilers

In addition to the auxiliary engines that are used to generate electricity for on-board uses, most OGVs have one or more boilers used for fuel heating and for producing hot water. These boilers are not typically used during transit at sea because most vessels are equipped with exhaust heat recovery systems ("economizers") that use heat from the main engine's exhaust for their hot water needs. The auxiliary boilers are used when the main engine exhaust flow and/or temperature fall below what is needed for the economizer to provide adequate heat, such as during maneuvering and when the main engines are shut down at berth or when main engine loads drop below 20%. Defaults, based on 2010 published auxiliary boiler energy, for each vessel type are presented in Table 3.21. The cruise ships and tankers (except for diesel electric tankers) have much higher auxiliary boiler usage rates than the other vessel types. Cruise ships have higher boiler usage due to the number of passengers and the need for hot water. Tankers' boilers provide steam for steam-powered liquid pumps, inert gas for storage tanks, and heat to keep fuel warm for pumping.

Table 3.21: 2011 Auxiliary Boiler Energy Defaults, kW

Vessel Type	Sea	Maneuvering	Hotelling
Auto Carrier	0	250	250
Bulk	0	134	134
Bulk - Self Discharging	0	130	130
Bulk - Heavy Load	0	137	137
Bulk - Wood Chips	0	134	134
Container - 1000	0	263	263
Container - 2000	0	300	300
Container - 3000	0	517	517
Container - 4000	0	554	554
Container - 5000	0	675	675
Container - 6000	0	623	623
Container - 7000	0	479	479
Container - 8000	0	572	572
Container - 9000	0	572	572
Container - 10000	0	572	572
Cruise	0	1,549	1,549
General Cargo	0	134	134
ITB	0	0	0
Reefer	0	338	338
RoRo	0	275	275
Tanker - Aframax	0	371	2,750
Tanker - Chemical	0	371	2,750
Tanker - Handysize	0	371	2,750
Tanker - Panamax	0	371	2,750
Tanker - Suezmax	0	371	3,000

3.6.10 Fuel Correction Factors

Fuel correction factors are used to account for variations in fuel parameters between different types of fuel, so these variations can be accounted for in the emission estimates. As discussed earlier, emission factors were given for engines using residual fuel with an average 2.7% sulfur content. Table 3.22 lists the fuel correction factors used for most vessels in this study, which are based on fuel correction factors used in the San Pedro Bay Clean Air Action Plan.²³

Table 3.22: Fuel Correction Factors

Fuel Used	NO _x	voc	CO	SO ₂	PM ₁₀	PM _{2.5}	DPM	CO_2	N_2O	CH ₄
HFO (2.7% S)	1.00	1.00	1.00	1.000	1.00	1.00	1.00	1.00	1.00	1.00
HFO (1.5% S)	1.00	1.00	1.00	0.555	0.82	0.82	0.82	1.00	1.00	1.00
MGO (0.5% S)	0.94	1.00	1.00	0.185	0.25	0.25	0.25	1.00	0.94	1.00
MDO (1.5% S)	0.94	1.00	1.00	0.555	0.47	0.47	0.47	1.00	0.94	1.00
MGO (0.1% S)	0.94	1.00	1.00	0.037	0.17	0.17	0.17	1.00	0.94	1.00
MGO (0.3% S)	0.94	1.00	1.00	0.111	0.21	0.21	0.21	1.00	0.94	1.00
MGO (0.4% S)	0.94	1.00	1.00	0.148	0.23	0.23	0.23	1.00	0.94	1.00

In 2011, there were 375 vessel calls at the Port of Seattle that participated in the At-Berth Clean (ABC) Fuels program. Participating vessels committed to using marine gas oil/marine diesel oil with less than 0.5% S while at berth. There were also several vessels that were not part of the ABC Fuel program but switched fuel at the Port Angeles pilot station and used low-sulfur fuel all the way into Port. Participating shipping and cruise lines include:

- ➤ Hapag Lloyd
- American Presidents Line
- China Ocean Shipping Company
- > Hamburg Sud
- Maersk Line
- > Matson Navigation
- Orient Overseas Container Line
- Royal Caribbean
- Celebrity Cruises
- Norwegian Cruise Line

Due to the variability of fuel sulfur content listed in actual fuel switch data obtained from the ABC Fuels program, vessel activity specific fuel correction factors were calculated and used in the emission calculations for these vessels.

²³Port of Los Angeles and Port of Long Beach, San Pedro Bay Clean Air Action Plan, 2006.

Evergreen Line vessels, and some K-line vessels, which also called at the Port of Tacoma, used low-sulfur fuel with less than 0.5% S while at berth. Cruise ship lines that did not participate in the ABC Fuels program used residual fuel with an average of 1.5% S.

3.6.11 Other Correction Factors

Slide valve correction factors (see Section 3.5) are 0.70 for NO_x and 0.75 for PM²⁴.

3.7 Data Facts and Findings

Information gathered during the data collection process is summarized in this subsection. Table 3.23 lists the 910 discrete vessels that visited the Puget Sound study area in 2011 by vessel type.

Table 3.23: 2011 OGVs by Vessel Type

	Discrete
Vessel Type	Vessel
	Count
Auto Carrier	138
Bulk	294
Bulk - Heavy Load	2
Bulk - Self Discharging	4
Bulk - Wood Chips	1
Container - 1000	23
Container - 2000	24
Container - 3000	8
Container - 4000	45
Container - 5000	58
Container - 6000	29
Container - 7000	18
Container - 8000	39
Container - 9000	2
Container - 10000	1
Cruise	16
General Cargo	42
ITB	9
Reefer	6
RoRo	7
Tanker - Aframax	28
Tanker - Chemical	55
Tanker - Handysize	14
Tanker - Panamax	18
Tanker - Suezmax	29
Total	910

²⁴Port of Los Angeles, *Inventory of Air Emissions*, 2010.

Although the study is for all maritime facilities, the following data findings are for the main ports. The average vessel characteristics listed in the tables were not used for estimating emissions since actual values were used on a per engine and vessel basis. The purpose of the average vessel characteristic tables included in this subsection is to summarize the data for the readers.

3.7.1 Port of Anacortes Data Findings

Table 3.24 summarizes the vessel movements for Port of Anacortes in 2011.

Table 3.24: Port of Anacortes 2011 OGV Movements

Vessel Type	Inbound	Outbound	Shift	Total Movements
Bulk	5	4	2	11
General Cargo	2	3	1	6
ITB	17	1	11	29
Total	24	8	14	46

Table 3.25 presents the average vessel and engine characteristics by vessel type for those vessels that called at the Port of Anacortes in 2011.

Table 3.25: Port of Anacortes 2011 OGV Type Characteristics

	Year		Main Engine	Aux Engine	At-Berth
Vessel Type	Built	DWT	Power	Power	Time
		(tonnes)	(kW)	(kW)	(hours)
Bulk	2002	36,492	6,847	1,742	128.1
General Cargo	2000	20,005	8,121	1,333	111.6
ITB	2002	364	6,851	na	49.9

Table 3.26 presents the vessel movements for Port of Port Angeles in 2011. It should be noted that Port of Port Angeles did not participate in the 2011 PSEI, but the vessel data was available and thus included in this section.

The number of inbound and outbound trips does not match due to vessel shifts from another dock or terminal within the port instead of arriving from the sea or another port or maritime facility.

Table 3.26: Port of Port Angeles 2011 OGV Movements

Vessel Type	Inbound	Outbound	Shift	Total Movements
Auto Carrier	0	0	1	1
Bulk	32	8	8	48
Bulk - Self Discharging	1	1	4	6
Container - 2000	0	1	1	2
Container - 5000	0	1	1	2
General Cargo	5	0	1	6
ITB	1	0	2	3
Reefer	0	0	2	2
RoRo	0	1	1	2
Tanker - Aframax	0	1	1	2
Tanker - Chemical	4	1	4	9
Tanker - Handysize	0	1	0	1
Tanker - Panamax	1	0	0	1
Tanker - Suezmax	4	15	14	33
Total	48	30	40	118

Table 3.27 presents the average vessel and engine characteristics by vessel type for those vessels that called at the Port of Port Angeles in 2011.

Table 3.27: Port of Port Angeles 2011 OGV Type Characteristics

	Year		Main Engine	Aux Engine	At-Berth
Vessel Type	Built	DWT	Power	Power	Time
		(tonnes)	(kW)	(kW)	(hours)
Auto Carrier	2000	20,144	14,123	na	na
Bulk	2004	44,318	7,654	2,000	104.1
Bulk - Self Discharging	1975	33,797	8,517	2,380	na
Container - 2000	1999	30,135	12,240	na	na
Container - 5000	2002	67,009	57,199	na	na
General Cargo	2000	22,507	7,607	na	130.5
ITB	2002	630	6,767	na	21.4
Reefer	1993	11,181	11,950	na	na
RoRo	2003	22,437	52,198	na	na
Tanker - Aframax	2005	115,525	14,313	na	164.6
Tanker - Chemical	2007	40,274	8,685	2,790	146.8
Tanker - Handysize	2000	47,037	8,683	1,519	na
Tanker - Panamax	2007	74,875	13,548	2,400	na
Tanker - Suezmax	1997	151,325	22,947	na	97.7

3.7.2 Port of Everett Data Findings

Table 3.28 presents the vessel movements for Port of Everett in 2011. The number of inbound and outbound trips does not match due to vessel shifts from another dock or terminal within the port instead of arriving from the sea or another port or maritime facility.

Table 3.28: Port of Everett 2011 OGVMovements

Vessel Type	Inbound	Outbound	Shift	Total Movements
Bulk	1	3	2	6
Container - 1000	9	0	0	9
Container - 2000	16	0	1	17
General Cargo	52	30	12	94
ITB	0	0	1	1
RoRo	9	9	0	18
Total	87	42	16	145

Table 3.29 presents the average vessel and engine characteristics by vessel type for those vessels that called at the Port of Everett in 2011.

Table 3.29: Port of Everett 2011 OGV Type Characteristics

Vessel Type	Year Built	DWT (tonnes)	Main Engine Power (kW)	Aux Engine Power (kW)	At-Berth Time (hours)
Bulk	2005	45,179	7,182	1,640	85.2
Container - 1000	2008	27,418	18,634	na	14.9
Container - 2000	1998	30,197	12,512	na	13.4
General Cargo	2000	28,619	10,435	854	45.3
ITB	2002	na	6,767	na	na
RoRo	1997	12,262	5,051	na	49.0

3.7.3 Port of Olympia Data Findings

Table 3.30 presents the vessel movements for Port of Olympia in 2011. The number of inbound and outbound trips does not match due to vessel shifts from another dock or terminal within the port instead of arriving from the sea or another port or maritime facility.

Table 3.30: Port of Olympia 2011 OGV Movements

Vessel Type	Inbound	Outbound	Shift	Total Movements
Bulk	22	23	4	49
Total	22	23	4	49

Table 3.31 presents the average vessel and engine characteristics by vessel type for those vessels that called at the Port of Olympia in 2011.

Table 3.31: Port of Olympia 2011 Average OGV Type Characteristics

	Year		Main Engine	Aux Engine	At-Berth
Vessel Type	Built	\mathbf{DWT}	Power	Power	Time
		(tonnes)	(kW)	(kW)	(hours)
Bulk	2006	32,945	6,750	1,640	111.2

3.7.4 Port of Seattle Data Findings

Table 3.32 presents the vessel movements for Port of Seattle in 2011. The number of inbound and outbound trips does not match due to vessel shifts from another dock or terminal within the port instead of arriving from the sea or another port or maritime facility.

Table 3.32: Port of Seattle 2011 OGV Movements

				Total
Vessel Type	Inbound	Outbound	Shift	Movements
D 11	0			150
Bulk	0	74	99	173
Bulk - Heavy Load	2	2	6	10
Container - 1000	108	116	15	239
Container - 2000	73	89	24	186
Container - 3000	29	30	1	60
Container - 4000	111	115	6	232
Container - 5000	124	126	5	255
Container - 6000	17	68	51	136
Container - 7000	83	81	1	165
Container - 8000	130	135	8	273
Container - 9000	2	2	0	4
Container - 10000	1	1	0	2
Cruise	196	196	0	392
General Cargo	14	39	26	79
ITB	0	1	4	5
Tanker - Chemical	0	5	0	5
Total	890	1,080	246	2,216

Table 3.33 presents the average vessel and engine characteristics by vessel type for those vessels that called at the Port of Seattle in 2011.

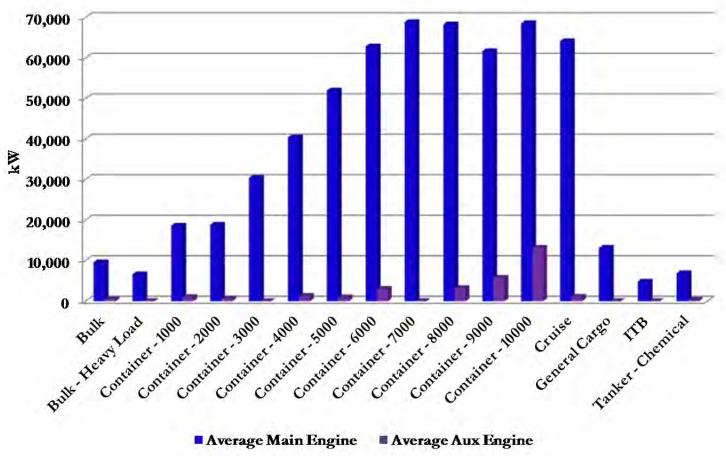
Table 3.33: Port of Seattle 2011 OGV Type Characteristics

	Year		Main Engine	Aux Engine	At-Berth
Vessel Type	Built	\mathbf{DWT}	Power	Power	Time
		(tonnes)	(kW)	(kW)	(hours)
Bulk	2003	69,669	9,609	1,784	88.0
Bulk - Heavy Load	1999	14,302	6,614	na	133.6
Container - 1000	1999	25,048	18,665	4,857	24.2
Container - 2000	2002	33,232	18,874	6,695	30.3
Container - 3000	1986	33,860	30,474	na	31.8
Container - 4000	1999	63,363	40,446	6,889	31.6
Container - 5000	2001	67,695	52,012	12,017	30.0
Container - 6000	2005	78,785	62,920	13,004	28.7
Container - 7000	2004	95,841	68,913	na	27.8
Container - 8000	2008	104,941	68,368	12,014	38.3
Container - 9000	2003	107,550	61,739	11,520	33.3
Container - 10000	2009	116,440	68,639	13,188	32.1
Cruise	2002	9,767	64,211	1,755	10.1
General Cargo	2003	43,871	13,170	na	30.1
ITB	2005	214	4,876	na	110.2
Tanker - Chemical	1999	28,212	6,904	1,650	na

Figures 3.22, 3.23, and 3.24 presents the 2011 Port of Seattle average ocean-going vessel model year, DWT, and engine power (main and auxiliary), respectively

Brille Traile Container Book Container And Container Gordiner Container Gordiner Container Conta

Figure 3.22: Port of Seattle 2011 OGV Model Year, by Vessel Type



120,000 100,000 80,000 DWT tonnes 60,000 40,000 20,000 0 Brille Tond Container And Container And Container Contai

Figure 3.23: Port of Seattle 2011 OGV DWT by Vessel Type

Figure 3.24: Port of Seattle 2011 OGV Main and Auxiliary Engine Power by Vessel Type, kW

Starcrest Consulting Group, LLC 125 September 2012

3.7.5 Port of Tacoma Data Findings

Table 3.34 presents the vessel movements for Port of Tacoma in 2011. The number of inbound and outbound trips does not match due to vessel shifts from another dock or terminal within the port instead of arriving from the sea or another port or maritime facility.

Table 3.34: Port of Tacoma 2011 OGV Movements

		0 1 1	01.14	Total
Vessel Type	Inbound	Outbound	Shift	Movements
Auto Carrier	196	211	16	423
Bulk	18	105	103	226
Bulk - Self Discharging	6	6	1	13
Container - 1000	105	104	0	209
Container - 2000	50	50	0	100
Container - 3000	15	15	0	30
Container - 4000	26	25	0	51
Container - 5000	114	115	3	232
Container - 6000	97	46	0	143
Container - 7000	4	4	0	8
General Cargo	4	5	1	10
ITB	0	0	1	1
RoRo	101	100	1	202
Tanker - Chemical	9	13	3	25
Tanker - Suezmax	0	0	1	1
Total	745	799	130	1,674

Table 3.35 presents the average vessel and engine characteristics by vessel type for those vessels that called at the Port of Tacoma in 2011.

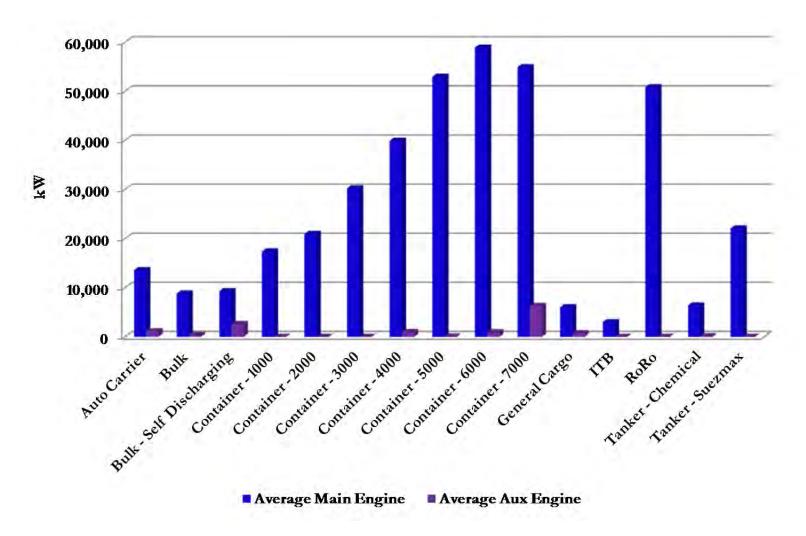
Table 3.35: Port of Tacoma Average 2011 OGV Type Characteristics

	Year		Main Engine	Aux Engine	At-Berth
Vessel Type	Built	\mathbf{DWT}	Power	Power	Time
		(tonnes)	(kW)	(kW)	(hours)
Auto Carrier	1998	19,459	13,582	4,047	16.6
Bulk	2003	63,407	8,823	1,738	89.0
Bulk - Self Discharging	1977	44,452	9,322	2,605	34.2
Container - 1000	1986	21,288	17,390	na	24.2
Container - 2000	1980	31,322	20,963	na	10.6
Container - 3000	1995	46,176	30,269	na	43.1
Container - 4000	2003	55,097	39,957	5,195	38.6
Container - 5000	2001	66,120	52,936	7,763	35.7
Container - 6000	2005	76,033	58,914	12,842	35.0
Container - 7000	2007	78,714	54,941	12,560	29.2
General Cargo	2005	14,691	6,045	1,257	51.9
ITB	2008	428	2,985	na	10.5
RoRo	2002	22,134	50,864	1,760	14.9
Tanker - Chemical	2007	20,597	6,385	1,650	20.9
Tanker - Suezmax	2002	141,740	22,087	na	na

Figures 3.25, 3.26, and 3.27 presents the 2011 Port of Tacoma average ocean-going vessel model year, DWT, and engine power (main and auxiliary), respectively

2010 2005 2000 1995 1990 1985 1980 1975 Auto Cartier Brill Self Discharging India 2000 2000 And Container Gentainer Genteral Cargo Tib Roke Chernical Container Spentage Container Genteral Cargo Tranker Spentage Tranker Spentage

Figure 3.25: Port of Tacoma Average 2011 OGV Model Year, by Vessel Type



160,000 140,000 120,000 DWT tonnes 100,000 80,000 60,000 40,000 Antro Carrier Brills Gorrainet Anno Containet Anno Containet Anno Containet Gorrainet 20,000 TR Roko Chemical Spennas

Figure 3.26: Port of Tacoma Average 2011 OGV DWT by Vessel Type

Figure 3.27: Port of Tacoma Average 2011 OGV Main and Auxiliary Engine Power by Vessel Type, kW

3.7.6 Tankers in Puget Sound

Table 3.36 presents the vessel movements for tankers in Puget Sound in 2011. The number of inbound and outbound trips does not match due to shifts tankers make from one dock to another within a facility or from anchorage to a dock. Arrivals are strictly defined as a vessel arriving from the sea or another maritime facility and do not include shifts from a dock within the facility or anchorage near the facility.

Table 3.36: 2011 Tanker Movements

Associated Port	Inbound	Outbound	Shift	Total Movements
Bellingham	2	0	1	3
Cherry Point	108	102	148	358
Ferndale	50	7	42	99
Indian Island	1	0	0	1
Manchester	6	3	6	15
March Point	116	142	225	483
Point Wells	3	1	3	7
Port Angeles	118	155	141	414
Sandy Point	4	0	1	5
Seattle	12	10	14	36
Tacoma	14	33	43	90
Vendovi Island	30	5	68	103
Total	464	458	692	1,614

The MarEx of Puget Sound data was used for tankers, as for all other vessels in the area due to its detailed information on arrivals, departures and shifts.

3.8 Emission Estimates

The 2011 ocean-going vessel emissions for Puget Sound are summarized in this section. Tables 3.37 through 3.48 include the transit, maneuvering, and hotelling emission estimates for all vessel movements in the study area.

Table 3.37 presents the 2011 ocean-going vessel criteria pollutant emission by county and regional air agency in tons per year. The links in the routing were cut at the county lines so that all links within a county could be easily divided up by county and their respective emissions summarized.

Table 3.37: 2011 Total OGV Airshed Emissions by County and Regional Clean Air Agency, tpy

County	NO _x	voc	СО	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
Island	878.1	33.2	76.9	683.4	57.4	45.9	55.3	42,648
San Juan	174.1	7.1	16.4	141.1	11.6	9.3	11.5	8,418
Skagit	542.6	20.4	48.5	1,633.3	90.6	72.5	28.0	97,344
Whatcom	216.1	8.9	20.2	617.0	35.0	28.0	11.7	36,737
Total NWCAA	1,810.9	69.6	162.0	3,074.8	194.6	155.7	106.4	185,148
Clallam	6,295.6	242.1	560.8	5,487.9	437.7	350.1	392.1	336,717
Jefferson	711.5	27.0	62.7	550.8	46.1	36.9	44.4	34,357
Mason	0.3	0.0	0.0	0.2	0.0	0.0	0.0	13
Thurston	10.3	0.4	0.9	15.1	1.0	0.8	0.7	887
Total ORCAA	7,017.7	269.5	624.4	6,054.0	484.8	387.9	437.2	371,973
King	1,316.4	48.1	117.2	1,135.1	89.6	71.7	74.5	86,922
Kitsap	925.3	35.0	81.3	756.7	62.0	49.6	57.9	46,890
Pierce	481.6	16.4	41.5	578.4	40.2	32.2	28.0	40,168
Snohomish	106.3	3.7	9.2	110.0	8.3	6.7	7.1	6,539
Total PSCAA	2,829.7	103.1	249.2	2,580.2	200.2	160.2	167.5	180,520
Total	11,658.2	442.2	1,035.6	11,709.0	879.6	703.7	711.1	737,640

Table 3.38 presents the 2011 ocean-going vessel criteria pollutant emission by vessel type. The values include the transit, maneuvering, and hotelling emission estimates for all vessel movements in the study area. DPM emissions are lower than PM_{10} emissions for oceangoing vessels, especially tankers, because boilers do not meet the definition of an internal combustion engine and therefore do not have DPM emissions associated with them. Tankers typically have higher boiler loads at berth while unloading, so they will have higher PM_{10} emissions and the difference between PM_{10} and DPM emissions will be greater.

Table 3.38: 2011 Total OGV Airshed Emissions by Vessel Type, tpy

Vessel Type	NO _x	voc	СО	SO_2	PM ₁₀	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
Auto Carrier	571.4	20.2	47.9	397.5	34.8	27.9	33.9	23,573
Bulk	863.2	33.3	78.8	766.4	59.8	47.9	53.5	45,455
Bulk - Heavy Load	6.2	0.2	0.5	5.4	0.4	0.4	0.4	323
Bulk - Self Discharging	21.1	0.7	1.6	15.4	1.3	1.1	1.2	911
Bulk - Wood Chips	1.0	0.1	0.1	0.9	0.1	0.1	0.1	54
Container1000	661.0	23.5	55.3	617.9	46.9	37.6	36.9	37,556
Container2000	262.8	10.0	23.5	412.6	26.1	20.9	14.1	25,353
Container3000	239.9	8.0	18.8	136.0	13.1	10.5	12.6	9,665
Container4000	775.8	28.2	66.2	500.3	44.9	35.9	43.4	33,651
Container5000	1,397.3	50.6	119.0	891.7	80.8	64.7	78.6	61,079
Container6000	812.4	32.1	75.7	613.4	51.2	41.0	49.0	38,893
Container7000	610.2	24.8	57.8	426.1	36.5	29.2	36.0	27,704
Container8000	692.1	29.0	68.1	552.4	44.4	35.5	42.4	35,116
Container9000	17.2	0.6	1.4	11.5	1.0	0.8	1.0	687
Container10000	4.6	0.2	0.5	4.4	0.3	0.3	0.3	259
Cruise	1,442.2	51.8	122.4	1,213.9	99.5	79.6	98.0	90,483
General Cargo	211.3	8.0	19.5	205.9	16.8	13.4	15.7	12,117
ITB	132.6	4.9	11.2	119.2	10.2	8.2	10.2	7,068
Reefer	15.4	0.5	1.2	14.3	1.1	0.9	1.0	835
RoRo	752.2	28.7	63.5	683.5	58.5	46.8	57.5	41,088
Tanker - Aframax	303.6	12.1	28.5	669.3	39.3	31.4	16.8	39,878
Tanker - Chemical	464.0	19.9	46.6	959.0	56.5	45.2	26.8	57,116
Tanker - Handysize	125.0	4.6	10.7	242.5	14.6	11.7	6.4	14,489
Tanker - Panamax	95.9	3.9	9.1	237.5	13.5	10.8	5.0	14,172
Tanker - Suezmax	1,180.0	46.4	107.4	2,011.8	127.7	102.2	70.3	120,116
Total	11,658.2	442.2	1,035.6	11,709.0	879.6	703.7	711.1	737,640

Table 3.39 presents the total 2011 OGV emissions by engine type. The engines include main (i.e., propulsion) engines, auxiliary engines and auxiliary boilers. The main engines are used during transit and maneuvering. Auxiliary engines are used during transit, maneuvering and hotelling. Hotelling can be at a berth or at an anchorage. All vessels, except the ocean tugboats, have auxiliary boilers. Auxiliary boilers are assumed to be used during maneuvering and hotelling, but not used during transit since vessels are equipped with an exhaust gas recovery system or "economizer" that uses main engine exhaust for heating purposes. DPM is zero for auxiliary boilers since boilers do not meet the definition of a compression ignition internal combustion engine.

Table 3.39: 2011 Total OGV Airshed Emissions by Engine Type, tpy

Vessel Type	NO _x	voc	CO	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
Main Engine	8,878.0	350.2	797.0	6,824.6	574.9	459.9	552.1	421,867
Auxiliary Engine	2,382.3	72.9	200.6	1,894.7	159.0	127.2	159.0	126,697
Auxiliary Boiler	397.9	19.0	38.0	2,989.7	145.7	116.6	0.0	189,076
Total	11,658.2	442.2	1,035.6	11,709.0	879.6	703.7	711.1	737,640

Table 3.40 presents the total 2011 OGV emissions by mode in Puget Sound in tons per year. The transit includes all transits within the study area. Hotelling and maneuvering is for all movements within the study area, including public and private facilities and anchorages.

Table 3.40: 2011 Total OGV Airshed Emissions by Mode, tpy

Mode	NO_x	voc	СО	SO_2	PM_{10}	$\mathbf{PM}_{2.5}$	DPM	CO_2e
Transit	9,423.9	362.8	839.6	7,333.2	615.8	492.6	593.0	452,613
Maneuvering	146.8	8.8	16.1	109.2	11.2	9.0	11.2	6,436
Hotelling	2,087.5	70.6	180.0	4,266.5	252.6	202.1	106.9	278,591
Total	11,658.2	442.2	1,035.6	11,709.0	879.6	703.7	711.1	737,640

Figure 3.28 presents the 2011 distribution of ocean-going vessels emissions for criteria pollutants by transit, maneuvering and hotelling mode. The figure presents that 65% to 80% of the emissions occur during transit; less than 5% occur during maneuvering, and 12% to 35% occur while the vessel is at berth.

NOx VOC CO SO₂ **PM10** PM2.5 **DPM** CO₂e 60% 0% 20% 40% 80% 100% ■ Maneuvering ■ Hotelling ■ Transit

Figure 3.28: 2011 Distribution of Total OGV Airshed Emissions by Transit, Maneuvering, and Hotelling Mode

3.8.1 Main Port Emission Estimates

This subsection presents the emissions associated with the main ports in Puget Sound for maneuvering and hotelling. The emissions by port do not include the transit emissions within Puget Sound. The maneuvering emissions include a short transit time in the harbor area near the port and the docking into the berth for arrivals. The maneuvering emissions include the maneuvering for all movements (i.e., arrivals, departures and shifts). The hotelling emissions include emissions while the vessel is at berth.

The port emissions do not include any anchorages or private facilities near the Port area, only the port-controlled terminals. Emissions at the anchorages near the ports were not attributed to the ports because the vessels that stopped at anchorage may not have called at the public port. For example, vessels may stop to refuel at anchorages near Port Angeles before continuing on their transit, but do not call at the Port of Port Angeles terminals.

Table 3.41 presents the port maneuvering and hotelling emission estimates associated with the Port of Anacortes.

Table 3.41: Port of Anacortes 2011 OGV Port Emissions by Mode, tpy

Mode	NO _x	VOC	СО	SO_2	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
Hotelling	9.5	0.3	0.8	11.4	0.8	0.7	0.7	653
Maneuvering	0.1	0.0	0.0	0.1	0.0	0.0	0.0	4
Total	9.6	0.3	0.8	11.4	0.8	0.7	0.7	657

Table 3.42 lists the port maneuvering and hotelling emission estimates associated with the Port of Port Angeles.

Table 3.42: Port of Port Angeles 2011 OGV Port Emissions by Mode, tpy

Mode	NO _x	VOC	CO	SO_2	\mathbf{PM}_{10}	PM _{2.5}	DPM	CO ₂ e
Hotelling	61.0	2.2	5.3	195.0	10.7	8.6	3.1	11,609
Maneuvering	0.9	0.0	0.1	0.8	0.1	0.1	0.1	47
Total	61.9	2.2	5.4	195.9	10.8	8.6	3.2	11,656

Table 3.43 lists the port maneuvering and hotelling emission estimates associated with the Port of Everett.

Table 3.43: Port of Everett 2011 OGV Port Emissions by Mode, tpy

Mode	NO_x	voc	СО	SO_2	\mathbf{PM}_{10}	PM _{2.5}	DPM	CO ₂ e
Hotelling	46.4	1.4	3.8	52.6	3.9	3.1	3.3	3,019
Maneuvering	0.8	0.0	0.1	0.7	0.1	0.0	0.1	41
Total	47.2	1.4	3.8	53.3	3.9	3.2	3.4	3,059

Table 3.44 lists the port maneuvering and hotelling emission estimates associated with the Port of Everett.

Table 3.44: Port of Olympia 2011 OGV Port Emissions by Mode, tpy

Mode	NO _x	voc	СО	SO_2	\mathbf{PM}_{10}	PM _{2.5}	DPM	CO ₂ e
Hotelling	7.4	0.2	0.6	13.2	0.8	0.7	0.5	771
Maneuvering	0.2	0.0	0.0	0.1	0.0	0.0	0.0	8
Total	7.5	0.2	0.6	13.3	0.9	0.7	0.5	779

Table 3.45 lists the port maneuvering and hotelling emission estimates associated with the Port of Seattle.

Table 3.45: Port of Seattle 2011 OGV Port Emissions by Mode, tpy

Mode	NO _x	VOC	CO	SO_2	\mathbf{PM}_{10}	PM _{2.5}	DPM	CO ₂ e
Hotelling	679.0	21.8	58.7	551.5	42.4	33.9	33.3	51,492
Maneuvering	69.2	4.4	7.5	49.0	5.3	4.3	5.3	2,986
Total	748.3	26.2	66.2	600.5	47.7	38.2	38.6	54,479

Table 3.46 lists the port maneuvering and hotelling emission estimates associated with the Port of Tacoma.

Table 3.46: Port of Tacoma 2011 OGV Port Emissions by Mode, tpy

Mode	NO _x	voc	CO	SO_2	\mathbf{PM}_{10}	PM _{2.5}	DPM	CO ₂ e
Hotelling	339.4	10.6	28.3	380.5	26.4	21.1	18.5	28,582
Maneuvering	35.8	1.5	3.4	29.7	2.6	2.1	2.6	1,690
Total	375.2	12.1	31.7	410.2	29.0	23.2	21.1	30,273

3.8.2 Petroleum Facilities Emission Estimates

Emissions associated with the petroleum facilities in Puget Sound include only those for maneuvering and hotelling. The maneuvering emissions include the maneuvering for all movements (i.e., arrivals, departures and shifts). The hotelling emissions include emissions while the vessel is at berth. The terminals and anchorages associated with the petroleum facilities in the study area are located at:

- ➤ Cherry Point
- > Ferndale
- March Point
- Anchorages near Point Wells, Sandy Point, Vendovi Island

Table 3.47 presents the port maneuvering and hotelling emission estimates associated with the petroleum facilities.

Table 3.47: Petroleum Facilities 2011 OGV Port Emissions by Mode, tpy

Mode	NO _x	VOC	СО	SO_2	PM_{10}	PM _{2.5}	DPM	CO_2e
Hotelling	668.2	24.7	59.0	2,359.6	127.3	101.8	31.9	140,710
Maneuvering	29.2	2.1	3.7	21.0	2.3	1.8	2.3	1,213
Total	697.4	26.8	62.7	2,380.7	129.6	103.7	34.2	141,923

3.8.3 Other Maritime Facilities Emission Estimates

Table 3.48 presents the port maneuvering and hotelling emission estimates associated with the other maritime facilities. The maneuvering emissions include the maneuvering for all movements (i.e., arrivals, departures and shifts). The hotelling emissions include emissions while the vessel is at berth.

Table 3.48: Other Maritime Facilities 2011 OGV Port Emissions by Mode, tpy

Mode	NO _x	VOC	СО	SO ₂	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
Hotelling	131.8	4.1	10.8	196.7	13.0	10.4	8.7	11,586
Maneuvering	5.2	0.3	0.6	3.8	0.4	0.3	0.4	221
Total	137.0	4.4	11.3	200.5	13.4	10.8	9.1	11,807

Figure 3.29 presents the 2011 distribution of maneuvering and hotelling emissions for the main public ports, petroleum facilities, and other maritime facilities. Approximately 55% of the NO_x, VOC, CO and DPM maneuvering and hotelling emissions are associated with public ports, about 35% of emissions are associated with petroleum facilities, and about 10% are associated with the other maritime facilities. For the PM₁₀, PM_{2.5} and SO₂ emissions, approximately 35% of the emissions are associated with public ports, 55% of the emissions are associated with petroleum facilities, and 10% are associated with other maritime facilities. Petroleum facilities may have a higher percentage of PM₁₀, PM_{2.5} and SO₂ emissions than the other pollutants due to the higher boiler loads needed during unloading.

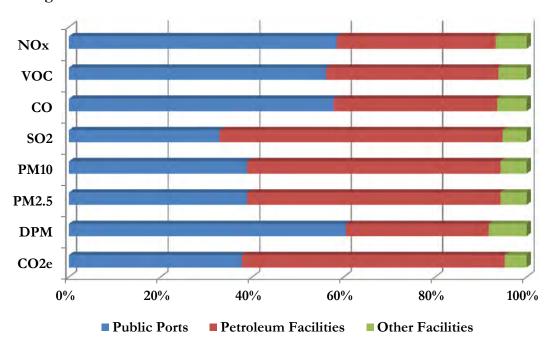


Figure 3.29: 2011 Distribution of Other Maritime Facilities Port Emissions

3.9 Emission Comparison, 2011 vs 2005

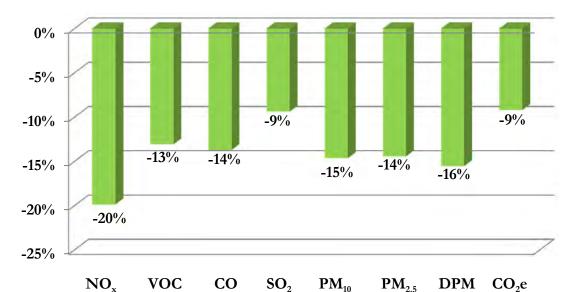

The OGV emission calculation methodology used in the 2011 inventory is similar to the methodology used in 2005. There were changes in how emissions were allocated based on the three additional zones added for 2011. Table 3.49 compares the total OGV emissions, which show a 9% to 20% reduction for 2011 emissions as compared to 2005. The emission reductions are greater than the 8% decrease in inbound vessel movement seen in 2011 from 2005 due to the emission reduction policies at Port of Tacoma and Port of Seattle for shore power and fuel switching at berth by participating shipping lines. Figure 3.30 presents the changes in 2011 from that in 2005. Table 3.50 presents the changes in OGV inbound movements in 2011 vs 2005.

Table 3.49: 2011 vs 2005 Total OGV Airshed Emissions Comparison, tpy

Emissions	NO_x	voc	СО	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
2011	11,658.2	442.2	1,035.6	11,709.0	879.6	703.7	711.1	737,640
2005	14,551.4	508.8	1,200.4	12,923.7	1,030.7	822.5	842.0	812,391
Change, tpy	-2,893.1	-66.6	-164.8	-1,214.7	-151.0	-118.8	-130.9	-74,751
Change, %	-20%	-13%	-14%	-9%	-15%	-14%	-16%	-9%

Figure 3.30: 2011 vs 2005 Total OGV Airshed Emissions Change

Note: 2005 emissions were recalculated using the same methods used for the 2011 emission estimates. The above figure accounts for these changes so that a direct comparison can be made between 2011 vs 2005.

Table 3.50: 2011 vs 2005 Total OGV Inbound Movements Comparison

Year	Inbound
	Movements
2011	4,128
2005	4,281
Change, %	-4%

SECTION 4 HARBOR VESSELS

Section 4 provides an overview of the harbor vessels operating in Puget Sound, describes the methodology used to estimate emissions, and summarizes the emission estimates for this source category.

4.1 Source Description

The harbor vessels designation is used to identify vessels that are not in the ocean-going vessel category. These vessels typically spend the majority of the time in the Puget Sound and/or coastal region and do not routinely make trans-Pacific crossings. Harbor vessels are divided into three groups: commercial harbor vessels, government (non-military) vessels, and recreational vessels.

Commercial harbor and government vessels included in this inventory are divided into the following vessel types:

- > Assist and escort tugboats
- > Harbor and ocean tugboats
- ➤ Government (non-military) vessels
- ➤ Work boats
- Commercial fishing vessels
- > Ferry vessels
- > Excursion vessels
- Tank barges

A description of each vessel type and operational profiles are further described for each vessel type in Section 4.4. Recreational vessels are presented in this section, but separately from the commercial harbor and government vessels (see Section 4.8). Table 4.1 presents the number of commercial harbor and government vessels inventoried for the Puget Sound in 2011 for each vessel type (this number does not include recreational vessels, see Section 4.8).

Table 4.1: 2011 Commercial Harbor and Government Vessel Counts by Vessel Type

Туре	Vessel Count
Assist/Escort	15
Commercial fishing	380
Excursion	60
Ferry	43
Government	65
Harbor tug	54
Ocean tug	57
Tank barge	12
Workboat	23
Total	709

Figure 4.1 presents the distribution of commercial harbor and government vessels inventoried for Puget Sound in 2011. Emission contribution by vessel type is presented in Figure 4.2 in section 4.7.

Figure 4.1: 2011 Commercial Harbor and Government Vessels Count by Vessel Type

Data for all engines for all vessels was not available for the 2011 inventory and it was decided to keep the 2005 data when the 2011 data was not available. Data was collected for about 264 vessels in 2011 out of the 709 vessels included in the inventory. For the remaining vessels, if 2011 data was not collected, it was assumed that the vessel information stayed the same as what was collected and used in 2005. With the data collected for 2011 and 2005 for vessels that remained in the 2011 inventory, about 1% of the engines were missing activity hours, horsepower or model year which is required for emission estimate calculations. Where data was available for engine model year, horsepower, and activity hours, the actual values were used as inputs to the emission model. For those vessels for which data was unavailable, the average engine model year, horsepower, and activity hours for vessels of that type were used as inputs to the emission model, consistent with the 2005 approach.

Recreational vessels are privately owned watercraft used for pleasure boating and are not associated with commercial or cargo related activities. Recreational vessels are included in the inventory as many of the ports have marinas that are used by recreational vessels (see Section 4.8).

4.2 Geographical Delineation

The geographical area in which the harbor vessels operate is similar to that of the area for ocean-going vessels. This area includes the U.S. portions of the Georgia Basin/Puget Sound International Airshed, as shown in Figure 1.1, and the twelve counties and six ports described in Section 1.2.4. Emissions from harbor vessels that routinely cross the international border are estimated for the U.S. portions of their operations. Emissions from U.S. based harbor vessels that traverse the Strait of Juan de Fuca are estimated regardless of whether the vessels travel on the U.S. side or the Canadian side of the international border, the same approach as for ocean-going vessels.

4.3 Data and Information Acquisition

To collect data for the commercial harbor and government vessels inventory, vessel owners and operators were identified and contacted on key operating parameters. The operating parameters of interest included the following:

- ➤ Vessel type
- Number, type and horsepower (or kilowatts) of main engine(s)
- Number, type and horsepower (or kilowatts) of auxiliary engines
- ➤ Hours of operation in Puget Sound for 2011
- ➤ Information on percentage of time operating within Puget Sound regions
- Annual fuel consumption
- Engine model year, and if engines on vessel had been replaced
- Emission reduction strategies including but not limited to: alternative fuels, retrofits with after-treatment, and shore power

Individual vessel data was not collected for recreational vessels. The number of slips, moorage balls, and transient dock space relating to the various private and public marinas was collected.

4.4 Operational Profiles

Commercial harbor vessel companies and government harbor vessel entities were identified and contacted to obtain the operating parameters of their vessels. Tables 4.2 and 4.3 summarize the main and auxiliary engine data respectively for the vessel. A main engine may also be referred to as a propulsion engine since it is normally used for propulsion. Auxiliary engines may also be referred to as diesel generators. While in transit, most harbor vessels only use one auxiliary engine along with the main engine(s). The activity hours for all engines are reflected in this inventory.

Data for all engines for all vessels was not available for the 2011 inventory and it was decided to keep the 2005 data when the 2011 data was not available. Using the 2005 data made the comparison be more apples to apples and it also minimized the data gap for estimating 2011 emissions. About 1% of the engines were missing activity hours, horsepower or model year which is required for emission estimate calculations. Where data was available for engine model year, horsepower, and activity hours, the actual values were used as inputs to the emission model. For those vessels for which data was unavailable, the average engine model year, horsepower, and activity hours for all vessels of that type were used as inputs to the emission model.

Tank barges are not self-propelled, thus they do not have propulsion engines, but do have auxiliary engines. The 12 tank barges included in the inventory have a total of 39 auxiliary engines combined.

In 2011, the entire diesel powered harbor vessel fleet used ULSD.

Table 4.2: 2011 Commercial Harbor and Government Vessel Propulsion Engines Inventory

Harbor Vessel	Vessel	Engine	M	odel yea	r	He	orsepow	er	Anı	nual Ho	urs
Type	Count	Count	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
Assist/Escort	15	32	1975	2010	1994	1,500	4,100	2,616	2,480	6,948	3,135
Commercial fishing	380	733	1913	2002	1976	110	6,200	718	48	144	49
Excursion	60	96	1970	2009	1992	85	2,990	433	10	3,000	879
Ferry	43	98	1959	2011	1996	250	4,4 00	1,973	0	6,836	4,420
Government	63	99	1940	2009	1991	10	3,500	1,002	40	2,700	838
Harbor tug	54	94	1944	2004	1979	135	3,600	856	0	5,000	1,540
Ocean tug	57	113	1966	2004	1981	365	5,100	2,156	0	5,000	498
Pilot boat	2	4	1999	2001	2000	1,100	1,100	1,100	763	834	799
Tank barge	12	0	na	na	na	na	na	na	na	na	na
Workboat	23	38	1955	2011	1984	45	1,910	453	0	7,360	840
Total	700	1 207									

Total 709 1,307

Table 4.3: 2011 Commercial Harbor and Government Vessel Auxiliary Engines Inventory

Harbor Vessel	Vessel	Engine	M	odel yea	r	He	orsepowe	er	Anı	nual Ho	urs
Type	Count	Count	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
Assist/Escort	15	34	1982	2010	1999	74	550	203	83	5,870	3,122
Commercial fishing	380	370	1913	2002	1976	100	900	298	48	144	49
Excursion	60	29	1974	2011	1992	13	150	43	60	2,000	697
Ferry	43	82	1959	2011	1997	13	1,210	378	0	7,015	2,110
Ferry boilers	na	35	1959	2004	1998	60	60	60	0	3,000	1,238
Government	63	28	1940	2007	1966	19	1,555	237	7	2,700	535
Harbor tug	54	74	1945	2006	1982	10	230	102	0	7,685	1,647
Ocean tug	57	126	1966	2011	1984	70	240	147	0	7,132	457
Pilot boat	2	4	1999	2001	2000	43	50	47	327	357	342
Tank barge	12	39	1980	2001	1990	80	240	185	18	3,586	1,087
Workboat	23	13	1967	2005	1982	130	318	197	0	1,403	321
Total	709	834									

The following subsections provide a brief description, counts, and operating highlights for each type of commercial harbor and government vessels included in the inventory.

4.4.1 Assist and Escort Tugboats

The main function of assist and escort tugboats is to assist ocean-going vessels in making turns, reducing speed, providing propulsion, and docking. The tugboats assist the OGVs to maneuver during arrival, departure and shifts from berth.

There are approximately 15 tugboats from two companies that primarily provide assist and escort services in Puget Sound. These tugboats may be assigned to a certain port or geographical area to lessen the transit time between jobs. The largest tugs are used for Puget Sound tanker escort service in Anacortes region where the oil terminals are mainly located.

Most of the tugboats have twin-screw propulsion engines. The horsepower per engine ranged from 1,500 hp to 4,100 hp with an average of 2,616 hp. The annual operating hours for main engines ranged from 2,480 hours to 6,948 hours, with an average of 3,135 hours. The main engine model years ranged from 1975 to 2010, with an average model year of 1994.

Most of the assist tugboats have two auxiliary engines to supply on-board power, but only one auxiliary engine is used at a time. The activity hours in this inventory reflect the interchangeable use of auxiliary engines. The horsepower for each auxiliary engine ranged from 74 hp to 550 hp, with an average of 203 hp. The annual operating hours ranged from 83 hours to 5,870 hours, with an average of 3,122 hours. The auxiliary engine model years ranged from 1982 to 2010, with an average of 1999.

4.4.2 Harbor and Ocean Tugboats

In Puget Sound, tugboats, towboats and push-boats are mainly referred to as harbor tugs or ocean tugs, depending where they do the work. Harbor tugs mainly stay within Puget Sound and ocean tugs mainly work outside the Puget Sound boundary and may transit in and out of their home facility a few times per year. Only the hours spent in Puget Sound were included in the inventory. The inventory includes 54 harbor tugs and 57 ocean tugs.

Most of the harbor tugboats have twin-screw propulsion engines, although some are single-screw. The horsepower of each engine ranged from 135 hp to 3,600 hp, with an average of 856 hp. The annual operating hours for main engines ranged from zero to 5,000 hours, with an average of 1,540 hours. The main engine model years ranged from 1944 to 2004, with an average model year of 1979.

The harbor tugboats have one or two auxiliary engines. The horsepower for each auxiliary engine ranged from 10 hp to 230 hp, with an average of 102 hp. The annual operating hours ranged from zero hours to 7,685 hours, with an average of 1,647 hours. The auxiliary engine model years ranged from 1945 to 2006, with an average model year of 1982.

The ocean tugboats have twin-screw propulsion engines. The horsepower of each engine ranged from 365 hp to 5,100 hp with an average of 2,156 hp. The annual operating hours for main engines ranged from zero to 5,000 hours, with an average of 498 hours. The main engine model years ranged from 1966 to 2004, with an average model year of 1981.

The harbor tugboats have one or two auxiliary engines. The horsepower for each auxiliary engine ranged from 70 hp to 240 hp, with an average of 147 hp. The annual operating hours ranged from zero hours to 7,132 hours, with an average of 457 hours. The auxiliary engine model years ranged from 1966 to 2011, with an average model year of 1984.

4.4.3 Commercial Fishing Vessels

Commercial fishing vessels are vessels dedicated to procuring fish and other seafood such as crab for the purpose of sale. In many cases operations are seasonal. There are numerous vessels classified as fishing vessels in Puget Sound. They range from the smaller fishing charter vessels to the larger commercial fishing vessels that go to Alaska. Seiners, crabbers, trollers, trawlers, longliners and gillnetters are included in this category along with their associated processing ships where the fish can be processed while at sea. The larger fishing vessels generally make one or two trips out to Alaska or the Bering Sea and into Puget Sound per year. While at dock, these vessels use shore power. Charter vessels, which are largely used for recreational fishing excursions, are not included in the commercial fishing vessel category but instead are included as excursion vessels.

The Puget Sound Vessel Traffic Services (VTS) data for commercial fishing vessels was used to update the commercial fishing vessels that transited Puget Sound in 2011. The VTS data included the vessel name and vessel identification number only and did not include specific engine data such as horsepower, model year or activity hours. The VTS file was similar to one received in 2005 that was used for the 2005 commercial fishing vessel category, so the data collection methodology was consistent with 2005. For the 2011 inventory, the 2011 VTS file was compared to the 2005 data for vessel name and vessel count. The vessel names/IDs listed in both 2011 and 2005 commercial fishing vessel inventory, were kept as well as the same assumptions made in 2005 for the horsepower, model year and activity hours. New vessel names in 2011 were added to the commercial fishing vessel inventory while those vessels in 2005 that were not listed in the 2011 VTS file were dropped from the 2011 commercial fishing inventory. As in 2005, the model year of the vessel was researched for the new 2011 vessels through the United States Coast Guard (USCG) Maritime information exchange²⁵. For the new 2011 vessels added, similar assumptions as in 2005 were made for horsepower, model year and activity hours.

²⁵See www.sgmix.uscg.mil/psix/psixsearch.aspx

In summary, the average commercial fishing vessels included in the 2011 Puget Sound inventory typically have two main engines and one auxiliary engine. Main engine power ranged from 110 hp to 6,200 hp with an average of 718 hp. The annual operating hours for main engines ranged from 48 hours to 144 hours, with an average of 49 hours. The low hours are due to the fact that these vessels do not fish in Puget Sound and only transit time was included. While in port, the main engines are turned off. In comparison to the other vessel types, the population for commercial fishing vessels is larger but the actual hours used are lower than the other vessel types. The main engines had a model year range from 1913 to 2002, with an average model year of 1976. The 1913 year found in the USCG database is more likely the vessel year instead of the engine model year. This could not be verified with the vessel owner; therefore the year is listed but not included in the average for commercial fishing average model year.

4.4.4 Ferry Vessels

Ferry vessels are self-propelled vessels that carry more than six passengers. Ferry vessels include the large ferries operated by Washington State Ferries (WSF) along with a few local ferries in the Puget Sound area. The WSF vessels have medium speed propulsion engines; several auxiliary engines used mainly for house load; one emergency generator not normally used but tested once a month; and one or two small auxiliary boilers used during the colder months of the year. In this respect, their engines are similar to the ocean-going vessels; however, they are considered harbor vessels since they only operate within Puget Sound. The ferries in the inventory each have at least two main engines. The engine power ranged from 250 to 4,400 hp, averaging 1,973 hp. The annual operating hours ranged from zero hours to 6,836 hours, with an average of 4,420 hours. The engine model years ranged from 1959 to 2011, with an average model year of 1996.

The horsepower for each auxiliary engine ranged from 13 hp to 1,210 hp, with an average of 378 hp. The annual operating hours ranged from zero hours to 7,015 hours, with an average of 2,110 hours. The auxiliary engines model years ranged from 1959 to 2011, with an average model year of 1997.

4.4.5 Excursion Vessels

Excursion vessels are smaller than ferry vessels and are used for harbor cruises, dining cruises, whale watching and other specialty cruises. Included with the excursion vessels are charter vessels that may be used for half day, whole day or multiple day fishing trips. In the Puget Sound area, there are numerous excursion vessel companies that own one or two vessels.

Excursion vessels have one to two main engines. Main engine power ranged from 85 hp to 2,990 hp, with an average of 433 hp. The annual operating hours for main engines ranged from 10 hours to 3,000 hours, with an average of 879 hours. The main engines had a model year range from 1970 to 2009, with an average model year of 1992.

Excursion vessels have either one or no auxiliary engines. The power for each auxiliary engine ranged from 13 hp to 150 hp, with an average of 43 hp. The annual operating hours ranged from 60 hours to 2,000 hours, with an average of 697 hours. The auxiliary engine model years ranged from 1974 to 2011, with an average model year of 1992.

4.4.6 Government Vessels

Pilot boats, Coast Guard vessels, National Oceanic and Atmospheric Administration research vessels, police patrol boats and fireboats, are included in this vessel type. A total of 63 government vessels are included in the inventory, in addition to two pilot boats. Although the pilot boats are not considered government vessels, they share the same load factors for emissions estimation purposes.

Government vessels have one or two main engines. Engine power ranged from 10 hp to 3,500 hp with an average of 1,002 hp. The annual operating hours from main engines ranged from 40 hours to 2,700 hours, with an average of 838 hours. The main engines had model years ranging from 1940 to 2009, with an average of model year of 1991.

The engine power for each auxiliary engine ranged from 19 hp to 1,555 hp, with an average of 237 hp. The annual operating hours ranged from seven hours to 2,700 hours, with an average of 535 hours. The auxiliary engines had a model year range from 1940 to 2007, with an average model year of 1966.

The two pilot boats have two main engines and two auxiliary engines with relatively new fuel-efficient engines. The horsepower of the main engines is 1,100 hp each. The main engine activity hours averaged 799. The auxiliary engines have an average of 47 hp and were used an average of 342 hours.

4.4.7 Work Boats

Work boats perform numerous duties within the harbor, such as utility inspection, surveying, spill/response, training and construction. There are a total of 23 workboats.

The workboats in the inventory for the most part have one main engine with a horsepower range of 45 hp to 1,910 hp, and an average of 453 hp. The annual operating hours for main engines ranged from zero hours to 7,360 hours, with an average of 840 hours. The main engines had a model year range from 1955 to 2011, with an average model year of 1984.

Workboats have either one or no auxiliary engines. The horsepower for each auxiliary engine ranged from 130 hp to 318 hp, with an average of 197 hp. The annual operating hours ranged from zero hours to 1,403 hours, with an average of 321 hours. The auxiliary engines had model years ranging from 1967 to 2005, with an average model year of 1982.

4.5 Emission Reduction Initiatives Identified

In 2011, all of the diesel-powered commercial harbor craft used ULSD. The suppliers in the Puget Sound region started supplying exclusively ULSD one year ahead of schedule of the phased-in EPA Nonroad Diesel Rule for locomotive and marine diesel fuel due to early ULSD production by U.S. Oil. This reduction has been included in the 2011 inventory.

A small percentage of companies repowered some of their vessels at their own expense or with assistance from federal grants. The reductions due to these repowers are included in the 2011 inventory.

In 2008, the federal Inland Marine and Locomotive Rule came into effect. It requires that when commercial harbor craft marine engines meeting certain criteria are overhauled, an EPA certified kit that reduces PM emissions by at least 25% must be installed. In the absence of a program to track the installation of these kits, these emission reductions are not included in the 2011 inventory.

4.6 Emissions Estimating Methodology

4.6.1 Emission Equations

The basic equation used to estimate harbor vessels emissions is:

Equation 4.1

$$E = kW \times Act \times LF \times EF \times FCF$$

Where:

E = emission, g/year

kW = kilowatts

Act = activity, hours/year

LF = load factor

EF = emission factor, g/kW-hr

FCF = fuel correction factor

The EPA emission factors are in g/kW-hr, therefore engine horsepower was converted to kilowatts by dividing the horsepower by 1.341 (one horsepower is equal to 0.746 kilowatts). The activity hours represent estimated annual hours of use in 2011 within the Puget Sound. The total annual hours were used to calculate harbor vessels emissions. The calculated emissions were converted to tons per year by dividing the emissions by 907,200 (which is 2,000 lb/ton x 453.6 g/lb).

4.6.2 Emission Factors for Diesel Engines

The emission factors for harbor vessels are based on marine engine standards (i.e., Tier 0 to Tier 3) and their respective EPA engine categories. In addition, EPA identified three categories for commercial marine vessel main propulsion engines and auxiliary engines:

- Category 1: 1-5 liters per cylinder displacement
- Category 2: 5-30 liters per cylinder displacement
- > Category 3: over 30 liters per cylinder displacement

Most commercial harbor vessels have Category 1 engines, except for some of the larger tugboats and larger commercial fishing vessels, which have Category 2 engines. In Puget Sound, approximately 90% of the harbor vessels inventoried had EPA Category 1 engines. The other 10% had EPA Category 2 engines.

The majority, 87%, of the diesel marine engines in this inventory have Tier 0 unregulated engines; the rest of the engines meet Tier 1, Tier 2 or Tier 3 engine standards. The various marine engine standards are listed below.

- Tier 0 marine engines are unregulated, older engines (1999 and prior)
- ➤ Tier 1 marine engine standards are voluntary under MARPOL Annex VI NO_x limits (model year 2000+)
- ➤ Tier 2 marine engine standards have been promulgated (mainly 2004+ model year engines and 2007+ for larger engines)
- Tier 3 marine engine standards (2009+ for 37 kW and smaller engines)

In summary, the use of a specific emission factor is dependent on engine power, engine model year, and engine cylinder displacement. The source of emission factors is listed in Table 4.4.

Table 4.4: Source of Emission Factors

Engine Standard	EPA Eng Category	Source of Emission Factor
Tier 0	Cat 1	1999 EPA RIA
Tier 0	Cat 2	2002 Entec
Tier 1	Cat 1	1999 EPA RIA, IMO $\mathrm{NO_{x}}$
Tier 1	Cat 2	2002 Entec, IMO NO_X
Tier 2	Cat 1	1999 EPA RIA
Tier 2	Cat 2	2002 Entec, 1999 EPA RIA
		40 CFR ²⁶ Part 94, Table 1 of
Tier 3	Cat 1	1042.101

The emission factors used for this study are listed in Table 4.5 for diesel-fueled main propulsion and auxiliary engines. The emission factors units are in grams per kilowatt-hour.

_

²⁶ CFR - Code of Federal Regulations

Table 4.5: Harbor Vessel Emission Factors for Diesel Engines, g/kW-hr

kW Range	Year Range	NO _x	VOC	СО	SO ₂	PM	CO ₂	N ₂ O	CH ₄
Tier 0 Engines	- Runge								
0 to 8	<2000	11.0	0.27	2.0	1.3	0.90	690	0.02	0.09
8 to 19	<2000	11.0	0.27	2.0	1.3	0.90	690	0.02	0.09
19 to 37	<1999	11.0	0.27	2.0	1.3	0.90	690	0.02	0.09
37 to 76	<2000	10.0	0.27	1.7	1.3	0.40	690	0.02	0.09
76 to 131	<2000	10.0	0.27	1.5	1.3	0.40	690	0.02	0.09
131 to 226	<2000	10.0	0.27	1.5	1.3	0.30	690	0.02	0.09
226 to 451	<2000	10.0	0.27	1.5	1.3	0.30	690	0.02	0.09
451 to 561	<2000	10.0	0.27	1.5	1.3	0.30	690	0.02	0.09
561 to 1,001	<2000	10.0	0.27	1.5	1.3	0.30	690	0.02	0.09
1,000+	<2000	13.0	0.27	2.5	1.3	0.30	690	0.02	0.09
Cat 2 Engines	<2000	13.2	0.50	1.1	1.3	0.72	690	0.02	0.09
Tier 1 Engines									,
0 to 8	2000-2005	10.23	0.27	2.0	1.3	0.9	690	0.02	0.09
8 to 19	2000-2005	9.23	0.27	2.0	1.3	0.8	690	0.02	0.09
19 to 37	2000-2004	9.23	0.27	2.0	1.3	0.8	690	0.02	0.09
37 to 76	2000-2004	9.80	0.27	1.7	1.3	0.4	690	0.02	0.09
76 to 131	2000-2004	9.80	0.27	1.5	1.3	0.4	690	0.02	0.09
131 to 226	2000-2004	9.80	0.27	1.5	1.3	0.3	690	0.02	0.09
226 to 451	2000-2004	9.80	0.27	1.5	1.3	0.3	690	0.02	0.09
451 to 561	2000-2004	9.80	0.27	1.5	1.3	0.3	690	0.02	0.09
561 to 1,001	2000-2004	10.0	0.27	1.5	1.3	0.3	690	0.02	0.09
1,000+	2000-2007	9.80	0.27	2.5	1.3	0.3	690	0.02	0.09
Cat 2 Engines	2000-2007	9.80	0.50	1.1	1.3	0.72	690	0.02	0.09
Tier 2 Engines									
0 to 8	2005-2009	7.23	0.27	5.0	1.3	0.8	690	0.02	0.09
8 to 19	2005-2009	7.23	0.27	5.0	1.3	0.8	690	0.02	0.09
19 to 37	2004-2009	7.23	0.27	5.0	1.3	0.6	690	0.02	0.09
37 to 76	2004-2013	6.80	0.27	5.0	1.3	0.3	690	0.02	0.09
76 to 131	2004-2013	6.80	0.27	5.0	1.3	0.3	690	0.02	0.09
131 to 226	2004-2013	6.80	0.27	5.0	1.3	0.3	690	0.02	0.09
226 to 451	2004-2013	6.80	0.27	5.0	1.3	0.3	690	0.02	0.09
451 to 561	2004-2013	6.80	0.27	5.0	1.3	0.3	690	0.02	0.09
561 to 1,001	2004-2013	6.80	0.27	5.0	1.3	0.3	690	0.02	0.09
1,000+	2007-2013	6.80	0.27	5.0	1.3	0.3	690	0.02	0.09
Cat 2 Engines	2007-2013	9.80	0.50	5.0	1.3	0.5	690	0.02	0.09
Tier 3 Engines									
0 to 8	2009+	7.23	0.27	5.0	1.3	0.4	690	0.02	0.09
8 to 19	2009+	7.23	0.27	5.0	1.3	0.4	690	0.02	0.09
19 to 37	2009+	7.23	0.27	5.0	1.3	0.3	690	0.02	0.09

4.6.3 Fuel Correction Factors for Diesel Alternatives

Fuel correction factors, shown in Table 4.6, were applied to the vessels using ULSD, which are consistent with the factors used in 2005. The emission factors used for this study and listed in Table 4.5, are based on use of EPA non-road diesel fuel and thus need to be adjusted to account for alternative fuels.

Table 4.6: Fuel Correction Factors

Fuel	NO _x	voc	CO	SO_2	PM	CO_2	N ₂ O	CH ₄
ULSD	1.00	1.00	1.00	0.005	0.86	1.00	1.00	1.00

4.6.4 Emission Factors for Gasoline Engines

Two percent of the commercial harbor vessels are powered with gasoline engines. These are mainly government vessels, such as patrol boats with 2-stroke and 4-stroke gasoline engines. The emission factors for gasoline engines are different than those described previously for diesel engines. The emission factor units, taken from EPA's guidance for recreational marine exhaust emission factors, ²⁷ were converted from g/bhp-hr to g/kW-hr. Evaporative emissions from gasoline engines are not included since they are insignificant for the small number of gasoline-powered commercial harbor vessels in this inventory. The emission factor for particulate matter is listed in Table 4.7. PM₁₀ is 100% of PM, PM_{2.5} is 92%²⁸ of PM, and DPM is zero for gasoline.

Table 4.7: Harbor Vessel Emission Factors for Gasoline Engines, g/kW-hr

Power (kW)	Stroke	NO _x	voc	CO	SO_2	PM	CO_2	N_2O	\mathbf{CH}_{4}
7 to 12	2	2.6	229.0	314.7	3.1	3.9	2376	0.06	0.13
12 to 19	2	2.6	189.0	273.8	3.2	3.1	2298	0.06	0.13
19 to 30	2	2.6	149.1	273.8	2.9	3	1980	0.05	0.11
30 to 37	2	2.6	143.8	273.8	2.8	2.8	1902	0.05	0.11
37 to 75	2	2.6	137.5	273.8	2.3	2.5	1632	0.04	0.09
75 to 130	2	2.6	124	273.8	2.3	2.5	1584	0.04	0.09
75 to 130	4	7.3	7.8	182.9	2.5	0.1	1321	0.03	0.07
131 to 745	4	7.3	7.8	188.7	2.4	0.1	1251	0.03	0.07

²⁷ EPA, Exhaust Emission Factors for Nonroad Engine Modeling: Spark Ignition, December 2005.

²⁸ EPA, NONROAD.

4.6.5 Fuel Correction Factors for Gasoline Engines

The SO_2 emission factor is based on S content of 330 ppm. In 2011, the average S content of the gasoline fuel was 30 ppm. Therefore a fuel correction of .091 was applied to estimate SO_2 emissions.

4.6.6 Engine Load Factors

Engine load factors represent the load applied to an engine or the percentage of rated engine power that is applied during the engine's operation. Depending on the duration of the period being estimated, the load factor can represent an hourly average, daily average, or annual average load applied to an engine while it is in operation. Table 4.8 summarizes the annual average engine load factors that were used in this inventory for the harbor craft vessel types for their propulsion and auxiliary engines.

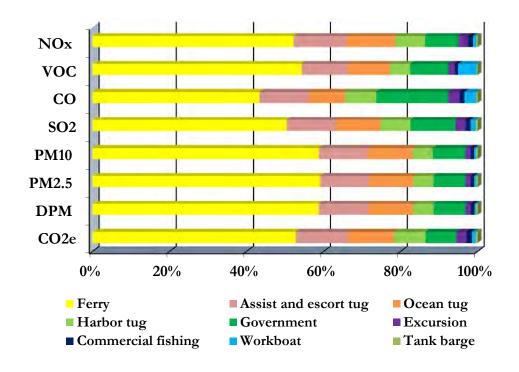
Table 4.8: Load Factors

Harbor Vessel Type	Propulsion Engine	Source	Auxiliary Engine	Source
Assist and Escort	0.31	2001 POLA EI	0.43	EPA NONROAD
Harbor Tug	0.31	2001 POLA EI	0.43	EPA NONROAD
Ocean Tug	0.68	EPA NONROAD	0.43	EPA NONROAD
Commercial Fishing	0.30	EPA NONROAD	0.30	EPA NONROAD
Ferry	0.34	WSF 2011 data	0.43	EPA NONROAD
Excursion	0.42	EPA NONROAD	0.43	EPA NONROAD
Government	0.51	EPA NONROAD	0.43	EPA NONROAD
Pilot Boat	0.51	EPA NONROAD	0.43	EPA NONROAD
Tank Barge	na	na	0.43	EPA NONROAD
Workboat	0.38	CARB	0.32	CARB

The 31% engine load factor for assist/escort and harbor tugboats is based on actual vessel engine load readings published in the 2001 *Port of Los Angeles Baseline Air Emissions Inventory*. The 43% engine load factor used for the auxiliary engines is obtained from the EPA NONROAD model guidance²⁹ which used some direct measurements and has been used in previous studies.³⁰ The ferry's 34% engine load factor is based on data provided by Washington State Ferries engineers. The workboat propulsion and auxiliary engine load factors are from California Air Resources' *Emissions Estimation Methodology for Commercial Harbor Craft Operating in California, Appendix B.* All other load factors are from EPA NONROAD.

²⁹ EPA, Median Life, Annual Activity, and Load Factor Values for Nonroad Engine Emissions Modeling, December 2002.

³⁰ Starcrest, Update to the Commercial Marine Inventory for Texas to Review Emission Factors, Consider a Ton-mile EI Method, and Revise Emissions for the Beaumont-Port Arthur Nonattainment Area, January 2004.

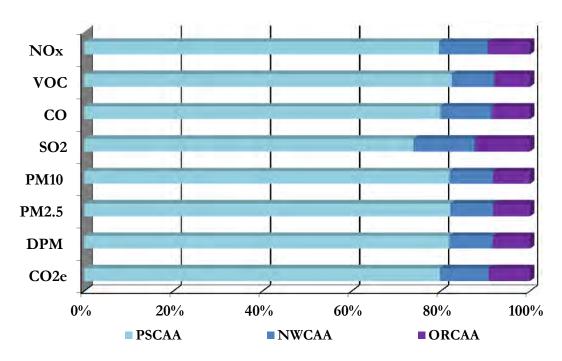

4.7 Commercial Harbor and Government (non military) Vessel Emissions Estimates

The 2011harbor vessel emissions for Puget Sound are summarized in this section. Table 4.9 presents the 2011 harbor vessel emissions by vessel type for Puget Sound in tons per year (tpy). Figure 4.2 presents that almost half of the commercial harbor and government vessel emissions are attributable to ferries, followed by assist tugs, ocean tugs and government vessels.

Table 4.9: 2011 Commercial Harbor and Government Vessel Emissions by Vessel Type, tpy

Type	NO _x	VOC	CO	SO_2	PM ₁₀	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
Assist/Escort	855.1	29.6	130.9	0.5	34.9	32.1	34.9	51,236
Commercial fishing	84.2	2.2	13.1	0.1	2.3	2.2	2.3	5,448
Excursion	151.4	3.9	29.0	0.1	3.9	3.7	3.9	9,900
Ferry	3,266.0	134.0	443.1	1.9	159.8	150.0	159.8	201,112
Government	543.3	24.8	192.0	0.4	22.8	20.9	22.7	30,543
Harbor tug	483.0	13.1	83.6	0.3	14.4	13.4	14.4	31,370
Ocean tug	791.4	26.9	94.7	0.4	31.7	29.2	31.7	45,973
Tank barge	27.7	0.7	4.2	0.0	1.0	0.9	1.0	1,936
Workboat	50.9	11.9	31.3	0.1	1.6	1.5	1.4	3,758
Total	6,253.0	247.2	1,021.9	3.7	272.3	253.7	272.1	381,275

Figure 4.2: 2011 Commercial Harbor and Government Vessel Emissions by Vessel Type


First, the emissions were estimated by regional clean air agency jurisdictions, as described in Section 2.1.2, based on discussions with vessel owners. They were then subdivided by county based on knowledge of where the various vessels types transit.

The emission results for each of the three regional clean air agency regions covered by this inventory are summarized in Table 4.10. Figure 4.3 illustrates that approximately 80% of the commercial harbor and government vessel emissions are in PSCAA region.

Table 4.10: 2011 Commercial Harbor and Government Vessel Emissions by Regional Clean Air Agency, tpy

Clean Air Agency	NO _x	voc	СО	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
NWCAA	680.2	23.4	117.5	0.6	26.6	24.5	26.6	41,543
ORCAA	603.3	20.1	88.1	0.5	22.7	20.9	22.7	35,615
PSCAA	4,969.5	203.7	816.2	3.0	223.0	208.3	222.8	304,117
Total	6,253.0	247.2	1,021.9	4.0	272.3	253.7	272.1	381,275

Figure 4.3: 2011 Commercial Harbor and Government Vessel Emissions by Regional Clean Air Agency

The emission results for each of the 12 counties covered by this inventory are summarized in Table 4.11 by county. The same methodology used in the 2005 PSEI report for allocating the emissions by county was used. Percentages were used for five zones (ORCAA, PSCAA1, PSCAA2, PSCAA3, and NWCAA) based on the general amount of time spent in each zone. Island, San Juan, Skagit, and Whatcom Counties are included in the NWCAA zone and the emissions are divided equally among these four counties. Clallam, Jefferson, Mason, and Thurston Counties are included in the ORCAA zone with the following emissions distribution: 80% for Clallam, 0% for Jefferson, 10% for Mason, and 10% for Thurston. PSCAA1 zone is Pierce County. PSCAA2 zone emission distribution is 75% King County and 25% Kitsap County. PSCAA3 zone is Snohomish County.

Table 4.11: 2011 Commercial Harbor and Government Vessel Emissions by County, tpy

	NO	WOO	00	0.0	D) (DIA	DD14	
County	NO_x	VOC	CO	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO_2e
Clallam	482.7	16.1	70.5	0.4	18.2	16.7	18.2	28,492
Island	170.1	5.8	29.4	0.1	6.7	6.1	6.7	10,386
Jefferson	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
King	1,958.5	85.3	318.6	1.2	89.4	83.6	89.2	119,139
Kitsap	652.8	28.4	106.2	0.4	29.8	27.9	29.7	39,713
Mason	60.3	2.0	8.8	0.0	2.3	2.1	2.3	3,561
Pierce	802.2	27.9	153.4	0.5	30.9	28.5	30.9	48,802.6
San Juan	170.1	5.8	29.4	0.1	6.7	6.1	6.7	10,386
Skagit	170.1	5.8	29.4	0.1	6.7	6.1	6.7	10,386
Snohomish	1,555.9	62.2	238.0	0.9	72.9	68.3	72.9	96,462.2
Thurston	60.3	2.0	8.8	0.0	2.3	2.1	2.3	3,561
Whatcom	170.1	5.8	29.4	0.1	6.7	6.1	6.7	10,386
Total	6,253.0	247.2	1,021.9	4.0	272.3	253.7	272.1	381,275

4.8 Recreational Vessels

Recreational vessels were included into the original 2005 inventory for the sake of completeness and because several of the participating ports owned public marinas. The number of recreational vessels was determined based on the methodology used in 2005 which assumed that the number of vessels at public and private marinas equaled the number of slips plus extra dock space that some marinas have available (conservatively high assumption). Vessel numbers were then allocated between sailing and motorized recreational vessels and emissions estimated. The same approach was taken in 2011, based on the 2005 methods.

Due to limited funds only a small number public and private marinas were contacted in 2011 for slip count numbers to determine if the number of slips changed significantly since 2005. For 2011, there were 23,771 slips identified compared to 24,387 slips in 2005. For the few marinas that provided occupancy rates for 2011, which included some public and private marinas in the Everett, Seattle and Tacoma areas, the occupancy rate was used and averaged about 84% for private marinas and 87% for public marinas in 2011. For those public and private marinas not contacted in 2011, which were the majority of the marinas, the 2005 vessel counts were used with assumption that there were no changes in the number of slips or occupancy since 2005. The most typical uses for recreational vessels are fishing, cruising, swimming, sightseeing, entertaining, water skiing, etc.

Table 4.12 lists of the public marinas associated with public port authorities included in this study. For purposes of estimating vessel numbers and calculating emissions, slip count was considered to be the same as vessel count, although in actuality a slip may moor more than one vessel, also slips are sometimes unoccupied.

Table 4.12: 2011 Public Marina Vessel Counts by Associated Port and County

Marina	County	Associated Port	Total Vessel
Loha Wayaa Marina	Clallam	Dout America	Count 280
John Wayne Marina	Clallam	Port Angeles	520
Port Angeles Boat Haven Port of Everett Marina		Port Angeles	
	Snohomish	Port of Everett	2,050
12th Street Yacht Basin	Snohomish	Port of Everett	225
Cap Sante Boat Haven	Skagit	Port of Anacortes	1,000
Blaine Harbor	Whatcom	Port of Bellingham	629
Squalicum	Whatcom	Port of Bellingham	1,415
Bremerton	Kitsap	Port of Bremerton	45
Port Orchard	Kitsap	Port of Bremerton	375
Port of Brownsville	Kitsap	Port of Brownsville	335
Coupeville Wharf	Island	Port of Coupeville	340
Edmonds Marina	Snohomish	Port of Edmonds	292
Friday Harbor	San Juan	Port of Friday Harbor	500
Keyport Marina	Kitsap	Port of Keyport	28
Cove Marina	Kitsap	Port of Kingston	300
Swantown	Thurston	Port of Olympia	700
Point Hudson	Jefferson	Port of Port Townsend	45
Boat Haven	Jefferson	Port of Port Townsend	475
Herb Beck Marina	Jefferson	Port of Port Townsend	50
Poulsbo Marina	Kitsap	Port of Poulsbo	400
Fishermen's Terminal	King	Port of Seattle	165
Harbor Island	King	Port of Seattle	65
Shilshole Bay Marina	King	Port of Seattle	1,411
Bell Harbor Marina	King	Port of Seattle	45
Shelton Marina	Mason	Port of Shelton	50
La Conner Marina	Skagit	Port of Skagit	460
Ole & Charlie's	Pierce	Port of Tacoma	70

12,270

Table 4.13 lists the marinas owned by private and other non-port, public entities included in this study. The slip count included permanent slips, transient slips, moorage balls, and transient dock space. The dock space was converted from linear feet to number of vessels by dividing by 15 feet, an assumed average length for recreational vessels in the area.

Table 4.13: 2011 Private Marinas and Other Non-Port Public Entities Vessel Counts by County

			Total
Marina	Location	County	Vessel
			Count
La Push Marina	La Push	Clallam	92
Port of Neah Bay	Neah Bay	Clallam	303
City of Langley Boat Harbor	Langley	Island	67
Deception Pass Marina	Oak Harbor	Island	70
Oak Harbor Marina	Oak Harbor	Island	404
Pleasant Harbor Marina	Brinnon	Jefferson	312
Port Hadlock Marina	Port Hadlock	Jefferson	164
City of des Moines Marina	Des Moines	King	915
Eagle Harbor Marina	Bainbridge Is.	King	107
Elliott Bay Marina	Seattle	King	1,200
Fairview Marina	Seattle	King	157
Harbour Village Marina	Kenmore	King	137
Hood Canal Marina		***	4.00
(Alderbrook)	Union	King	100
Port Washington Marina	Bremerton	King	81
Sagstad Marina	Seattle	King	40
Salmon Bay Marina	Seattle	King	168
Bainbridge Island Marina	Bainbridge Is.	Kitsap	173
Harbour Marina	Bainbridge Is.	Kitsap	50
Liberty Bay Marina	Poulsbo	Kitsap	177
Point Hudson Marina	Port Townsend	Kitsap	150
Port Ludlow Marina	Port Ludlow	Kitsap	353
Port Orchard Yacht Club	Port Orchard	Kitsap	78
Seabeck Marina	Seabeck	Kitsap	125
Winslow Wharf Marina	Bainbridge Is.	Kitsap	239
Jarrell's Cove Marina	Shelton	Mason	20

Table 4.13: 2011 Private Marinas and Other Non-Port Public Entities Vessel Counts by County (cont'd)

Marina	Location	County	Total Vessel Count
Arabella's Landing	Gig Harbor	Pierce	103
Breakwater Marina	Tacoma	Pierce	123
Chinook Landing Marina	Tacoma	Pierce	210
Crow's Nest Marina	Tacoma	Pierce	109
Dock Street Marina	Tacoma	Pierce	0
Fair Harbor Marina	Grapeview	Pierce	78
Foss Harbor Marina	Tacoma	Pierce	344
Foss Waterway Marina	Tacoma	Pierce	50
Longbranch Marina	Longbranch	Pierce	86
Murphy's Landing	Gig Harbor	Pierce	85
Narrows Marina	Tacoma	Pierce	26
Peninsula Yacht Basin	Gig Harbor	Pierce	100
Point Defiance Boathouse Marina	Tacoma	Pierce	0
Port of Allyn	Allyn	Pierce	10
Blakely Island Marina	Blakely Island	San Juan	45
Cayou Quay Marina	Deer Harbor	San Juan	118
Deer Harbor Marina	Deer Harbor	San Juan	125
Islands Marina Center	Lopez Island	San Juan	100
Lopez Islander Resort & Marina	Lopez Island	San Juan	110
Quartermaster Yacht Club	Burton	San Juan	65
Roche Harbor Resort & Marina	Roche Harbor	San Juan	377
Rosario Resort Marina	Eastbound	San Juan	35
Skyline Marina	Anacortes	San Juan	600
Snug Harbor Marina Resort	Friday Harbor	San Juan	72
Stuart Island	•	San Juan	83
Sucia Island		San Juan	95
West Beach Resort & Marina	Eastbound	San Juan	55
West Sound Marina	Orcas Island	San Juan	157
Anchor Cove Marina	Anacortes	Skagit	166
LaConner City Floats	LaConner	Skagit	7
Lovric's Landing	Anacortes	Skagit	87
Shelter Bay Marina	LaConner	Skagit	330
12th St Yacht Basin	Everett	Snohomish	155
Boston Harbor Marina	Olympia	Thurston	110
Zittles Marina	Olympia	Thurston	200
Fisherman's Cove Marina	Bellingham	Whatcom	58
Point Roberts Marina	Point Roberts	Whatcom	1,048
Semiahmoo Marina	Blaine	Whatcom	296
			11 501

11,501

EPA's NONROAD model was used to estimate recreational vessel emissions for outboard gasoline engines, inboard gasoline engines and inboard diesel engines. The same 2005 average horsepower, listed in Table 4.14, was used for each engine type for recreational vessels in 2011. Since there is no actual data on the engine power, the same assumptions were used from the baseline inventory. Evaporative emissions from the gasoline engines are included in the emissions estimates. The only data used from 2011 was the updated vessel count.

Table 4.14: 2011 Recreational Vessel Fuel and Average Horsepower by Vessel Type

Vessel Type	Fuel	Power (hp)
Vessel outboard engines, runabouts	Gasoline	40
Vessel inboard engines, cabin boats	Gasoline	150
Vessels inboard engines	Gasoline	70
Vessel inboard Engines	Diesel	400
Sailboat auxiliary outboard engines	Gasoline	6
Sailboat auxiliary inboard engines	Diesel	34

Table 4.15 presents the 2011 total recreational vessel airshed emissions by county in tons per year. These emissions include vessels utilizing port-owned marinas, private marinas, and marinas of other non-port, public entities.

Table 4.15: 2011 Recreational Vessel Airshed Emissions by County, tpy

County	NO_x	voc	СО	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO_2e
Clallam	39.8	43.9	432.5	0.1	1.0	0.9	0.3	4,992
Island	31.9	35.1	346.0	0.1	0.8	0.7	0.2	3,994
Jefferson	31.9	35.1	346.0	0.1	0.8	0.7	0.2	3,994
King	151.4	166.6	1,643.6	0.3	3.6	3.4	1.1	18,971
Kitsap	95.6	105.2	1,038.1	0.2	2.3	2.2	0.7	11,982
Mason	2.4	2.6	26.0	0.0	0.1	0.1	0.0	300
Pierce	47.8	52.6	519.0	0.1	1.2	1.1	0.3	5,991
San Juan	87.6	96.5	951.6	0.2	2.1	2.0	0.6	10,983
Skagit	71.7	78.9	778.5	0.1	1.7	1.6	0.5	8,986
Snohomish	87.6	96.5	951.6	0.2	2.1	2.0	0.6	10,983
Thurston	33.5	36.8	363.3	0.1	0.8	0.8	0.2	4,194
Whatcom	115.5	127.2	1,254.3	0.2	2.8	2.6	0.8	14,478
Total	796.6	877.0	8,650.5	1.6	19.2	17.9	5.6	99,848

2011 Puget Sound Maritime Air Emissions Inventory Section 4 Harbor Vessels

Table 4.16 presents the total 2011 recreational vessel airshed emissions for only port-owned marinas in tons per year. These values are included in the total recreational vessel emissions reported in the prior table, but are listed separately here for the benefit of port authorities who are interested in emissions for a marina associated with their respective port.

Table 4.16: 2011 Recreational Vessel Airshed Emissions by Public Marinaand Associated Port, tpy

Marina	Associated Port	NO _x	VOC	СО	SO_2	PM ₁₀	$PM_{2.5}$	DPM	CO ₂ e
John Wayne Marina	Port Angeles	9.4	10.3	101.9	0.0	0.2	0.2	0.1	1,176
P. A. Boat Haven	Port Angeles	17.4	19.2	189.3	0.0	0.4	0.4	0.1	2,184
Port of Everett Marina	Port of Everett	68.7	75.6	746.1	0.1	1.7	1.5	0.5	8,612
12th Street Yacht Basin	Port of Everett	7.5	8.3	81.9	0.0	0.2	0.2	0.1	945
Cap Sante Boat Haven	Port of Anacortes	33.5	36.9	363.9	0.1	0.8	0.8	0.2	4,201
Blaine Harbor	Port of Bellingham	21.1	23.2	228.9	0.0	0.5	0.5	0.1	2,642
Squalicum	Port of Bellingham	47.4	52.2	515.0	0.1	1.1	1.1	0.3	5,944
Bremerton	Port of Bremerton	1.5	1.7	16.4	0.0	0.0	0.0	0.0	189
Port Orchard	Port of Bremerton	12.6	13.8	136.5	0.0	0.3	0.3	0.1	1,575
Port of Brownsville	Port of Brownsville	11.2	12.4	121.9	0.0	0.3	0.3	0.1	1,407
Coupeville Wharf	Port of Coupeville	11.4	12.5	123.7	0.0	0.3	0.3	0.1	1,428
Edmonds Marina	Port of Edmonds	9.8	10.8	106.3	0.0	0.2	0.2	0.1	1,227
Friday Harbor	Port of Friday Harbor	16.8	18.4	182.0	0.0	0.4	0.4	0.1	2,100
Keyport Marina	Port of Keyport	0.9	1.0	10.2	0.0	0.0	0.0	0.0	118
Cove Marina	Port of Kingston	10.1	11.1	109.2	0.0	0.2	0.2	0.1	1,260
Swantown	Port of Olympia	23.5	25.8	254.8	0.0	0.6	0.5	0.2	2,941
Point Hudson	Port of Port Townsend	1.5	1.7	16.4	0.0	0.0	0.0	0.0	189
Boat Haven	Port of Port Townsend	15.9	17.5	172.9	0.0	0.4	0.4	0.1	1,995
Herb Beck Marina	Port of Port Townsend	1.7	1.8	18.2	0.0	0.0	0.0	0.0	210
Poulsbo Marina	Port of Poulsbo	13.4	14.8	145.6	0.0	0.3	0.3	0.1	1,680
Fishermen's Terminal	Port of Seattle	5.5	6.1	60.1	0.0	0.1	0.1	0.0	693
Harbor Island	Port of Seattle	2.2	2.4	23.7	0.0	0.1	0.0	0.0	273
Shilshole Bay Marina	Port of Seattle	47.3	52.1	513.5	0.1	1.1	1.1	0.3	5,928
Bell Harbor Marina	Port of Seattle	1.5	1.7	16.4	0.0	0.0	0.0	0.0	189
Shelton Marina	Port of Shelton	1.7	1.8	18.2	0.0	0.0	0.0	0.0	210
La Conner Marina	Port of Skagit	15.4	17.0	167.4	0.0	0.4	0.3	0.1	1,932
Ole & Charlie's	Port of Tacoma	2.3	2.6	25.5	0.0	0.1	0.1	0.0	294
Total		411.2	452.7	4,465.6	0.8	9.9	9.3	2.9	51,545

4.9 Emission Comparison, 2011 vs 2005

The emissions calculation methodology was similar to the methodology used in 2005, with the exception of updated load factors used in 2011. Table 4.17 lists the vessel and engine types that had updated load factors in 2011 based on updated factors, better information provided by vessel operators, or other applicable studies. The other harbor vessel load factors remained the same as 2005 and the complete list of 2011 load factors are listed previously in Table 4.8.

For harbor vessel emissions comparison, the 2005 emissions were adjusted for the updated load so that the emissions would be comparable.

Table 4.17: 2011 vs 2005 Load Factor Changes

Harbor Vessel Type	Engine Type	2011 LF	2005 LF
Harbor Tug	Propulsion	0.31	0.68
Ferry	Propulsion	0.34	0.76
Excursion	Propulsion	0.42	0.76
Workboat	Propulsion	0.38	0.45
Workboat	Auxiliary	0.32	0.43

Table 4.18 presents an 11% increase in activity in 2011 as compared to 2005. The vessel count did not change significantly.

Table 4.18: 2011 vs 2005 Harbor Vessel Count Comparison

Year	Activity (hp hr)	Count
2011	664,138,311	709
2005	594,442,588	704
Change, %	12%	1%

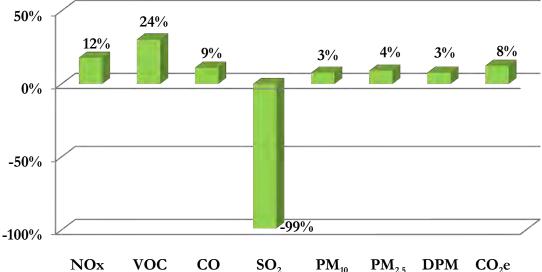


Table 4.19 and Figure 4.4 present the total net change in emissions for total harbor craft, including tank barges, in 2011 as compared to 2005. With the exception of SO₂ emissions, the harbor craft emissions increased for all pollutants by 6% to 28% in 2011 when compared to 2005. The increase in emissions, with the exception for SO_x, is due to a number of reasons. The activity increased 12% (see Table 4.20) in 2011 and the fleet changed from 2005 for some of the vessel types and there was an increase in category 2 engines which have higher emission factors than category 1 engines. The NO_x and VOC increase is greater than the activity increase and this reflects the fact that there was an increase in category 2 engines which have higher NO_x, VOC, and PM emission rates than Category 1 engines. increase in PM and DPM is less than the activity increase and this reflects the reduction that occurred due to the use of ULSD, but there was still an increase in PM emissions due to the The SO₂ emissions decreased increased activity and rise in category 2 engine count. significantly in 2011 due to the availability and use of ULSD in 2011 by the vessels with diesel engines one year ahead of the EPA mandated marine and locomotive low sulfur diesel fuel requirement.

Table 4.19: 2011 vs 2005 Commercial Harbor and Government Vessel Emissions Comparison, tpy

Year	NO _x	VOC	СО	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO_2e
2011	6,253.0	247.2	1,021.9	3.7	272.3	253.7	272.1	381,275
2005	5,568.7	199.6	941.5	358.5	265.4	244.1	265.1	353,178
Change, tpy	684.3	47.6	80.3	-354.8	7.0	9.6	7.0	28,097
Change, %	12%	24%	9%	-99%	3%	4%	3%	8%

Figure 4.4: 2011 vs 2005 Commercial Harbor and Government Vessel Emissions Change

Note: 2005 emissions were recalculated using the same methods used for the 2011 emission estimates. The above figure accounts for these changes so that a direct comparison can be made between 2011 vs 2005.

Table 4.20 presents the changes in activity (hp-hr) by vessel type. The changes in activity are due to both changes in activity hours and engine horsepower. The activity is calculated by multiplying the horsepower times the activity hours times the load factor. For 2005 activity, the updated 2011 load factors were used in order to do the comparison.

Table 4.20: 2011 vs 2005 Harbor Vesel Activity Change

Туре	2005 hp-hr	2011 hp-hr	% Change
Assist/Escort	81,212,373	89,289,023	10%
Commercial fishing	10,558,042	9,493,618	-10%
Excursion	16,962,842	17,248,062	2%
Ferry	314,514,283	350,485,994	11%
Government	56,818,977	52,947,794	-7%
Harbor tug	45,559,880	54,657,979	20%
Ocean tug	86,344,802	80,122,263	-7%
Tank barge	3,006,689	3,373,361	12%
Workboat	4,250,700	6,520,218	53%
Total	619,228,588	664,138,311	7%

The government activity doubled in 2011, as presented in Table 4.21, due to the data collected in 2011 which added vessels to the government fleet and increased the government engine count by about 28 engines from what was included in the 2005 inventory.

Table 4.21: 2011 vs 2005 Commercial Harbor and Government Vessel Average Operational Hours Comparison

_	Pr	opulsion l	Engine	Auxiliary Engine			
Type	2005	2005 2011 Percent		2005	2011	Percent	
	(hours)	(hours)		(hours)	(hours)		
Assist/ Escort	2,673	3,135	17%	3,644	3,122	-14%	
Commercial fishing	49	49	-1%	49	49	-1%	
Excursion	862	879	2%	607	697	15%	
Ferry	3,695	4,420	20%	1,836	2,110	15%	
Government	654	838	28%	664	535	-19%	
Harbor tug	1540	1,540	0%	1024	1,647	61%	
Ocean tug	498	498	0%	498	457	-8%	
Pilot boat	2,675	799	-70%	1,000	342	-66%	
Tank barge	na	na	na	na	1,087	na	
Workboat	554	840	52%	577	321	-44%	

Table 4.22 compares the average engine horsepower for propulsion and auxiliary engine.

Table 4.22: 2011 vs 2005 Commercial Harbor and Government Vessel Average Engine Horsepower by Engine and Vessel Type, hp

	Pro	pulsion En	gine	Au	xiliary En	gine
Type	2005	2011	Percent	2005	2011	Percent
	(hp)	(hp)		(hp)	(hp)	
Assist/Escort	2,123	2,616	23%	134	203	51%
Commercial fishing	750	718	-4%	na	298	na
Excursion	432	433	0%	43	43	1%
Ferry	1,845	1,973	7%	363	378	4%
Government	880	1,002	14%	143	237	66%
Harbor tug	856	856	0%	86	102	19%
Ocean tug	2,156	2,156	0%	133	147	10%
Pilot boat	1,100	1,100	0%	47	47	0%
Tank barge	na	na	na	na	185	na
Workboat	376	453	20%	173	197	14%

Table 4.23 presents the average engine model year and age in 2011 and 2005 for propulsion engines.

Table 4.23: 2011 vs 2005 Commercial Harbor and Government Vessel Average Propulsion Engine Model Year by Vessel Type

Туре	2005 MY (year)	2011 MY (year)	2005 Age	2011 Age
Assist/Escort	1986	1994	19	17
Commercial fishing	1973	1976	32	35
Excursion	1992	1992	13	19
Ferry	1996	1996	9	15
Government	1990	1991	15	20
Harbor tug	1979	1979	26	32
Ocean tug	1981	1981	24	30
Pilot boat	2000	2000	5	11
Tank barge	na	na	na	na
Workboat	1983	1984	22	27

Table 4.24 presents the average engine model year and age in 2011 and 2005 for auxiliary engines.

Table 4.24: 2011 vs 2005 Commercial Harbor and Government Vessel Average Auxiliary Engine Model Year by Vessel Type

Туре	2005 MY (year)	2011 MY (year)	2005 Age	2011 Age
Assist/Escort	1985	1999	20	12
Commercial fishing	1973	1976	32	35
Excursion	na	1992	na	19
Ferry	1994	1997	11	14
Government	1945	1966	60	45
Harbor tug	1977	1982	28	29
Ocean tug	1982	1984	23	27
Pilot boat	2000	2000	5	11
Tank barge	na	1990	na	21
Workboat	1976	1982	29	29

For the recreational vessel emission comparison, the 2005 emission estimates were remodeled used the NONROAD2008a model to be comparable to the 2011 emissions. The original 2005 emissions were based on the NONROAD2005c model. The differences between 2011 vs 2005 in Table 4.25 are due to the following contributing factors: 1) 3% decrease in the number of recreational vessels (see Table 4.26); 2) the use of ULSD in 2011 by diesel powered recreational vessels and the use of lower sulfur gasoline in 2011 by gasoline powered recreational vessels; 3) the improvement of gasoline and marine diesel engine standards, which came into effect in 2007 for Tier 2 gasoline engines and 2006-2009 for Tier 2 marine diesel engines; and lastly, and 4) fleet turnover assumed by the NONROAD2008a model.

The contributing factors resulted in range of 10% to 93% emission reduction for recreational vessels as presented in Table 4.25.

Table 4.25: 2011 vs 2005 Recreational Vessels Emissions Comparison

Year	NO_x	VOC	CO	SO_2	PM ₁₀	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
2011	797	877	8,651	2	19	18	6	99,848
2005	928	2,018	13,536	22	41	38	7	111,184
Change (tpy)	-131	-1,141	-4,885	-20	-22	-20	-1	-11,336
Change (%)	-14%	-57%	-36%	-93%	-53%	-53%	-20%	-10%

2011 Puget Sound Maritime Air Emissions Inventory Section 4 Harbor Vessels

Table 4.26 presents that recreational vessel count decreased 3% in 2011 as compared to 2005.

Table 4.26: 2011 vs 2005 Recreational Vessels Count Comparison

Year	Vessel Count
2011	23,771
2005	24,390
Change (tpy)	-619
Change (%)	-3%

SECTION 5 CARGO HANDLING EQUIPMENT

Section 5 provides an overview of the cargo-handling and related equipment found at Puget Sound ports. A description of the methodology used to estimate emissions is provided in this section, as well as the emission estimates for this source category.

5.1 Source Description

Cargo handling equipment includes equipment used to move cargo (containers, general cargo, and bulk cargo) to and from marine vessels, railcars, and on-road trucks. This includes cranes, straddle carriers, yard tractors, top and side handlers, forklifts, and other related equipment found in smaller quantities, such as various loaders, sweepers, backhoes, aerial lifts, pallet jacks, and generator sets. The equipment typically only operates at marine terminals or at rail yards and is assumed not to operate on public roadways or land. This inventory includes cargo handling equipment using diesel, gasoline, propane or electricity. Although the inventory's primary focus is diesel equipment, the total count includes zero-emitting electrical equipment.

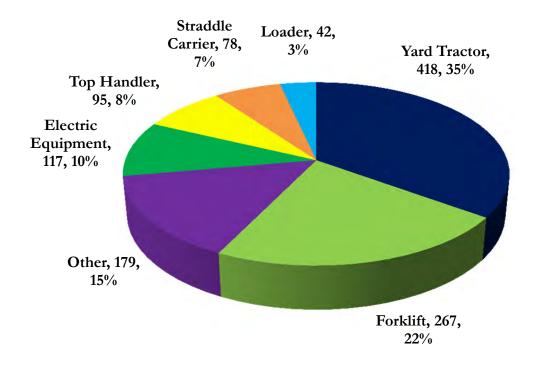
As shown in Tables 5.1 and 5.2 and Figures 5.1 and 5.2, a total of 1,196 pieces of equipment were inventoried, including 117 electric-powered pieces. Over one-third of the equipment was yard tractors (35%), and 22% was forklifts. Each port's equipment is summarized in detail in Section 5.4.

For Table 5.1, electric equipment includes: crane, forklift, manlift, truck, pallet jacks, and compressor. The other category includes: backhoe, car loader, compressor, crane, generator, light tower, log shovel, log handler, log stacker, manlift, reach stacker, skid steer loader, truck, welder, and sweeper.

Table 5.1: 2011 CHE Distribution by Type

Equipment	Count
Yard Tractor	418
Forklift	267
Top Handler	95
Straddle Carrier	78
Loader	42
Electric Equipment	117
Other	179
Total	1,196

Figure 5.1: 2011 CHE Count Distribution



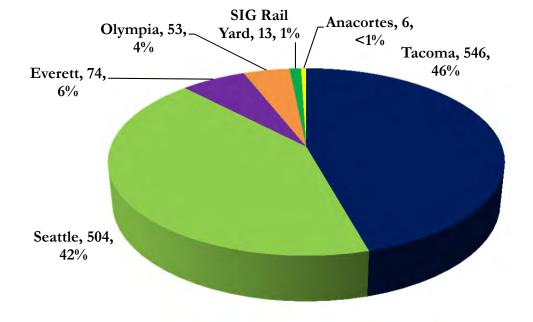


Table 5.2: 2011 CHE Distribution by Port

Port	Petroleum Fueled	Electric	Total Count
Anacortes	6	0	6
Everett	68	6	74
Olympia	53	0	53
Seattle	446	58	504
Tacoma	493	53	546
BNSF SIG Rail Yard	13	0	13
Total	1,079	117	1,196

Note: SIG - Seattle International Gateway

Figure 5.2: 2011 CHE Distribution by Port

5.1.1 Crane

The crane category encompasses various types of cranes, such as overhead, gantry, stacking, and container cranes found at the ports. Crane photos are courtesy of the Port of Tacoma's Website Photo Gallery.

The container crane, shown in Figure 5.3 and otherwise known as dockside, ship to shore, or quayside crane, is electrical and is used mainly at container terminals to load/unload the vessels.

Figure 5.3: Container Crane

The rubber tired gantry (RTG) crane, shown in Figure 5.4is also known as a transtainer. The diesel-powered RTG crane moves containers to and from the container stacks.

Figure 5.4: Rubber Tired Gantry Crane

5.1.2 Forklift

Forklifts or lift trucks, shown in Figure 5.5, are the second most common piece of equipment found at the ports, after the yard tractor. They vary in capacity and engine size and can have diesel, gasoline or propane engines or electric motors.

Figure 5.5: Forklift

5.1.3 Side Handler

Side picks, side handlers, side loaders, and empty container handlers, shown in Figure 5.6, describe the cargo handling equipment that typically move and stack the empty containers at a terminal. The side handlers in this inventory are diesel-powered.

Figure 5.6: Side Handler

5.1.4 Straddle Carrier

A straddle carrier, shown in Figure 5.7, is specialized equipment that removes the containers from delivering trucks by straddling the chassis and lifting the container using an overhead crane. The straddle carrier then drives away with the container. The straddle carriers in this inventory are diesel-powered.

Figure 5.7: Straddle Carrier

5.1.5 Top Handler

The top loader or top handler, shown in Figure 5.8, moves, stacks and loads containers using an overhead telescopic boom. The top handler has higher horsepower and lifting capacity than the side handler. The top handlers in this inventory are diesel-powered.

Figure 5.8: Top Handler

5.1.6 Yard Tractor

The majority of the pieces of cargo handling equipment in the inventory are yard tractors, also known as terminal tractors, yard hustlers, yard trucks, or hostlers and shown in Figure 5.9. The typical non-road yard tractor is a close relative of the on-road truck tractor chassis; however, most terminal yard tractors have a non-road engine that does not meet the EPA standards required to be registered for public roads. Some terminals may use yard tractors that are specifically purchased with on-road engines. Yard tractors are used throughout the terminal to move containers to and from the ship and to move containers within the terminal. Yard tractors are also used for intermodal rail container transfers. Equipment and emissions from intermodal rail yards are included in the rail section.

Figure 5.9: Yard Tractor

5.2 Geographical Delineation

The geographical extent for the cargo handling equipment is the marine terminals and facilities associated with the following Puget Sound ports:

- Port of Anacortes
- Port of Everett
- > Port of Olympia
- ➤ Port of Seattle
- Port of Tacoma
- BNSF SIG Rail Yard
- Argo Rail Yard

5.3 Data and Information Acquisition

Data was collected from terminal owners, equipment operators, and others having firsthand knowledge of either equipment details or operational parameters. Additional information was requested after the initial data review. The collected information was compared with information acquired during the 2005 emissions inventory process in order to provide an order-of-magnitude "reasonableness check" on the quality of the data.

The data collection approach focused on equipment details and operational profiles (activity data). The data is summarized by port and discussed in the following subsections. Some examples of equipment details that were collected include such parameters as:

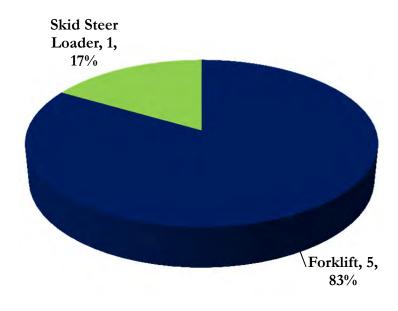
- Equipment type (e.g., yard tractor)
- ➤ Rated power (primarily horsepower)
- > Equipment manufacturer and model year
- Engine make, model, model year, and technology
- > Type of fuel used (e.g., ULSD, gasoline, liquefied petroleum gas or LPG)
- Emission reduction technology (e.g., DOC, DPF)

Where data was unavailable, reasonable assumptions based on similar equipment in the inventory were used. Default values by port, engine type and equipment type were assigned when the activity hour, horsepower, or model year was unavailable.

The Port of Port Angeles declined participation in the inventory update. In 2005, the Port of Port Angeles operated a small number of forklifts and log handlers (11 pieces of equipment) for less than 500 hours annually. Cargo handling equipment usage at the Port of Port Angeles is considered insignificant and excluded from the 2011 cargo-handling emission totals.

5.4 Operational Profiles

This section summarizes the equipment inventory at each port. It provides equipment characteristics such as the average, minimum and maximum engine power, model year and estimated annual operating hours for the port as a whole and also for each facility or entity within the port. Each facility has an assigned identification number to maintain confidentiality regarding terminal-specific information on count and types of equipment. The majority of the pieces of equipment have diesel engines, unless noted otherwise in the tables under equipment name. All of the diesel-powered equipment used ULSD in 2011. For the following characteristic tables, count column is for equipment count.


5.4.1 Port of Anacortes

The Port of Anacortes is primarily an export port that handles bulk and break-bulk cargoes such as logs and petroleum coke.³¹ Table 5.3 summarizes the equipment count by type, engine power, model year, and estimated annual operating hours. Figure 5.9 presents the distribution of the six pieces of equipment operated at the Port of Anacortes in 2011. There were five forklifts, accounting for 83% of the equipment inventory. The remaining equipment was a skid steer loader.

Table 5.3: Port of Anacortes 2011 CHE Characteristics

Equipment	Count	Count Power (hp)				odel Ye	ar	Annual Hours			
	Type		Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
Forklift	Diesel	1	200	200	200	1982	1982	1982	5	5	5
Skid Steer Loader	Diesel	1	150	150	150	1991	1991	1991	22	22	22
Forklift	Propane	4	50	200	100	1963	1995	1976	18	71	42
Total		6									

Figure 5.10: Port of Anacortes 2011 CHE Counts and Distribution by Type

_

³¹ Port of Anacortes, http://www.portofanacortes.com.

5.4.2 Port of Everett

The Port of Everett's primary exports are containers, heavy machinery and materials to support gold mining efforts in Russia, agricultural products and wind energy cargoes and agricultural products. Primary imports are aerospace parts, cement, wind energy components, heavy machinery, rolling cargoes and containerized cargoes. The Port uses cargo handling equipment for its eight shipping terminals, multi-purpose warehouse, and its marina operation. Port tenant operations include a shipyard, tug operations, and a bulk unloading facility for cement. There are a total of 77 pieces of equipment at the Port of Everett.

Table 5.4 summarizes the equipment count by type, engine power, model year and estimated annual operating hours for equipment inventoried at the Port of Everett. Figure 5.11 presents the distribution of the 74 pieces of equipment operated at the Port Everett in 2011.

Table 5.4: Port of Everett 2011 CHE Characteristics

Equipment	Engine	Count	Po	wer (hp)	M	odel Yea	ar	Annual Hours			
	Type		Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	
D 11	D' 1	4.1			(2)	4000	1000	1000	200	200	200	
Backhoe	Diesel	1	63	63	63	1988	1988	1988	300	300	300	
Crane	Diesel	3	160	330	247	1968	2000	1987	150	280	193	
Forklift	Diesel	16	50	175	115	1974	1995	1983	32	300	185	
Generator	Diesel	3	71	602	294	1992	2006	1999	50	150	100	
Light tower	Diesel	1	25	25	25	1991	1991	1991	300	300	300	
Loader	Diesel	11	101	400	260	1970	1991	1980	100	2,000	620	
Log shovel	Diesel	2	177	177	177	1994	2001	1998	1,000	1,500	1,250	
Reach stacker	Diesel	2	200	200	200	1995	1995	1995	400	400	400	
Sweeper	Diesel	1	36	36	36	1987	1987	1987	300	300	300	
Top Handler	Diesel	1	200	200	200	1993	1993	1993	25	25	25	
Truck	Diesel	1	210	210	210	1992	1992	1992	350	350	350	
Yard Tractor	Diesel	11	175	175	175	1984	1995	1988	200	350	239	
Forklift	Electric	6	na	na	na	1994	1994	1994	0	0	0	
Forklift	Gasoline	6	76	175	109	1953	1974	1963	200	250	217	
Manlift	Gasoline	1	82	82	82	1998	1998	1998	300	300	300	
Welder	Gasoline	1	76	76	76	1968	1968	1968	250	250	250	
Compressor	Gasoline	1	50	50	50	1978	1978	1978	250	250	250	
Forklift	Propane	5	93	93	93	1982	1982	1982	300	300	300	
Loader	Propane	1	25	25	25	1968	1968	1968	100	100	100	

Total 74

Figure 5.11: Port of Everett 2011 CHE Counts and Distribution by Type

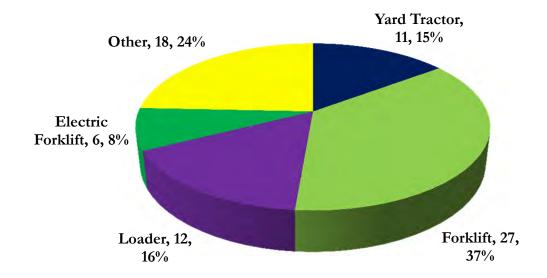
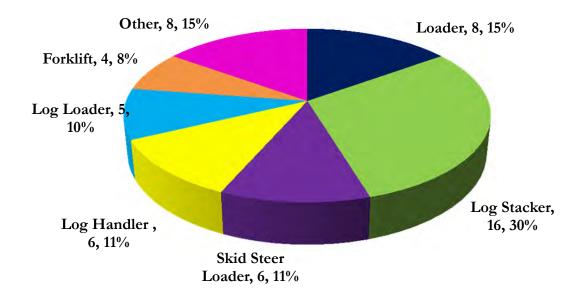


Table 5.5 summarizes by terminal, the equipment count, engine power, model year and estimated annual operating hours for equipment inventoried at the Port of Everett.

Table 5.5: Port of Everett 2011 CHE Characteristics by Terminal

Equipment	Engine	Count	Po	wer (hp)	M	odel Yea	ar	Annual Hours		
1 1	Type		Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
PSE010											
Backhoe	Diesel	1	63	63	63	1988	1988	1988	300	300	300
Crane	Diesel	3	160	330	247	1968	2000	1987	150	280	193
Forklift	Diesel	4	85	175	130	1974	1976	1975	250	300	275
Generator	Diesel	3	71	602	294	1992	2006	1999	50	150	100
Light tower	Diesel	1	25	25	25	1991	1991	1991	300	300	300
Loader	Diesel	3	101	101	101	1970	1974	1972	200	200	200
Sweeper	Diesel	1	36	36	36	1987	1987	1987	300	300	300
Truck	Diesel	1	210	210	210	1992	1992	1992	350	350	350
Forklift	Electric	6	na	na	na	1994	1994	1994	0	0	0
Forklift	Gasoline	6	76	175	109	1953	1974	1963	200	250	217
Manlift	Gasoline	1	82	82	82	1998	1998	1998	300	300	300
Welder	Gasoline	1	76	76	76	1968	1968	1968	250	250	250
Compressor	Gasoline	1	50	50	50	1978	1978	1978	250	250	250
Forklift	Propane	5	93	93	93	1982	1982	1982	300	300	300
Loader	Propane	1	25	25	25	1968	1968	1968	100	100	100
Total		38									
PSE020											
Loader	Diesel	8	177	400	300	1973	1991	1983	100	2,000	725
Log shovel	Diesel	2	177	177	177	1994	2001	1998	1,000	1,500	1,250
Total		10			U.					,	
PSE030											
Forklift	Diesel	6	75	150	100	1984	1990	1985	32	175	110
Top Handler	Diesel	1	200	200	200	1993	1993	1993	25	25	25
Yard Tractor	Diesel	7	175	175	175	1986	1993	1987	225	350	261
Total		14									
PSE040											
Forklift	Diesel	6	50	150	121	1975	1995	1987	200	200	200
Reach Stacker	Diesel	2	200	200	200	1995	1995	1995	400	400	400
Yard Tractor	Diesel	4	175	175	175	1984	1995	1990	200	200	200
Total		12									


5.4.3 Port of Olympia

The Port of Olympia has a 60-acre terminal with three deep-water berths that handle break-bulk, roll-on/roll-off, and forest products. Table 5.6 summarizes the equipment count by type, engine power, model year and estimated annual operating hours for the equipment inventory. Figure 5.12 presents the distribution of the 53 pieces of equipment operated at the Port of Olympia in 2011.

Table 5.6: Port of Olympia 2011 CHE Characteristics

Equipment	Engine	Count	Power	(horsep	ower)	M	odel Ye	ar	Anı	nual Ho	urs
	Type		Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
Backhoe	Diesel	1	65	65	65	1991	1991	1991			
_		1							na	na	na
Crane	Diesel	1	100	100	100	na	na	na	20	20	20
Forklift	Diesel	3	104	159	122	2001	2001	2001	54	85	65
Loader	Diesel	8	197	415	363	1985	2000	1993	0	738	248
Sweeper	Diesel	2	210	230	220	1999	2010	2005	8	531	270
Truck	Diesel	2	400	460	430	1991	1995	1993	50	250	150
Log Loader	Diesel	5	120	197	172	2000	2011	2007	na	na	na
Log Stacker	Diesel	16	375	500	432	1987	2011	2000	500	2,000	1,311
Skid Steer Loader	Diesel	6	51	210	154	1994	2007	1999	75	300	188
Log Handler	Diesel	6	200	200	200	2000	2001	2001	100	1,800	1,083
Forklift	Propane	1	120	120	120	na	na	na	250	250	250
Manlift	Propane	1	87	87	87	1997	1997	1997	71	71	71
Sweeper	Propane	1	130	130	130	2002	2002	2002	2	2	2
Total		53	•	•				•		•	_

Figure 5.12: Port of Olympia 2011 CHE Counts and Distribution by Type

5.4.4 Port of Seattle

The Port of Seattle's marine cargo facilities handle worldwide trade, grain exports and the cruise industry. The majority of the Port's trade is with Asia/Pacific nations and the Alaska market. Section 1 discusses each terminal and facility at the Port of Seattle. Port-owned equipment that may be used at more than one facility is also included in the inventory.

Cargo handling equipment used at the four container facilities:

- > Terminal 5
- > Terminal 18
- ➤ Terminal 30
- > Terminal 46

Three bulk facilities:

- Terminal 115
- ➤ Pier 86
- > Terminal 91

Two cruise terminals (combined for Puget Sound Maritime Air Emissions Inventory purposes):

- ➤ Terminal 91
- ➤ Pier 66

Table 5.7 presents the equipment count by type, engine power, model year and estimated annual operating hours for equipment inventoried at the Port of Seattle. Figure 5.13 presents the distribution of the 504 pieces of equipment operated at the Port Seattle in 2011.

Table 5.7: Port of Seattle 2011 CHE Characteristics

Equipment	Engine	Count	Power	(horsep	ower)	M	odel Ye	ar	Anı	Annual Hours			
	Type		Min	Max	Avg	Min	Max	Avg	Min	Max	Avg		
Car Loader	Diesel	1	150	150	150	2001	2001	2001	365	365	365		
_		0											
Crane	Diesel	8	130	130	130	1992	1998	1997	60	720	484		
Forklift	Diesel	66	85	335	163	1961	2008	1996	20	2,063	391		
Generator	Diesel	3	210	364	287	2001	2003	2002	28	102	58		
Reach stacker	Diesel	2	330	350	340	2002	2008	2005	na	na	na		
RTG	Diesel	6	620	947	838	1995	2005	2002	na	na	na		
Side Handler	Diesel	8	152	205	197	1995	2006	2002	350	1,826	1,196		
Top Handler	Diesel	73	250	335	305	1995	2008	2002	371	4,3 00	2,385		
Yard Tractor	Diesel	206	173	240	187	1974	2008	2004	0	3,998	1,555		
Crane	Electric	27	na	na	na	na	na	na	na	na	na		
Forklift	Electric	9	na	na	na	1975	1998	1987	0	324	157		
Pallet Jacks	Electric	22	na	na	na	na	na	na	480	610	539		
Car Loader	Gasoline	1	150	150	150	1989	1989	1989	121	121	121		
Forklift	Gasoline	5	100	100	100	1988	1993	1990	5	222	147		
Generator	Gasoline	2	5	20	13	2005	2005	2005	5	5	5		
Car Loader	Propane	5	150	150	150	1981	1989	1984	14	30	23		
Forklift	Propane	60	85	215	94	1966	2006	1994	30	800	578		
Total		504											

Figure 5.13: Port of Seattle 2011 CHE Counts and Distribution by Type

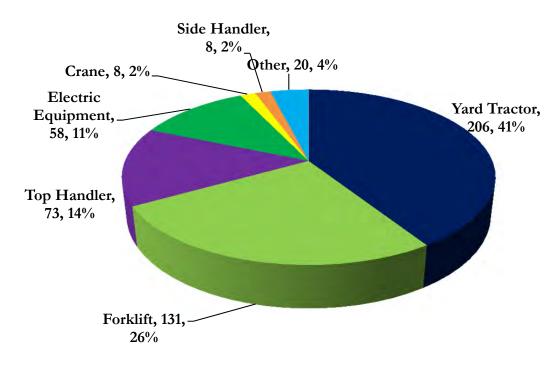


Table 5.8 summarizes by terminal, the equipment count, engine power, model year and estimated annual operating hours for equipment inventoried at the Port of Seattle

Table 5.8: Port of Seattle 2011 CHE Characteristics by Terminal

Equipment	Engine	Count	Power	(horsep	ower)	M	odel Ye	ar	Anı	nual Ho	urs
	Type		Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
PSS010											
Car Loader	Diesel	1	150	150	150	2001	2001	2001	365	365	365
Forklift	Diesel	10	200	200	200	1961	1992	1975	20	259	87
Generator	Diesel	3	210	364	287	2001	2003	2002	28	102	58
Forklift	Electric	2	na	na	na	1975	1978	1977	24	25	25
Car Loader	Gasoline	1	150	150	150	1989	1989	1989	121	121	121
Forklift	Gasoline	5	100	100	100	1988	1993	1990	5	222	147
Generator	Gasoline	2	5	20	13	2005	2005	2005	5	5	5
Car Loader	Propane	5	150	150	150	1981	1989	1984	14	30	23
Forklift	Propane	7	100	100	100	1976	1994	1988	35	340	108
Total		36									
PSS020											
Crane	Diesel	8	130	130	130	1992	1998	1997	60	720	484
Forklift	Diesel	3	85	150	107	1991	1995	1992	20	60	47
Forklift	Electric	5	na	na	na	na	na	na	240	324	274
Pallet Jacks	Electric	22	na	na	na	na	na	na	480	610	539
Forklift	Propane	22	85	85	85	1987	2005	1997	480	610	510
Total	•	60			•						
PSS030											
Forklift	Diesel	16	120	335	223	1993	2008	2002	na	na	na
Reach Stacker	Diesel	2	330	350	340	2002	2008	2005	na	na	na
Yard Tractor	Diesel	3	225	235	228	1974	1999	1991	na	na	na
Total		21			•						
PSS040											
Forklift	Diesel	1	100	100	100	1995	1995	1995	1,000	1,000	1,000

Table 5.8: Port of Seattle 2011 CHE Characteristics by Terminal (cont'd)

Equipment	Engine	Count	Power	(horsep	ower)	M	odel Ye	ar	Anı	nual Ho	urs
• •	Type		Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
PSS050											
Forklift	Diesel	16	85	200	127	1982	2006	2002	na	na	na
RTG crane	Diesel	6	620	947	838	1995	2005	2002	na	na	na
Side Handler	Diesel	5	200	205	204	2001	2006	2004	882	1,826	1,459
Top Handler	Diesel	31	335	335	335	2003	2007	2006	1,282	3,190	2,182
Yard Tractor	Diesel	65	173	173	173	2005	2008	2006	0	3,998	2,116
Container Crane	Electric	10	na	na	na	na	na	na	na	na	na
Total		133									
PSS060											
Forklift	Diesel	3	85	190	120	2004	2005	2004	na	na	na
Side Handler	Diesel	2	200	200	200	2001	2001	2001	824	1,095	960
Top Handler	Diesel	11	250	335	278	1996	2005	2000	371	2,343	1,065
Yard Tractor	Diesel	25	173	174	174	2002	2005	2003	0	1,537	793
Container Crane	Electric	6	na	na	na	na	na	na	na	na	na
Total		47									
PSS070											
Forklift	Diesel	8	100	175	124	1970	2005	1999	120	2,063	363
Side Handler	Diesel	1	152	152	152	1995	1995	1995	350	350	350
Top Handler	Diesel	18	250	250	250	1995	2005	1997	1,570	3,280	2,157
Yard Tractor	Diesel	30	174	240	188	2000	2007	2003	1,2 70	2,473	1,955
Container Crane	Electric	5	na	na	na	na	na	na	na	na	na
Forklift	Propane	3	100	100	100	1966	1994	1975	30	190	96
Total		65									
PSS080											
Forklift	Diesel	9	125	215	155	1978	1997	1993	800	800	800
Top Handler	Diesel	13	330	330	330	1997	2008	2004	4,3 00	4,3 00	4,300
Yard Tractor	Diesel	83	174	210	200	1996	2008	2004	1,200	1,200	1,200
Container Crane	Electric	6	na	na	na	na	na	na	na	na	na
Forklift	Electric	2	na	na	na	1998	1998	1998	na	na	na
Forklift	Propane	28	85	215	100	1982	2006	1994	800	800	800
Total	-	141									

5.4.5 Port of Tacoma

The Port of Tacoma handles Pacific Rim trade along with waterborne commerce between Alaska and the other states. The Port encompasses 2,500 acres of land and handles containerized cargo, automobiles, bulk and general cargo. The Port and tenants own and operate the equipment at the following facilities:

- ➤ APM Terminal
- ➤ Husky Terminal
- Olympic Container Terminal
- ➤ Pierce County Terminal
- > Temco Grain Terminal
- > Terminal 7
- > TOTE Terminal
- ➤ WUT Terminal
- Formark Log Yard
- > Holbrook Log Yard
- ➤ Pacific Rail Services

This section includes the cargo handling equipment used at the on-dock rail and intermodal yards at the Port of Tacoma.

Table 5.9 presents the equipment count by type, engine power, model year and estimated annual operating hours for equipment inventoried at Port of Tacoma. In 2011, there were a total of 546 pieces of equipment at the Port.

Figure 5.14: Port of Tacoma 2011 CHE Counts and Distribution by Type

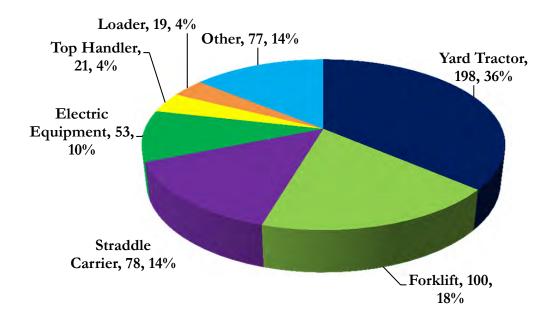


Table 5.9: Port of Tacoma 2011 CHE Characteristics

Equipment	Engine	Count	Power	(horsepo	wer)	Mo	del Yea	r	An	nual H	ours
	Type		Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
									1		
Backhoe	Diesel	3	65	350	255	1985	1998	1991	65	271	168
Forklift	Diesel	57	50	375	156	1964	2011	1993	0	2,100	302
Generator	Diesel	3	50	50	50	1982	1997	1992	0	0	0
Loader	Diesel	19	51	44 0	274	1986	2011	1998	na	na	na
Manlift	Diesel	3	185	185	185	2005	2011	2007	54	146	100
Reach Stacker	Diesel	12	325	375	345	1998	2006	2001	9	2,000	831
RTG	Diesel	6	300	300	300	1984	2005	1993	0	78	35
Side Handler	Diesel	12	210	228	212	1998	2006	2003	171	1,244	563
Sweeper	Diesel	3	50	205	143	1994	2004	1999	82	219	154
Top Handler	Diesel	21	250	365	310	1993	2010	2002	11	2,243	1,168
Truck	Diesel	9	150	210	180	1972	2000	1991	4	203	57
Yard Tractor	Diesel	197	110	245	191	1987	2009	2002	0	2,550	817
Compressor	Diesel	6	10	10	10	1977	2004	1989	4	61	27
Straddle Carrier	Diesel	78	185	455	358	1991	2008	2003	0	3,666	1,713
Crane	Electric	45	na	na	na	1941	2005	1985	0	195	5
Forklift	Electric	3	na	na	na	1988	1988	1988	285	1,199	606
Manlift	Electric	1	na	na	na	2005	2005	2005	0	0	0
Truck	Electric	1	na	na	na	2001	2001	2001	0	0	0
Compressor	Electric	3	na	na	na	1974	2003	1990	0	0	0
Generator	Gasoline	8	50	100	60	1982	2011	2001	0	1,264	208
Manlift	Gasoline	4	30	60	50	1984	2004	1992	25	226	89
Truck	Gasoline	2	130	130	130	1999	2003	2001	47	1,665	856
Yard Tractor	Gasoline	1	110	110	110	2003	2003	2003	65	65	65
Compressor	Gasoline	4	10	10	10	1996	2001	1999	0	0	0
Forklift	Propane	43	45	155	77	1971	2009	1988	0	981	195
Manlift	Propane	1	60	60	60	2000	2000	2000	218	218	218
Sweeper	Propane	1	50	50	50	1989	1989	1989	8	8	8

Total 546

Table 5.10 summarizes by terminal, the equipment count, engine power, model year and estimated annual operating hours for equipment inventoried at the Port of Tacoma.

Table 5.10: Port of Tacoma 2011 CHE Characteristics by Terminal

Equipment	Engine	Count	Power	(horsepo	ower)	M	odel Yea	ır	Anı	nual Ho	ours
	Type		Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
PST010											
Backhoe	Diesel	2	350	350	350	1985	1998	1992	65	271	168
Forklift	Diesel	27	174	375	202	1977	2011	1991	0	497	74
Generator	Diesel	3	50	50	50	1982	1997	1992	0	0	0
Manlift	Diesel	2	na	na	na	2006	2011	2009	54	146	100
Truck	Diesel	7	na	na	na	1984	2000	1993	4	203	57
Yard Tractor	Diesel	2	110	110	110	1987	1991	1989	16	43	30
Compressor	Diesel	6	10	10	10	1977	2004	1989	4	61	27
Straddle Carrier	Diesel	28	185	185	185	1991	2008	2001	0	2,330	1,235
Sweeper	Diesel	2	50	175	113	1994	2004	1999	82	219	151
Crane	Electric	38	na	na	na	1941	2001	1981	0	195	6
Manlift	Electric	1	na	na	na	2005	2005	2005	0	0	0
Truck	Electric	1	na	na	na	2001	2001	2001	0	0	0
Compressor	Electric	3	na	na	na	1974	2003	1990	0	0	0
Generator	Gasoline	8	50	100	60	1982	2011	2001	0	1,264	208
Manlift	Gasoline	3	60	60	60	1984	2004	1994	52	226	110
Truck	Gasoline	2	130	130	130	1999	2003	2001	47	1,665	856
Yard Tractor	Gasoline	1	110	110	110	2003	2003	2003	65	65	65
Compressor	Gasoline	4	10	10	10	1996	2001	1999	0	0	0
Forklift	Propane	23	60	80	65	1971	1989	1981	0	109	25
Manlift	Propane	1	60	60	60	2000	2000	2000	218	218	218
Sweeper	Propane	1	50	50	50	1989	1989	1989	8	8	8
Total	-	165									
PST020											
Forklift	Diesel	2	180	180	180	2005	2005	2005	83	276	180
Side Handler	Diesel	8	210	210	210	2005	2006	2005	395	1,244	683
Yard Tractor	Diesel	4	180	180	180	2005	2006	2005	200	929	602
Straddle Carrier	Diesel	50	455	455	455	2004	2005	2004	660	3,666	1,982
Crane	Electric	7	na	na	na	2005	2005	2005	0	0	0
Forklift	Propane	6	155	155	155	2005	2005	2005	89	269	198
Total	pa	77	-00	-55	-00			_500	0,		

Table 5.10: Port of Tacoma 2011 CHE Characteristics by Terminal (cont'd)

Equipment	Engine	Count	Power (horsepower)			M	odel Yea	ır	Annual Hours		
1 1	Type		Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
PST030											
Forklift	Diesel	5	57	57	57	1982	2006	2000	41	2,100	1,007
RTG Crane	Diesel	6	300	300	300	1984	2005	1993	0	78	35
Top Handler	Diesel	11	300	300	300	1996	2006	2003	105	2,243	1,504
Yard Tractor	Diesel	46	173	174	174	2004	2006	2005	85	2,017	938
Total		68									
PST040											
Yard Tractor	Diesel	33	210	220	211	1994	2009	1999	160	1,032	454
PST050											
Forklift	Diesel	6	120	185	142	2003	2006	2004	106	232	163
Manlift	Diesel	1	185	185	185	2005	2005	2005	99	99	99
Reach Stacker	Diesel	4	330	335	334	1998	2006	2004	9	262	113
Sweeper	Diesel	1	205	205	205	2000	2000	2000	162	162	162
Top Handler	Diesel	1	330	330	330	2002	2002	2002	11	11	11
Yard Tractor	Diesel	36	174	245	224	2000	2005	2004	0	1,246	675
Forklift	Propane	1	120	120	120	1988	1988	1988	4	4	4
Total		50									
PST055											
Forklift	Diesel	9	50	100	73	1976	2009	1991	73	542	316
Top Handler	Diesel	2	330	330	330	2000	2007	2004	407	1,271	839
Yard Tractor	Diesel	12	174	174	174	2006	2006	2006	1,500	1,500	1,500
Forklift	Electric	3	55	55	55	1988	1988	1988	285	1,199	606
Forklift	Propane	9	55	55	55	1988	2009	1994	352	981	616
Total	•	35									
PST060											
Forklift	Diesel	2	130	130	130	1964	1999	1982	30	54	42
Reach Stacker	Diesel	6	330	375	360	1998	2001	1999	615	1,321	921
Side Handler	Diesel	1	228	228	228	1998	1998	1998	171	171	171
Top Handler	Diesel	3	365	365	365	2005	2010	2007	474	1,787	1,254
Yard Tractor	Diesel	53	174	215	184	1998	2008	2001	149	2,550	1,003
Total		65			•						

Table 5.10: Port of Tacoma 2011 CHE Characteristics by Terminal (cont'd)

Equipment	t Engine Count 1		Power	Power (horsepower)			Model Year			Annual Hours		
1 1	Type		Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	
PST070												
Forklift	Diesel	4	70	200	108	1967	1998	1982	53	1,501	483	
Side Handler	Diesel	3	210	210	210	2000	2000	2000	185	642	374	
Top Handler	Diesel	1	300	300	300	1995	1995	1995	60	60	60	
Yard Tractor	Diesel	3	174	174	174	2001	2001	2001	272	857	567	
Total	Diesei	11	1/4	1/4	1/4	2001	2001	2001	212	037	307	
Total		11										
PST080												
Forklift	Propane	1	na	na	na	2002	2002	2002	660	660	660	
PST100												
Top Handler	Diesel	3	250	335	278	1993	1994	1993	480	1,500	820	
Yard Tractor	Diesel	8	148	160	157	2003	2008	2006	1,300	1,300	1,300	
Manlift	Gasoline	1	30	30	30	1987	1987	1987	25	25	25	
Forklift	Propane	1	45	45	45	1989	1989	1989	24	24	24	
Total	•	13			•				•			
PST110												
Loader	Diesel	4	na	na	na	1986	1990	1988	na	na	na	
Truck	Diesel	1	150	150	150	1972	1972	1972	na	na	na	
Forklift	Propane	1	na	na	na	1989	1989	1989	na	na	na	
Total		6										
PST120												
Backhoe	Diesel	1	65	65	65	1991	1991	1991	na	na	na	
Loader	Diesel	15	51	440	274	1987	2011	2004	na	na	na	
Truck	Diesel	1	210	210	210	1995	1995	1995	na	na	na	
Total		17			•				•			
PST130												
Forklift	Diesel	2	165	165	165	1990	1998	1994	2,000	2,000	2,000	
Reach Stacker	Diesel	2	325	325	325	2001	2001	2001	2,000	2,000	2,000	
Forklift	Propane	1	80	80	80	1997	1997	1997	200	200	200	
Total	-	5			•							

5.5 Emission Reduction Technologies Identified

For cargo handling equipment operated at the Puget Sound ports in 2011, emission control measures include the use of electric equipment, diesel oxidation catalyst retrofits, diesel particulate filter retrofits, and on-road engines in place of non-road engines. Table 5.11 summarizes the count of emission reduction technologies for cargo handling equipment.

Table 5.11: 2011 CHE Count of Emission Reduction Technologies

Port	Electric	Diesel Oxidation Catalyst	Diesel Particulate Filter	On-road Engine
Anacortes	0	0	0	0
Everett	6	0	0	0
Olympia	0	1	0	5
Seattle	58	164	5	67
Tacoma	53	117	48	42
BNSF SIG Rail Yard	0	0	0	0
Total	117	282	53	114

5.6 Emissions Estimating Methodology

Cargo handling equipment emissions were estimated using the NONROAD2008a emissions estimating model³², a tool developed by EPA to estimate fleet emissions of non-road equipment. As an overview, the NONROAD model estimates the emissions for a population of equipment as being:

Equation 5.1

$$E_{MY} = EF \times HP \times LF \times A \times CF$$

Where:

 E_{MY} = emissions from a given model year of equipment

EF = emission factor

HP = maximum rated horsepower, hp

LF = load factor, dimensionless

A = activity, hours of use per year

CF = control factor for emission reduction technologies or on-road engines. Control factors represent the remaining emissions after a control has been added to an engine. For example, if a control technology provides a 20% reduction in emissions the CF = 0.8.

In 2011, all diesel equipment used ULSD fuel with 15 ppm sulfur content. Equipment with zero hours of operational use in 2011, due to new purchases or other reasons, as well as electric equipment, are included in the inventory count, but do not have emissions associated with them.

The marine terminal equipment identified by survey was categorized into the most closely corresponding NONROAD equipment type, shown in Table 5.12, which presents equipment types by Source Classification Code (SCC), load factor, and NONROAD category common name. The categorizations from the previous inventory were replicated for the purpose of this inventory as much as possible. For the 2011 PSEI, the same load factors are used as those found in the 2005 PSEI, with the exception of the load factor for diesel yard tractors. The 0.59 EPANONROAD load factor is based on a 1997 study³³ prepared for the EPA. For the 2011 PSEI, a load factor of 0.39 is used for diesel yard tractors based on a 2008 study³⁴ prepared for the Port of Los Angeles and Port of Long Beach by Starcrest Consulting Group., LLC. The 0.39 load factor is based on the analysis of eighty five yard tractors that work at port terminals and is reflective of typical operating parameters of yard tractors in a port environment. Load data was downloaded from the vehicles' computers and more than a year's worth of data was collected for the 85 yard tractors. The California Air Resources Board, as part of the Port's Emissions Inventory Technical Working Group, reviewed and approved the 0.39 load factor for yard tractors in cargo handling equipment emissions inventory development in California. This load factor is the most current and appropriate load factor representing diesel yard tractors in port operations.

³² EPA, http://www.epa.gov/otaq/nonrdmdl.htm.

³³ EPA, Evaluation of Power Systems Research (PSR) Nonroad Population Data Base, 1997.

³⁴ Ports of Los Angeles and Long Beach, San Pedro Bay Ports Yard Tractor Load Factor Study, December 2008.

Table 5.12: NONROAD Engine Source Categories

Equipment Type	uipment Type SCC		NONROAD Category
Backhoe	2270002066	0.21	Tractors/Loaders/Backhoe
Car Loader, diesel	2265003050	0.43	Other Industrial Equipment
Car Loader, gasoline	2270003040	0.54	Other Industrial Equipment
Car Loader, propane	2265003040	0.54	Other Industrial Equipment
Compressor, diesel	2270006015	0.43	Air compressor
Compressor, gasoline	2265006015	0.56	Air compressor
Crane	2270002045	0.43	Crane
Forklift, diesel	2270003020	0.59	Forklift
Forklift, gasoline	2265003020	0.3	Forklift
Forklift, propane	2267003020	0.30	Forklift
Generator, diesel	2270006005	0.43	Generator
Generator, gasoline	2265006005	0.68	Generator
Light Tower	2270002027	0.43	Signal Boards/Light plant
Loader, diesel	2270002060	0.59	Rubber Tired Loader
Skid Steer Loader, diesel	2270002072	0.21	Skid Steer Loader
Skid Steer Loader, propane	2267002072	0.58	Skid Steer Loader
Manlift, diesel	2270003010	0.21	Aerial Lifts
Manlift, gasoline	2265003010	0.46	Aerial Lifts
Manlift, propane	2267003010	0.46	Aerial Lifts
Reach Stacker	2270003020	0.59	Forklift
Side Handler	2270003020	0.59	Forklift
Top Handler	2270003020	0.59	Forklift
RTG Crane	2270003050	0.21	Other Material Handling Equipment
Straddle Carrier	2270003050	0.21	Other Material Handling Equipment
Sweeper, diesel	2270003030	0.43	Sweeper / scrubber
Sweeper, propane	2267003030	0.71	Sweeper / scrubber
Truck, diesel	2270002051	0.59	Non-road Truck
Truck, propane	2265002051	0.70	Non-road Truck
Welder	2265006025	0.21	Welder
Yard Tractor	2270003070	0.39	Terminal Tractor

Since the NONROAD model outputs emissions for a limited set of pollutants, post-processing is required to develop emission estimates for VOC, PM_{2.5}, DPM, CH₄, and N₂O. VOC correction factors were applied based on fuel type.³⁵ For purposes of this analysis, total particulate matter is set equal to PM₁₀, and PM_{2.5} is calculated as 97% of PM₁₀ for diesel fueled equipment, and 100% of PM₁₀ for other equipment.³⁶ Diesel particulate matter includes the emissions from those vehicles fueled by diesel fuel only, as opposed to those fueled by propane or gasoline. Post-processing factors were applied to NONROAD emissions for emission control measures and are discussed in section 5.6.1. The N₂O and CH₄ factors are discussed in section 5.6.2 below.

5.6.1 Emission Control Factors

Control factors are applied to equipment that have an emissions control device or technology applied such that there is a reduction in emissions. Control factors represent the remaining emissions after a control has been added to an engine. For example, if a control technology provides a 40% reduction in emissions the CF = 0.6.

Table 5.13 summarizes the emission control factors used in the emissions calculations for the various emission control measures implemented at the major Puget Sound ports. The DOC and DPF control factors are based on EPA verified technology. Since factors may vary by technology and manufacturer, for the purpose of this analysis, the factors are the same as those found in EPA's Diesel Emissions Quantifier³⁷. The Diesel Emissions Quantifier is an interactive tool that can help evaluate clean diesel projects and options by estimating emission reductions. Table 5.14 presents the control factors for the use of onroad engines in non-road applications.

Table 5.13: Emission Control Factors for CHE Retrofits

Technology or Fuel	NO _x	VOC	СО	SO_2	PM
Diesel oxidation catalyst	1.00	0.50	0.60	1.00	0.80
Diesel particulate filter	1.00	0.10	0.10	1.00	0.15

-

³⁵ EPA 2005.

³⁶ EPA 2003.

³⁷ EPA, www.epa.gov/cleandiesel/quantifier/

Table 5.14: Emission Control Factors for On-road Engines

Year	NO _x	voc	СО	SO_2	PM ₁₀	CO_2
1999	0.58	0.34	1.00	1.00	0.26	1.00
2000	0.58	0.34	1.00	1.00	0.25	1.00
2005	0.40	0.34	1.00	1.00	0.57	1.00
2006 (up to 175 hp)	0.42	0.34	1.00	1.00	0.45	1.00
2006 (176-300)	0.42	0.34	1.00	1.00	0.067	1.00
2007-2011	0.42	0.34	1.00	1.00	0.067	1.00

Emission control factors were also applied to cargo handling equipment with on-road engines, such as yard tractors and trucks with on-road engines that operate at the terminals. The on-road engine control factors vary by model year and horsepower.

5.6.2 Greenhouse Gas Emission Factors

The NONROAD model outputs CO_2 emissions, but does not estimate CH_4 and N_2O , thus alternative processing calculations were used to derive values for these greenhouse gases. The emission factors for CH_4 and N_2O are based on fuel consumption (and are the same for gasoline and diesel fuel and in the absence of literature, assumed to be the same for propane)³⁸:

- ➤ 0.0800 g N₂O/kilogram (kg) fuel consumed
- > 0.1800 g CH₄/kilogram (kg) fuel consumed

However, fuel consumption data was not collected. In order to convert operational hours to volume of fuel consumed, a method was used to activate the fuel economy feature of the NONROAD model by locating it in the by-model-year-output and re-running the data file.³⁹ Fuel consumption was then transformed into pounds. Diesel is assumed to be 7.0 pounds per gallon and gasoline (along with propane) was assumed to be 6.2 pounds per gallon.⁴⁰

Equation 5.2

$$Emissions, tpy = \frac{\left(FUELCONS, gal/yr \times fuel\ density, \frac{lb}{gal} \times\ 0.454 \frac{kg}{lb} \times\ EF, \frac{g}{kg}\right)}{\left(453.6 \frac{g}{lb} \times\ 2,000 \frac{lb}{ton}\right)}$$

-

³⁸EPA 2006

³⁹ This variable is called FUELCONS and the units are gallons per year (estimated by NONROAD). NONROAD estimates fuel consumption empirically and no actual fuel consumption data was used.

⁴⁰Adapted from NREL 2006.

5.7 Emission Estimates

The cargo-handling emissions are summarized by port in Table 5.15.

Table 5.15: 2011 CHE Total Emissions, tpy

Port	NO _x	VOC	CO	SO_2	\mathbf{PM}_{10}	PM _{2.5}	DPM	CO ₂ e
Anacortes	0.4	0.1	1.4	0.0	0.0	0.0	0.0	22
Everett	23.4	2.4	24.6	0.0	2.3	2.2	2.3	1,375
Olympia	42.9	2.7	17.4	0.0	2.6	2.5	2.6	4,408
Seattle	305.5	18.4	158.0	0.3	16.7	16.2	16.7	34,561
Tacoma	205.9	12.6	88.0	0.2	10.0	9.7	10.0	22,486
Port Total	578.2	36.2	289.3	0.6	31.6	30.7	31.6	62,852
BNSF SIG Rail Yard	8.5	0.6	3.8	0.0	0.5	0.5	0.5	762
Argo Rail Yard	7.5	0.6	3.4	0.0	0.5	0.5	0.5	661
PSEI Total	594.2	37.4	296.5	0.6	32.6	31.7	32.6	64,275

5.7.1 Port of Anacortes Emission Estimates

Table 5.16 presents Port of Anacortes' cargo handling equipment emission estimates.

Table 5.16: Port of Anacortes 2011 CHE Emissions by Terminal, tpy

Terminal	NO _x	voc	СО	SO ₂	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
PSA010	0.4	0.1	1.4	0.0	0.0	0.0	0.0	22

5.7.2 Port of Everett Emission Estimates

Table 5.17 presents Port of Everett's cargo handling equipment emission estimates by terminal.

Table 5.17: Port of Everett 2011 CHE Emissions, tpy

Terminal	NO _x	VOC	СО	SO_2	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
PSE010	5.3	0.9	16.2	0.0	0.3	0.3	0.3	329
PSE020	13.5	1.0	6.4	0.0	1.6	1.5	1.6	810
PSE030	2.3	0.2	0.9	0.0	0.2	0.2	0.2	103
PSE040	2.3	0.2	1.1	0.0	0.2	0.2	0.2	133
Total	23.4	2.4	24.6	0.0	2.3	2.2	2.3	1,375

5.7.3 Port of Olympia Emission Estimates

Table 5.18 presents Port of Olympia's cargo handling equipment emission estimates by terminal.

Table 5.18: Port of Olympia 2011 CHE Emissions, tpy

Terminal	NO _x	voc	СО	SO ₂	\mathbf{PM}_{10}	PM _{2.5}	DPM	CO ₂ e
PSO010	3.7	0.2	1.8	0.0	0.2	0.2	0.2	311
PSO020	16.9	0.9	6.2	0.0	1.2	1.1	1.2	1,768
PSO030	22.4	1.5	9.4	0.0	1.3	1.2	1.3	2,329
Total	43.0	2.6	17.4	0.0	2.7	2.5	2.7	4,408

5.7.4 Port of Seattle Emission Estimates

Table 5.19 presents Port of Seattle's cargo handling equipment emission estimates by terminal.

Table 5.19: Port of Seattle 2011 CHE Emissions, tpy

Terminal	NO_x	VOC	CO	SO_2	PM_{10}	PM _{2.5}	DPM	CO ₂ e
PSS010	2.6	0.4	7.1	0.0	0.1	0.1	0.1	144
PSS020	4.1	0.7	14.7	0.0	0.1	0.1	0.1	335
PSS030	10.3	0.8	4.0	0.0	0.7	0.7	0.7	1,039
PSS040	0.4	0.1	0.4	0.0	0.1	0.1	0.1	39
PSS050	118.4	6.4	36.1	0.1	6.0	5.8	6.0	14,239
PSS060	19.1	0.8	4.3	0.0	0.9	0.8	0.9	2,068
PSS070	60.1	2.9	20.3	0.1	3.6	3.5	3.6	5,741
PSS080	90.5	6.4	71.1	0.1	5.3	5.1	5.2	10,957
Total	305.5	18.4	158.0	0.3	16.7	16.2	16.7	34,561

5.7.5 Port of Tacoma Emission Estimates

Table 5.20 presents Port of Tacoma's cargo handling equipment emission estimates by terminal.

Table 5.20: Port of Tacoma 2011 CHE Emissions, tpy

Terminal	NO _x	voc	СО	SO_2	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
PST010	23.6	1.5	18.5	0.0	0.9	0.9	0.9	2,211
PST020	64.2	5.0	32.6	0.1	3.3	3.2	3.3	7,201
PST030	32.3	1.9	7.3	0.0	1.6	1.5	1.6	3,633
PST040	7.4	0.5	2.0	0.0	0.4	0.3	0.4	759
PST050	8.2	0.3	2.3	0.0	0.4	0.4	0.4	1,403
PST055	4.5	0.5	6.4	0.0	0.3	0.3	0.3	698
PST060	29.8	1.0	5.5	0.0	1.0	1.0	1.0	3,346
PST070	3.0	0.2	0.8	0.0	0.2	0.2	0.2	260
PST080	0.2	0.0	0.8	0.0	0.0	0.0	0.0	12
PST100	6.6	0.3	2.2	0.0	0.3	0.3	0.3	626
PST110	5.7	0.5	2.9	0.0	0.5	0.5	0.5	348
PST120	13.3	0.7	4.9	0.0	0.9	0.9	0.9	1,292
PST130	7.2	0.3	1.7	0.0	0.3	0.2	0.3	699
Total	205.9	12.6	88.0	0.2	10.0	9.7	10.0	22,486

5.8 Emission Comparison, 2011 vs 2005

The emission calculation methodology stayed the same in 2011, except for an update to the yard tractor load factor. 2005 yard tractor emissions were re-calculated using the fraction of the new load factor divided by the old load factor so that the emissions would be comparable to the 2011 emissions. Table 5.21 presents the total net change in emissions for cargo handling equipment in 2011 as compared to 2005 at the Puget Sound ports. Port-related emissions decreased for all pollutants by 21% to 99% in 2011 when compared to 2005 due to reduced equipment activity, implementation of emission reduction strategies (retrofits), fleet turnover and use of ULSD in 2011.

Table 5.21: 2011 vs 2005 Port Total CHE Emissions Comparison, tpy

Year	NO _x	voc	СО	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO_2e
2011	578.2	36.2	289.3	0.6	31.6	30.7	31.6	62,852
2005	832.1	81.4	813.7	61.8	54.9	53.2	54.6	79,581
Change, tpy	-253.9	-45.2	-524.4	-61.2	-23.3	-22.5	-23.0	-16,729
Change, %	-31%	-56%	-64%	-99%	-42%	-42%	-42%	-21%

DPM

CO₂e

Figure 5.15 compares the 2011 vs 2005 percent change in emissions for cargo handling equipment operations.

0% -25% -21% -31% -42%-42%**-42%** -50% -56% **-64**% -75% -100%

Figure 5.15: 2011 vs 2005 Total CHE Emissions Change

 PM_{10} $PM_{2.5}$ SO_2 Note: 2005 emissions were recalculated using the same methods used for the 2011 emission estimates. The above figure accounts for these changes so that a direct comparison can be made between 2011 vs 2005.

VOC

NOx

 \mathbf{CO}

Table 5.22 presents a 45% decrease in activity in 2011 as compared to 2005. The equipment count increased by 4% in 2011.

Table 5.22: 2011 vs 2005 Total CHE Activity and Count Comparison

Year	Activity (hp hr)	CHE Count
2011	100,280,404	1,196
2005	181,101,761	1,145
Change, %	-45%	4%

SECTION 6 LOCOMOTIVES

Section 6 provides an overview of the railroad locomotives operating in and around the Puget Sound study area. A description of the methodology used to estimate emissions is provided in this section, as well as the emission estimates for this source category.

6.1 Source Description

Locomotive operations are typically described in terms of two different types, line-haul and switching. Line-haul refers to the movement of cargo over long distances (e.g., cross-country) and occurs within a port, marine terminal, or rail yard as the initiation or termination of a line-haul trip, as cargo is either picked up for transport to destinations across the country or is dropped off for shipment overseas. Switching refers to the assembling and disassembling of trains, sorting of the railcars of inbound cargo trains into contiguous "fragments" for subsequent delivery to terminals, and the short distance hauling of rail cargo within a port or rail yard.

Locomotives used for line-haul operations are typically large, powerful diesel engines of 3,000 hp or more, while switch engines are smaller, typically having 1,200 to 3,000 hp. Older line-haul locomotives have often been converted to switch duty as newer line-haul locomotives with more horsepower become available. Rather than having finely adjustable throttle controls such as those used in automobiles and most powered equipment, locomotive throttles are operated in a series of discrete power steps called notches, which range from positions one through eight (with one being the lowest power setting and eight providing full power), plus an idle setting. Many locomotives also have a setting called dynamic braking, which is a means of slowing the locomotive using the drive system.

Emissions from locomotives transporting cargo to or from the ports on the rail lines outside the ports have also been estimated along with estimates of the emissions from line-haul locomotive activity in the region. These estimates have been coordinated to avoid double counting of emissions.

6.2 Geographical Delineation

The geographical parameters of the emissions inventory summarized in this section for railroad-related sources include primarily the Port of Olympia, the Port of Seattle, the Port of Tacoma, and the Port of Everett, as well as several off-port rail yards: the Fife Yard in Tacoma (a storage and switching yard), the BNSF SIG Yard, the Argo Yard in Seattle, and rail operations associated with the Port of Everett. The BNSF SIG and Argo yards are intermodal yards (where cargo is transferred from or to railcars prior to or following international shipment). The off-terminal rail emissions were estimated for rail lines typically utilized in moving port-related cargo within the Puget Sound airshed. The covered areas and activities are consistent with the areas and activities addressed in the 2005 emissions inventory.

2011 Puget Sound Maritime Air Emissions Inventory Section 6 Locomotives

Two railroad companies provide line-haul rail services to the Puget Sound area ports, Union Pacific and BNSF.⁴¹ These railroads are known as Class 1 railroads, a designation based on annual revenues.⁴² The Class 1 railroads, of which there are currently seven in the U.S., are the largest of the railroads in terms of revenue. In addition, switching and terminal rail service is provided at the Port of Tacoma and the Port of Olympia by Tacoma Rail, a division of Tacoma Public Utilities. Figure 6.1 illustrates an overall view of the rail system within the State of Washington.⁴³ This map presents the Union Pacific's tracks running north and south from Seattle through Tacoma and south toward Portland, Oregon, whereas BNSF's tracks run north to Canada and east from Seattle and Tacoma to points in eastern Washington and further east.

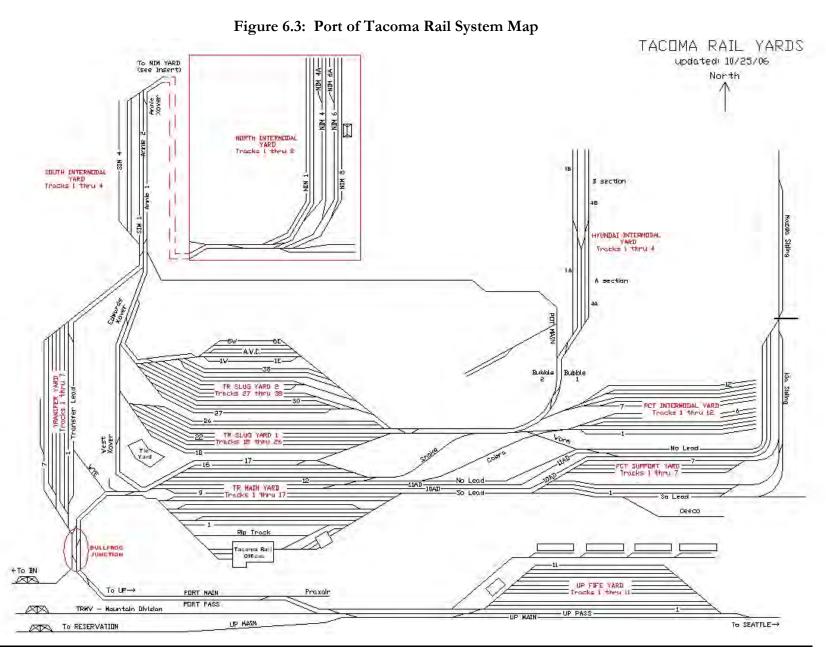
Figure 6.1: State of Washington Rail System Map

Figure 6.2 provides detail on the rail system within and near the Port of Seattle, while Figure 6.3 presents the Port of Tacoma's rail lines, and Figure 6.4 presents the Port of Olympia's rail lines. These graphics were provided by the respective ports.

⁴¹American Association of Railroads, http://www.aar.org.

⁴²Railroad classes are based on annual revenues and the Class 1 railroads are the largest of the railroads in terms of revenue. There are currently seven Class 1 railroads in the U.S.

⁴³ Union Pacific, Maps of the Union Pacific, 2006.



Seattle Harbor Rail Network T-46 Elliott Bay T-18 Intermodal Yard Whatcom Yard 08-1 BNSF SIG/Stacy Yard East Waterway West Waterway T-18 T-5 BNSF Mainline T-25 Shoreline Lead T-106 S. Edmunds Yard Duwarnish Waterway T-108 **UP Argo Yard** Legend Private Track **BNSF Controlled Track UP Controlled Track Shared Track**

Figure 6.2: Port of Seattle Harbor Rail System Map

Summer 2005

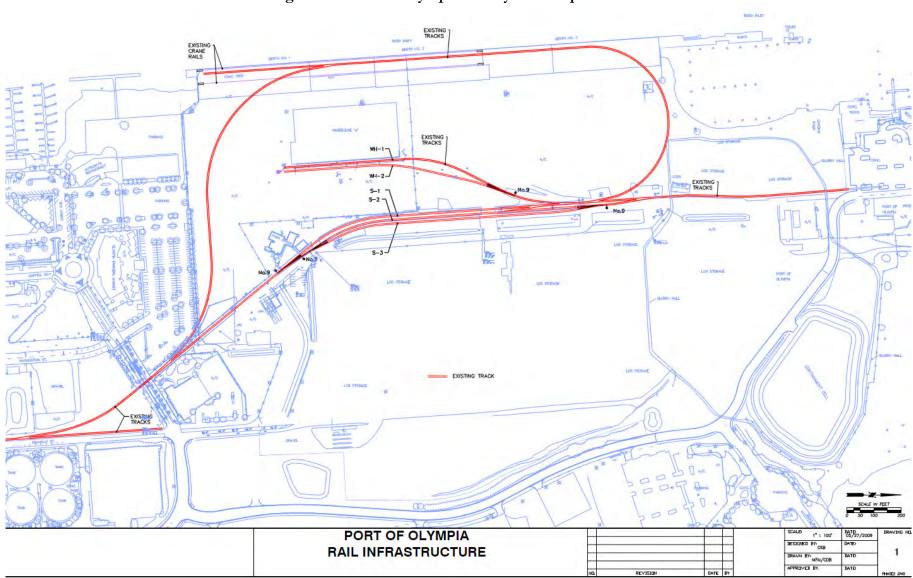


Figure 6.4: Port of Olympia Rail System Map

Starcrest Consulting Group, LLC 206 September 2012

2011 Puget Sound Maritime Air Emissions Inventory Section 6 Locomotives

6.3 Data and Information Acquisition

The rail locomotive source category is comprised of two components: on-terminal activity and port-related off-port activity. The data collection processes for each are summarized below.

6.3.1 On-Terminal

Information used to develop the emission estimates presented in this report was provided by the Class 1 railroads (BNSF and Union Pacific), the local railroad Tacoma Rail, grain terminal operators Louis Dreyfus and TEMCO, the Ports of Seattle and Tacoma, individuals with expertise in the local rail transportation system, and from the 2005 emissions inventory report and underlying data.

BNSF, a member of the Air Forum's Steering Committee, provided data on the number and percentage of line-haul locomotives that made calls to the Puget Sound ports in 2011. Union Pacific provided fuel consumption information for switching and line-haul activities by county within the State of Washington. The companies providing this information have designated it confidential material, so while the emission estimates are presented in the following subsections, the data underlying those estimates has not been released, and thus no supporting data is provided in the appendices. Tacoma Rail provided detailed information on their switching locomotives (e.g., make, model, year, and emissions tier level), fuel consumption information, and operational information such as the number of hours of operation during 2011.

The Ports of Seattle and Tacoma provided information on the number of trains and the amount of cargo entering and leaving their terminals in 2011, which was invaluable in estimating emissions from line-haul locomotives operating within and near the Ports. While specific data related to the Port of Everett were not available, emissions related to their rail operations are reflected in the area totals for Snohomish County, based on data provided by BNSF.

6.3.2 Regional Port-Related

The regional port-related locomotive emission estimates have been based primarily on information provided by the railroads (BNSF and Union Pacific), the Port of Seattle, and the Port of Tacoma, in the form of fuel consumption information (by county), cargo movement information, and train arrival/departure records.

6.4 Operational Profiles

The railroad system is a nationwide enterprise consisting of national and local railroad companies that together serve to move a diverse variety of cargo over long distances. The activity and emission estimates presented in this section represent emissions from locomotive activities that take place within and between ports and the near-dock rail yards that handle port-related cargos. Port terminals that offer on-dock rail service, such as the Port of Seattle's Terminal 5, and most of Port of Tacoma's container terminals, are able to load cargo directly onto railcars, which are either taken from the terminal to destinations across the country or are moved to a rail yard for consolidation into a cross-country train. Near-dock services, such as offered at the Port of Tacoma's APM Terminal where on-port intermodal yards require the cargo to be moved a short distance off-terminal by truck before it is loaded onto railcars. In addition to these on-port rail-related activities, cargo can be moved between the ports and nearby rail yards, which may also handle cargo that is not related to port activity. The cargo movements are bi-directional, with cargo being brought into the ports by rail for export on ships as well as being transported from the ports to points around the country.

6.4.1 Line-Haul Locomotives

The Puget Sound area is served by two major Class 1 railway companies, BNSF and Union Pacific. The Port of Tacoma offers on-dock or near-dock rail service at four locations, the North Intermodal Rail Yard, the South Intermodal Rail Yard, the Hyundai Intermodal Rail Yard, and the Pierce County Intermodal Rail Yard. In each of these yards, containers are loaded onto railcars for rail shipment across the country or are unloaded from railcars for placement onto ships for export. As mentioned, the Port of Seattle's Terminal 5 offers on-dock rail service; the other Port of Seattle terminals move rail-bound cargo to one of the near-port rail yards operated by BNSF or Union Pacific. Cargo moving through the Port of Everett is transported by BNSF.

The number of locomotives that are assigned to pull each train varies with the weight of the train, and estimates were made of the number of locomotives used to pull each train. Typically, eastbound trains carry more cargo (imported goods) than westbound trains and the terrain is more challenging in the eastbound direction. Accordingly, the assumption was made, consistent with the 2005 emissions inventory calculations, that eastbound trains average four locomotives while westbound trains average three locomotives.

When a westbound train enters a port terminal or an off-port rail yard, the locomotives can be detached from the railcars and can depart in a fairly short period of time, leaving the railcars to be emptied of their cargo and to wait for reloading. Eastbound trains can be loaded and made ready before the locomotives that will pull them arrive. An eastbound train, however, must go through lengthy safety checks attached to the locomotives before it can depart. Because the line-haul railroads were not able to provide records of actual on-site times, estimates of one hour per train for westbound trains and two hours per train for eastbound trains were used in the emission calculations, consistent with the 2005 emissions inventory calculations.

2011 Puget Sound Maritime Air Emissions Inventory Section 6 Locomotives

The locomotives in line-haul service vary in their horsepower ratings. Data provided by BNSF on the horsepower and engine tier level of locomotives calling in 2011 indicates that the BNSF locomotives averaged approximately 4,300 hp. This is similar to 2005, when an average of 4,000 horsepower was used in developing emission estimates. Based on the information provided by BNSF, the value of 4,300 hp was chosen to represent the average rated power of locomotives servicing the Puget Sound ports in 2011.

Locomotives seldom operate at their peak horsepower ratings, so the average in-use horsepower of the locomotives was estimated to calculate horsepower-hours of activity, consistent with the emission factors, which are expressed in units of mass of emissions per horsepower-hour. The same approach was taken for the 2005 emissions inventory, in which information from a Regulatory Support Document (RSD) published by EPA in support of rulemaking 44 was used to estimate an average locomotive load factor of 28% in normal operation. This is less than ideal because it represents the average of normal overall line-haul locomotive activity, which includes cross-country travel as well as activity at each end of a trip, so the percentages of time in each notch setting may not accurately represent rail yard or port terminal activity. However, the RSD averages have been used in lieu of locally specific information or information specifically representing the activities at each end of a line-haul trip.

This average load factor was combined with the assumptions of average locomotive horsepower, number of locomotives per train, and annual number of arriving and departing trains to develop estimates of on-port locomotive horsepower-hours, as described in Section 6.6, Emissions Estimating Methodology.

6.4.2 Switching Locomotives

In addition to moving line-haul trains into and out of the port areas, BNSF and Union Pacific operate switching locomotives in their rail yards. Switching activities are also performed by Tacoma Rail within and near the Port of Tacoma and the Port of Olympia. Switching consists of short distance moves of railcars and the assembly of trains in a preordered sequence. A train is organized according to where the cargo in each railcar is destined and the nature of the cargo. There are safety requirements concerning whether certain materials can be in adjacent cars and by how many cars they must be separated, so railcars and groups of railcars are moved around a switching yard to appropriately organize the train as a whole.

The information provided by BNSF, Union Pacific, and Tacoma Rail was the annual amount of fuel used in their rail yard locomotives. Union Pacific cited an EPA estimate of 82,490 gallons of fuel per locomotive per year⁴⁵, basing their overall estimate on the number of locomotives and their normal operating schedule. BNSF, for the 2005 emissions inventory, used an estimate of 50,000 gallons of fuel per yard locomotive, citing an internal yard equipment fuel study. The fuel usage was factored for 2011 based on the activity growth Union Pacific reported, for the period between 2011 and 2005, using the assumption that the two railroad companies experienced a similar change in activity levels. Tacoma Rail provided an estimate of the amount of fuel consumed annually by their locomotives.

⁴⁴ EPA, Locomotive Emission Standards Regulatory Support Document, revised, April 1998.

⁴⁵ EPA, Procedures for Emission Inventory Preparation – Vol. IV: Mobile Source, December 1992.

2011 Puget Sound Maritime Air Emissions Inventory Section 6 Locomotives

These annual fuel use amounts were converted to horsepower-hour estimates using a fuel consumption factor published by EPA, 15.2 horsepower-hours per gallon of fuel.⁴⁶ The horsepower-hour estimates were combined with emission factors expressed in terms of mass of emissions per horsepower-hour to estimate switching emissions.

6.5 Emission Reduction Technologies Identified

Tacoma Rail has implemented several emission reduction techniques over the past few Twelve of fourteen of their switching locomotives are equipped with an idle reduction technology that reduces idling while keeping the locomotive's battery charged and its engine ready to run when needed. One of their switchers is a genset locomotive, powered by three small, Tier 3 diesel engine/electrical generator sets (gensets) that provide only the level of power needed for a particular job, saving fuel and lowering emissions. Two of Tacoma Rail's switchers have been repowered to meet Tier 2 emission levels, and all of their locomotives operate on ULSD fuel and have been equipped with improved fuel injectors that lower smoke and particulate emissions.

Three switching locomotives at the Port of Tacoma's TEMCO Grain Terminal and two at the Port of Seattle's Louis Dreyfus Grain Terminal were equipped with automatic engine startup-shutdown (AESS) devices to reduce idling and all of their locomotives operate on ULSD fuel. BNSF has also reported installing AESS devices.

In 2008, the federal Inland Marine and Locomotive Rule came into effect. It requires that when locomotive engines meeting certain criteria are overhauled, an EPA certified kit that reduces PM emissions by at least 25% must be installed. In the absence of a program to track the installation of these kits, these emission reductions are not included in the 2011 inventory.

6.6 Emissions Estimating Methodology

Emission estimation methodologies for the port and airshed port-related locomotive activities are summarized below.

6.6.1 Port Emissions – On-Terminal and Adjacent Rail Yards

A combination of emission estimation methods was used due to the differences in type and level of detail of the data that was obtained. For line-haul locomotives, horsepower-hour estimates were developed from the operating parameters described above, and emission factors expressed in terms of mass of emissions per horsepower-hour were used to estimate emissions. The following terms are multiplied in the basic calculation:

- Number of trains per year
- Average number of locomotives per train
- Average locomotive rated horsepower
- Average in-use locomotive load factor
- Average on-port time per train

⁴⁷ Tacoma Public Utilities, http://www.mytpu.org/tacomarail/environment/eco-friendly-equipment.htm

⁴⁶EPA, Emission Factors for Locomotives, April 2009.

Starcrest Consulting Group, LLC

The equation can be summarized as:

Equation 6.1

$$Activity = \frac{trains}{year} \times \frac{locomotives}{train} \times \ \textit{HP} \ \times \ \textit{LF} \ \times \ \textit{hours}$$

Where:

Activity = activity, hp-hr/year

The result is multiplied by a pollutant-specific emission factor in grams per horsepower-hour (and divided by 453.59 g/lb x 2,000 pounds [lbs]/ton) to calculate tons per year.

Equation 6.2

Emissions,
$$tpy = \frac{\frac{hp \ hr}{year} \times \frac{g}{hp \ hr}}{\left(453.59 \frac{g}{lb} \times 2,000 \frac{lbs}{ton}\right)}$$

The switching locomotive emissions were developed from fuel consumption figures converted to horsepower-hour estimates using a fuel consumption factor published by EPA. Emission factors specific to switching locomotives expressed in terms of mass of emissions per horsepower-hour were used with equation 6.2 above. For line-haul locomotives, information provided by one of the Class 1 railroads on their 2011 fleet mix was used to develop composite emission factors. The fleet mix information consisted of the number of locomotives of each emissions tier level that called at the Puget Sound ports during 2011. Composite emission factors were developed using the percentage of each tier level and tier-specific emission factors reported by EPA in the document cited above.

SO₂ emission factors were developed using a mass balance approach assuming all sulfur in the fuel is emitted as SO₂. The standard non-road diesel used by line-haul locomotives was estimated to contain 234 ppm sulfur⁴⁹ and the ULSD used by Tacoma Rail was estimated to contain 15 ppm sulfur.

6.6.2 Airshed Emissions

Airshed port-related locomotive emissions have been estimated using the 2011 fleet mix information and the tier-specific EPA emission factors noted above to develop fleet composite emission factors. Emission estimates for port-related locomotive activity were developed using fuel consumption estimates converted to horsepower-hours and the fleet composite emission factors. The railroads provided information on the tons of freight moved over specific portions of their trackage to and from the ports.

Starcrest Consulting Group, LLC

_

⁴⁹ EPA, Final Regulatory Analysis: Control of Emissions from Nonroad Diesel Engines, May 2004.

⁴⁸ EPA, Emission Factors for Locomotives, April 2009.

This freight information was paired with route-specific fuel consumption estimates developed for the 2005 emissions inventory, combined with average train weight information provided by the Port of Tacoma and adjusted for improvements in the railroads' operating fuel efficiency.⁵⁰ In sequence, estimates were made of the number of gross tons (weight of all cargo, rail equipment, and locomotives combined), gross ton-miles (freight transported a certain distance), gallons of fuel (from route-specific fuel consumption estimates), and horsepower-hours (using the EPA' recommended line-haul fuel consumption factor).⁵¹ These estimates were made for each of the major port rail centers (the Port of Tacoma and the Port of Seattle) traveling inbound and outbound on both the northern and southern routes, on a county-specific basis. Emissions were estimated using the horsepower-hour estimates and the same emission factors used for on-terminal line-haul emissions.

6.7 Emission Estimates

Port-related locomotive emission estimates for port and airshed zones are presented below.

6.7.1 Port Emissions – On-Terminal and Adjacent Rail Yards

The 2011 maritime-related port emissions for the Puget Sound area are summarized in this section. Table 6.1 presents the estimates of 2011 criteria pollutant and greenhouse gas emissions from switching emissions on and near the Ports of Seattle, Tacoma, and Olympia, and switching activity in Snohomish County associated with the Port of Everett. Table 6.2 presents the estimates of 2011 criteria pollutant and greenhouse gas emissions from line-haul locomotives as they move maritime-related cargo within the Ports of Seattle and Tacoma, and within the near-port/adjacent rail yards in King and Pierce Counties that handle port cargo. Emissions from line-haul locomotive operations associated with the Ports of Olympia and Everett have not been included in these tables because sufficient information was not collected to differentiate maritime-related from other locomotive activities in the region.

Table 6.1: 2011 Switching Locomotive Port Emissions, tpy

Port	NO _x	voc	СО	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
Port of Seattle	162.4	13.0	23.6	1.3	5.8	5.3	5.8	8,619
Port of Tacoma	230.1	17.2	31.3	1.2	7.5	6.9	7.5	11,422
Snohomish Co.	62.1	5.0	9.0	0.5	2.2	2.0	2.2	3,298
Port of Olympia	3.7	0.2	0.4	0.002	0.1	0.1	0.1	164
Total	458.3	35.4	64.3	3.0	15.6	14.3	15.6	23,503

_

⁵⁰ Fuel efficiency improvements estimated using information contained in the R-1 reports filed by the Class 1 railroads with the Surface Transportation Board each year.

⁵¹ EPA, Emission Factors for Locomotives, April 2009.

Table 6.2: 2011 Line-Haul Locomotive Port Emissions, tpy

Port	NO_x	voc	СО	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
Port of Seattle	127.8	7.1	21.6	1.2	4.7	4.3	4.7	8,209
Port of Tacoma	133.7	7.4	22.5	1.2	4.9	4.5	4.9	8,593
Total	261.5	14.5	44.1	2.4	9.6	8.8	9.6	16,802

6.7.2 Airshed Emissions Exclusive of Port Emissions

The 2011 maritime related line-haul locomotive airshed emissions for are summarized in this section. Table 6.3 presents estimated 2011 line-haul locomotive emissions associated with the Ports of Seattle and Tacoma, while Table 6.4 presents these emissions on a county-specific basis, based on the routes taken by the trains into and out of the inventory domain.

Table 6.3: 2011 Line-Haul Locomotive Airshed Emissions Exclusive of Port Emissions, tpy

Port	NO _x	voc	СО	SO ₂	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
Port of Seattle	388.5	21.4	65.4	3.6	14.3	13.2	14.3	24,969
Port of Tacoma	155.8	8.6	26.3	1.5	5.7	5.1	5.7	10,015
Total	544.3	30.0	91.7	5.1	20.0	18.3	20.0	34,984

Table 6.4: 2011 Line-Haul Locomotive Airshed Emissions by County Exclusive of Port Emissions, tpy

County	NO _x	voc	СО	SO ₂	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
Clallam	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
Island	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
Jefferson	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
King	190.9	10.5	32.2	1.8	7.0	6.4	7.0	12,269
Kitsap	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
Mason	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
Pierce	57.1	3.1	9.6	0.5	2.1	1.9	2.1	3, 670
San Juan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
Skagit	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
Snohomish	204.1	11.3	34.4	1.9	7.5	6.9	7.5	13,114
Thurston	92.2	5.1	15.5	0.9	3.4	3.1	3.4	5,931
Whatcom	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total	544.3	30.0	91.7	5.1	20.0	18.3	20.0	34,984

6.8 Emission Comparison, 2011 vs 2005

Activity and emissions 2011 vs 2005 comparisons for locomotives are presented in this section. Table 6.5 presents a comparison of 2011 vs 2005 activity levels for locomotives in terms of annual horsepower-hours and fuel consumption in gallons.

Table 6.5: 2011 vs 2005 Locomotive Activity and Fuel Consumption Comparison

Year	Activity	Fuel Usage
	hp-hr	gallons
2011	123,623,669	6,429,803
2005	178,616,613	9,013,083
Change, %	-31%	-29%

The 2011 vs 2005 comparison for locomotive airshed emissions is summarized in Table 6.6. Airshed emissions in 2011 were lower than 2005 emissions by 24% to 94%, primarily due to lower overall throughput, newer, lower emitting switching and line-haul locomotives, and improved fuel efficiency of locomotive operations. The large decrease in SO₂ emissions was a result of the continued lowering of the sulfur content of diesel fuels.

Table 6.6: 2011 vs 2005 Locomotive Airshed Emissions Comparison, tpy

Year	NO _x	voc	СО	SO_2	\mathbf{PM}_{10}	PM _{2.5}	DPM	CO ₂ e
2011	1,264	80	200	11	45	41	45	75,289
2005	2,416	120	302	188	65	60	65	110,431
Change, tpy	-1,152	-40	-101	-177	-20	-19	-20	-35,142
Change, %	-48%	-34%	-34%	-94%	-31%	-31%	-31%	-32%

-25%
-34%
-34%
-34%
-31%
-31%
-31%
-31%
-32%

-75%
-100%
-125%

Figure 6.5: 2011 vs 2005 Airshed Locomotive Emissions Change

Note: 2005 emissions were recalculated using the same methods used for the 2011 emission estimates. The above figure accounts for these changes so that a direct comparison can be made between 2011 vs 2005.

 SO_2

 \mathbf{CO}

 PM_{10}

 $PM_{2.5}$

 NO_x

VOC

 CO_2e

DPM

SECTION 7 HEAVY-DUTY VEHICLES

Section 7 provides an overview of the emissions from on-road heavy-duty diesel-fueled vehicles that transport port-related cargo, and from buses that shuttle cruise passengers at the cruise terminals to and from the airport and area hotels. A description of the methodology used to estimate emissions is provided in this section, as well as the emissions estimates for this source category.

7.1 Source Description

Heavy-duty trucks are used extensively to move cargo to and from the terminals that serve as the bridge between land and sea transportation. Trucks deliver cargo to and from local and national destinations, and they also transfer cargo between terminals and off-port railcar loading facilities, an activity known as drayage. In the course of their daily operations, trucks are driven onto and through the terminals, where they deliver and/or pick up cargo. They are also driven on the public roads near ports and throughout the region. Marine cargo transportation by truck is a complex system because generally the vehicles and associated equipment, such as chassis and refrigeration gensets, are not under the direct control of the ports, their terminals, or most of the shippers who use the terminals. The vehicles are largely a combination of fleet vehicles owned by transport companies and independently owned and operated trucks.

This section details the estimated emissions from truck activities within the ports' terminals as they drop off or pick up cargo. The on-terminal cargo truck activities covered include idling at pre-gate queue lines prior to entering terminal gates, idling within the terminals, and travel within the terminals. Estimates of idling emissions from the heavy-duty diesel-fueled buses that transport cruise line passengers to and from the airport and hotels in the area are also included in the on-terminal HDV emissions, for the time that they idle during unloading and loading of cruise passengers. Emissions from trucks transporting cargo on the public roadways to or from the ports have been estimated by the Puget Sound Regional Council (PSRC) and the WDOE's Air Quality Section, and are presented in this section as representing regional port-related emissions.

The EPA on-road vehicle emission modeling software, MOBILE6.2 model, has been used to estimate emissions from these on-road mobile sources. Virtually all of these vehicles are diesel-fueled because of the economic and operational characteristics of diesel engines as opposed to engines fueled by gasoline or other fuels.

The most common configuration of HDVs in maritime freight service is the articulated tractor-trailer (truck and semi-trailer) having five axles, including the trailer axles. A common type of trailer in the study area is the container trailer or chassis, which is built to accommodate standard-sized cargo containers. Additional trailer types include tankers, boxes, and flatbeds. A tractor traveling without an attached trailer is called a "bobtail," while a tractor pulling an unloaded container chassis is known simply as a "chassis." These vehicles are all classified as HDVs regardless of their actual weight because the classification is based on gross vehicle weight rating (GVWR), which is a rating of the vehicle's total potential weight including its carrying capacity. Because MOBILE6.2 does not distinguish between loaded and unloaded trucks, the emission estimates include all of the different configurations combined. This may result in a slight overestimation of emissions from the unloaded HDVs, but the inertial effects of the additional weight of a loaded truck would probably limit the overestimate to periods of acceleration.

Port-related, on-road trucking, known as drayage, is a unique subset of the overall truck activity that occurs in the Puget Sound region. Unlike long-haul trucking, which transports goods out of the region to remote destinations, drayage trucks drive short distances to deliver containers to and from terminals, intermodal yards, and local distribution centers. In Seattle, the intermodal yards are approximately one to two miles from the terminals, while the local distribution centers, concentrated in the Green River Valley area, are approximately 10 to 35 miles from the terminals; additionally, many port-related truck trips stay within the Duwamish Industrial Area. In Tacoma, the majority of containers bound to and from intermodal yards are transported via on-dock rail, while containers bound for the local distribution centers travel approximately 15 to 25 miles to the Green River Valley.

As examples of typical HDVs, Figure 7.1 presents a container truck transporting a container in a terminal, and Figure 7.2 presents a bobtail. The equipment images shown in the figures are not photographs of actual pieces of equipment used at the surveyed terminals but are for illustrative purposes only.

Figure 7.1: Truck with Container

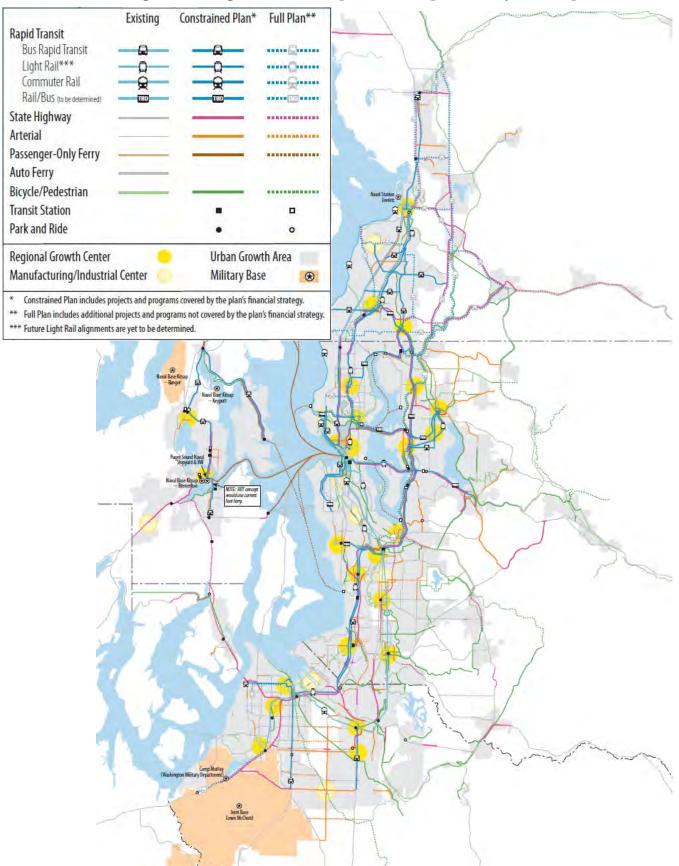
Figure 7.2: Bobtail Truck

7.2 Geographical Delineation

The heavy-duty vehicle emissions were estimated separately for on-terminal and on-road port-related activity. The geographical extent of the on-terminal portion consists of the marine terminals footprint and associated facilities of the following Puget Sound area ports:

- ➤ Port of Anacortes
- ➤ Port of Everett
- ➤ Port of Olympia
- ➤ Port of Seattle
- ➤ Port of Tacoma
- ➤ BNSF SIG Rail Yard
- Argo Rail Yard

The locations of the ports and their respective marine terminals are illustrated in the figures in Section 1.


The geographical extent of the on-road port-related emissions is shown in Figure 7.3,⁵² and is comprised of the public roadways and rail corridors within the Puget Sound airshed, including Clallam, Island, Jefferson, King, Kitsap, Mason, Pierce, San Juan, Skagit, Snohomish, Thurston, and Whatcom Counties. This includes trips between the terminals and the first pickup/drop or the boundary of the study area for cargo being transported in or out of the study area directly to or from the terminals, as well as trips between terminals and nearby rail yards. Queuing time for entering terminals is included in the on-terminal portion.

_

⁵² Puget Sound Regional Council, *Destination 2040 Plan*, 2010.

Figure 7.3: Puget Sound Metropolitan Transportation System Map

7.3 Data and Information Acquisition

The HDV source category is comprised of two activity components: on-terminal and port-related on-road activity. The data collection methods for each are summarized below.

7.3.1 On-Terminal

Terminal operators provided information on truck throughput for calendar year 2011, the terminal gate schedule (when trucks are admitted for drop-off or pick-up of cargo), the average speed and distance driven on-terminal, and the average amounts of time trucks wait at the entrance gate, the exit gate, and while loading/unloading.

The Port of Seattle, Port of Tacoma, and Port of Olympia provided model year information for 2011 consisting of the number of truck calls made by each model year of truck. This is important because vehicle emissions vary by model year, and newer model vehicles generally emit less than older vehicles. This represents an improvement over 2005, for which the Washington state vehicle registration distribution formed the basis of the model year distribution. The combined 2011 port-related model year distribution that takes into account the calls to all three ports that provided data is illustrated in Figure 7.4, which presents the percentage of truck trips by model year.

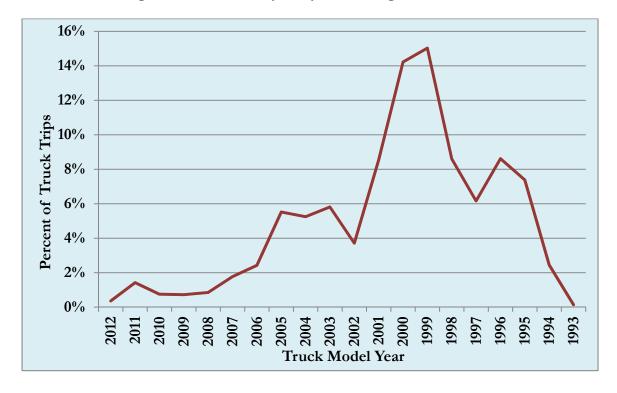


Figure 7.4: 2011 Heavy-Duty Vehicle Age Distribution

7.3.2 Regional Port-Related

The PSRC and the Washington Department of Ecology (WDOE) developed estimates of on-road HDV emissions within the Puget Sound area from trucks engaging in port-related freight movements. They based these estimates on their regional travel demand model and emission factors obtained from the MOBILE6.2 model, using the port-specific model year distribution discussed above. Details of their methodology are reported in a memorandum prepared by the PSRC and included in Appendix B.

7.4 Operational Profiles

The number of HDV trips through the terminals is a function of cargo throughput (or number of cruise passengers and frequency of cruises, for the buses). The vehicles have periods of idling during each trip, for example while waiting to enter the terminal or while waiting to drop off and/or pick up cargo. The vehicles also travel a certain distance within the terminal from entry gate to drop-off/pick-up locations, and to the exit gate. The amount of on-terminal idling depends in part on the mode of operation – idling is reduced if cargo is ready to be loaded upon the vehicle's arrival compared to operations in which a vehicle must wait for a loader to bring the cargo. On-terminal travel distance depends on the size of the terminal and on the route taken by the vehicles within the terminal. The bus idling times are for idling while queuing to park in designated areas and while loading or discharging passengers.

The operational information provided by the terminals has been summarized and is presented in Table 7.1. The values presented for idling times and driving distances are averages for each terminal, while the assumed speed for cargo terminals is the average reported from all terminals. The terminals identified as PSS020A and PSS020B are cruise terminals; emissions have been estimated from idling of buses as cruise passengers unload and load at the cruise terminals, but driving emissions have not been included to be consistent with the 2005 approach. The Port of Seattle discourages unnecessary bus idling by signage and communications with the companies involved. An example of the signage is shown in Figure 7.5.

Port-related on-road HDV's vehicle miles traveled (VMT) depends on the destination of the cargo being transported. Idling of HDV while in transit, such as at traffic signals, is included in the emission factors produced by the MOBILE6.2 model.

Figure 7.5: Port of Seattle Cruise Terminal Anti-Idling Signage

Table 7.1: 2011 On-Terminal HDV Operational Profiles

			Idling (hours)					Driving			
Terminal	Trips	Gate	Loading/	Gate	Total	Total	Avg. Speed	Per Trip	Per Trip	All Trips	
ID	in 2011	In	Unloading	Out	Per Trip	All Trips	(mph)	(hours)	(miles)	(miles)	
PSS070	301,444	0.17	0.43	0.05	0.65	195,939	15	0.07	1.00	301,444	
PSS050	643,666	0.33	0.27	0.08	0.68	437,693	15	0.12	1.75	1,126,416	
PSS060	88,717	0.23	0.15	0.10	0.48	42,584	15	0.13	1.90	168,562	
PSS080	320,268	0.07	0.32	0.03	0.42	134,513	15	0.07	1.00	320,268	
PSS030	38,480	0.05	0.08	0.00	0.13	5,002	10	0.05	0.50	19,240	
PSS020A	6,619	0.00	0.17	0.00	0.17	1,125	na	na	na	na	
PSS020B	3,115	0.00	0.17	0.00	0.17	530	na	na	na	na	
PST070	91,800	0.08	0.18	0.00	0.26	23,868	15	0.02	0.28	25,704	
PST030	54,6 70	0.17	0.32	0.08	0.57	31,162	10	0.10	0.95	51,937	
PST050	144,300	0.08	0.23	0.08	0.39	56,277	15	0.07	1.00	144,300	
PST020	208,000	0.08	0.26	0.00	0.34	70,720	15	0.04	0.66	137,280	
PST040	92,880	0.00	0.21	0.00	0.21	19,505	15	0.05	0.68	63,158	
PST060	126,971	0.17	0.19	0.08	0.44	55,867	15	0.10	1.53	194,266	
PST100	75,000	0.00	0.07	0.02	0.09	6,750	25	0.04	1.04	78,000	
PST010	7,178	0.08	0.02	0.00	0.10	718	8	0.03	0.25	1,795	
PST090	4,061	0.08	0.20	0.04	0.32	1,300	15	0.03	0.50	2,031	
PST120	15,000	0.00	0.11	0.00	0.11	1,650	5	0.06	0.30	4,500	
PST110	10,125	0.07	0.30	0.00	0.37	3,746	10	0.02	0.24	2,430	
PST130	39,600	0.00	0.17	0.00	0.17	6,732	5	0.08	0.40	15,840	
PSA010	7,994	0.03	0.08	0.03	0.14	1,119	5	0.05	0.25	1,999	
PSE010	4,025	0.00	0.25	0.00	0.25	1,006	8	0.13	1.00	4,025	
PSO010	7,608	0.03	0.08	0.03	0.14	1,065	5	0.05	0.25	1,902	
BNSF SIG	217,264	0.11	0.33	0.03	0.47	102,114	15	0.07	1.00	217,264	
UP Argo	193,333	0.17	0.40	0.03	0.60	116,000	15	0.07	1.00	193,333	
Totals	2,702,119					1,316,985				3,075,692	
Weighted a	verages	0.16	0.28	0.05	0.49		15	0.08	1.14		

7.5 Emission Reduction Technologies Identified

In 2011, the diesel trucks and buses addressed in this section used ULSD with a sulfur content of 15 ppm or less since this is the fuel available nation-wide for on-road vehicle use. This diesel fuel sulfur control program significantly reduces sulfate and particulate emissions by a nominal amount. Fleet turnover to newer vehicles with 2007 and newer engine model years has also had an effect on reducing overall HDV emissions. Both the Port of Tacoma and Port of Seattle have banned trucks with engines older than 1994 from calling at their terminals.

7.6 Emissions Estimating Methodology

The methodologies for estimating the on-terminal and port-related on-road HDV emissions are presented below.

Emission Factors

The MOBILE6.2 model was used to calculate emission factors for HDVs. The MOBILE6.2 vehicle types⁵³ most representative of the trucks covered by this section. HDDV8A⁵⁴ and HDDV8B, were used to develop the composite emission factors for heavyduty trucks. The composites were based on the MOBILE6.2 emission factors for the two classes apportioned according to the MOBILE6.2 mileage distribution for each of the classes.

The MOBILE6.2 model estimates vehicle emissions in terms of grams per mile, and these estimates are specific to the vehicles' model year and average speed. The emission factors presented in Tables 7.2 and 7.3 include the on-terminal emission factors specific to each terminal based on the reported average speed on each terminal, and represent the overall model year distribution of the three ports that provided data, as discussed above in subsection 7.3, Data and Information Acquisition. The emission factors for on-road travel vary by speed, and are included as average grams-per-mile for driving emissions in Table 7.2. The emission factors by speed are included in Appendix B. Emission factors for methane and nitrous oxide were developed from EPA's national greenhouse gas emissions inventory report.⁵⁵ Idling emission factors were developed to account for the on-terminal idling periods. These factors were developed according to previous EPA guidance based on the 2.5 miles per hour (mph) emission factors (in g/miles) multiplied by 2.5.⁵⁶ On-road idling emission factors are not included because the on-road emission factors include a normal amount of in-traffic idling.

⁵⁵EPA 2006. See Annex 3, Table A-95.

⁵³ EPA, User's Guide to MOBILE6.1 and MOBILE6.2 Mobile Source Emission Factor Model, EPA420-R-03-010, 2003. See: http://www.epa.gov/otaq/models/mobile6/420r03010.pdf.

⁵⁴ HDDV - heavy-duty diesel vehicle

⁵⁶ EPA, Technical Guidance on the Use of MOBILE6 for Emission Inventory Preparation, EPA420-R-04-013, August 2004. See: http://www.epa.gov/otaq/models/mobile6/420r04013.pdf.

Table 7.2: HDV Emission Factors – Driving, g/mile

	Avg.										
Terminal	Speed	NO_x	VOC	CO	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO_2	N_2O	\mathbf{CH}_{4}
ID	(mph)										
PSS070	15	12.3866	0.9427	4.9567	0.0150	0.1876	0.1727	0.1876	1,602	0.0048	0.0051
PSS050	15	12.3866	0.9427	4.9567	0.0150	0.1876	0.1727	0.1876	1,602	0.0048	0.0051
PSS060	15	12.3866	0.9427	4.9567	0.0150	0.1876	0.1727	0.1876	1,602	0.0048	0.0051
PSS080	15	12.3866	0.9427	4.9567	0.0150	0.1876	0.1727	0.1876	1,602	0.0048	0.0051
PSS030	10	14.1942	1.1752	6.8697	0.0150	0.1876	0.1727	0.1876	1,602	0.0048	0.0051
PSS020A	na	na	na	na	na	na	na	na	na	na	na
PSS020B	na	na	na	na	na	na	na	na	na	na	na
PST070	15	12.3866	0.9427	4.9567	0.0150	0.1876	0.1727	0.1876	1,602	0.0048	0.0051
PST030	10	14.1942	1.1752	6.8697	0.0150	0.1876	0.1727	0.1876	1,602	0.0048	0.0051
PST050	15	12.3866	0.9427	4.9567	0.0150	0.1876	0.1727	0.1876	1,602	0.0048	0.0051
PST020	15	12.3866	0.9427	4.9567	0.0150	0.1876	0.1727	0.1876	1,602	0.0048	0.0051
PST040	15	12.3866	0.9427	4.9567	0.0150	0.1876	0.1727	0.1876	1,602	0.0048	0.0051
PST060	15	12.3866	0.9427	4.9567	0.0150	0.1876	0.1727	0.1876	1,602	0.0048	0.0051
PST100	25	10.4167	0.6485	2.9587	0.0150	0.1876	0.1727	0.1876	1,602	0.0048	0.0051
PST010	8	14.8553	1.2555	7.6424	0.0150	0.1876	0.1727	0.1876	1,602	0.0048	0.0051
PST090	15	12.3866	0.9427	4.9567	0.0150	0.1876	0.1727	0.1876	1,602	0.0048	0.0051
PST120	5	16.8378	1.4968	9.9626	0.0150	0.1876	0.1727	0.1876	1,602	0.0048	0.0051
PST110	10	14.1942	1.1752	6.8697	0.0150	0.1876	0.1727	0.1876	1,602	0.0048	0.0051
PST130	5	16.8378	1.4968	9.9626	0.0150	0.1876	0.1727	0.1876	1,602	0.0048	0.0051
PSA010	5	16.8378	1.4968	9.9626	0.0150	0.1876	0.1727	0.1876	1,602	0.0048	0.0051
PSE010	8	14.8553	1.2555	7.6424	0.0150	0.1876	0.1727	0.1876	1,602	0.0048	0.0051
PSO010	5	16.8378	1.4968	9.9626	0.0150	0.1876	0.1727	0.1876	1,602	0.0048	0.0051
BNSF SIG	15	12.3866	0.9427	4.9567	0.0150	0.1876	0.1727	0.1876	1,602	0.0048	0.0051
UP Argo	15	12.3866	0.9427	4.9567	0.0150	0.1876	0.1727	0.1876	1,602	0.0048	0.0051
Weighted Avg	15	12.4822	0.9557	5.0977	0.0149	0.1869	0.1721	0.1869	1,596	0.0048	0.0051

Table 7.3: HDV Emission Factors – Idling, g/hour

Terminal	NO_x	voc	CO	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO_2	N_2O	\mathbf{CH}_{4}
PSS070	46.4647	4.2577	20.5000	0.0274	0.4690	0.4210	0.4600	4.005	0.0120	0.0128
	46.4647	4.2577	30.5090	0.0374		0.4318	0.4690	4,005	0.0120	
PSS050	46.4647	4.2577	30.5090	0.0374	0.4690	0.4318	0.4690	4,005	0.0120	0.0128
PSS060	46.4647	4.2577	30.5090	0.0374	0.4690	0.4318	0.4690	4,005	0.0120	0.0128
PSS080	46.4647	4.2577	30.5090	0.0374	0.4690	0.4318	0.4690	4,005	0.0120	0.0128
PSS030	46.4647	4.2577	30.5090	0.0374	0.4690	0.4318	0.4690	4,005	0.0120	0.0128
PSS020A	41.5150	2.0430	23.8380	0.0545	0.3440	0.3165	0.3440	5,845	0.0120	0.0128
PSS020B	41.5150	2.0430	23.8380	0.0545	0.3440	0.3165	0.3440	5,845	0.0120	0.0128
PST070	46.4647	4.2577	30.5090	0.0374	0.4690	0.4318	0.4690	4,005	0.0120	0.0128
PST030	46.4647	4.2577	30.5090	0.0374	0.4690	0.4318	0.4690	4,005	0.0120	0.0128
PST050	46.4647	4.2577	30.5090	0.0374	0.4690	0.4318	0.4690	4,005	0.0120	0.0128
PST020	46.4647	4.2577	30.5090	0.0374	0.4690	0.4318	0.4690	4,005	0.0120	0.0128
PST040	46.4647	4.2577	30.5090	0.0374	0.4690	0.4318	0.4690	4,005	0.0120	0.0128
PST060	46.4647	4.2577	30.5090	0.0374	0.4690	0.4318	0.4690	4,005	0.0120	0.0128
PST100	46.4647	4.2577	30.5090	0.0374	0.4690	0.4318	0.4690	4,005	0.0120	0.0128
PST010	46.4647	4.2577	30.5090	0.0374	0.4690	0.4318	0.4690	4,005	0.0120	0.0128
PST090	46.4647	4.2577	30.5090	0.0374	0.4690	0.4318	0.4690	4,005	0.0120	0.0128
PST120	46.4647	4.2577	30.5090	0.0374	0.4690	0.4318	0.4690	4,005	0.0120	0.0128
PST110	46.4647	4.2577	30.5090	0.0374	0.4690	0.4318	0.4690	4,005	0.0120	0.0128
PST130	46.4647	4.2577	30.5090	0.0374	0.4690	0.4318	0.4690	4,005	0.0120	0.0128
PSA010	46.4647	4.2577	30.5090	0.0374	0.4690	0.4318	0.4690	4,005	0.0120	0.0128
PSE010	46.4647	4.2577	30.5090	0.0374	0.4690	0.4318	0.4690	4,005	0.0120	0.0128
PSO010	46.4647	4.2577	30.5090	0.0374	0.4690	0.4318	0.4690	4,005	0.0120	0.0128
BNSF SIG	46.4647	4.2577	30.5090	0.0374	0.4690	0.4318	0.4690	4,005	0.0120	0.0128
UP Argo	46.4647	4.2577	30.5090	0.0374	0.4690	0.4318	0.4690	4,005	0.0120	0.0128
Weighted Avg	46.4500	4.2497	30.4849	0.0374	0.4686	0.4314	0.4686	4,012	0.0120	0.0128

Starcrest Consulting Group, LLC 226 September 2012

The general form of the equation for estimating vehicle emissions is:

Equation 7.1

$$E = (EF_d \times A_d) + (EF_i \times A_i)$$

Where:

E = mass of emissions per defined period

 EF_d = driving emission factor (g/mile)

 A_d = driving activity (miles driven during the defined period)

 $EF_i = idling emission factor (g/hour)$

 A_i = idling activity (idling during the defined period)

Emissions were estimated by multiplying the miles driven or hours idling on each terminal by the relevant emission factor.

Port Emissions

Emissions from HDVs operating within the terminals and idling adjacent to the terminals were estimated by multiplying the miles driven, the hours of idling on each terminal, and the hours idling waiting to get into the terminal by the relevant emission factor representing the average speed and the overall model year distribution of the trucks calling at the terminals.

Airshed Emissions

The PSRC also used the EPA MOBILE6.2 model to estimate airshed emissions from port-related HDVs, consistent with the methodology used by Starcrest for the on-terminal calculations. The three largest ports in the Puget Sound region (Ports of Everett, Seattle and Tacoma) are located in Snohomish, King, and Pierce Counties, respectively, have the highest off-terminal port-related HDV activity levels in the study area and were the focus of the PSRC's modeling efforts.

The PSRC used their latest Travel Demand Model, which simulates all the travel in the airshed on an average weekday, to develop the weekday on-road port-related truck VMT for 2011. Among the vehicle classes modeled are heavy-duty trucks. The truck trip-ends are generated from estimates of employment, distributed using "typical" distributions of trip lengths, and assigned to the regional road system along with all other vehicles (personal vehicles, and light and medium trucks). PSRC's use of the latest travel demand model improved VMT estimates for 2011. In order to provide for reasonably reliable comparison between 2011 and 2005, 2005 HDV emissions were adjusted to account for the up to date methodologies. The primary difference between the 2011 and 2005 modeling is that the later modeling produces higher estimates of VMT for a given volume of cargo throughput. The 2005 emissions were adjusted to take into account these higher VMT estimates. Another difference is that the 2005 emission estimates included more weight classes of trucks than the 2011 estimates - for 2011 only the heaviest classes of trucks (HDDV8a and 8b) have been included because these classes make up the great majority of truck visits. The 2005 estimates of truck emissions were recalculated to include only the HDDV8A and 8b classes of trucks. For these reasons, the 2005 HDV emissions displayed later in this report do not correspond directly with the numbers in the 2005 PSEI report.

The updated travel demand model includes improvements with specific information provided by the Ports, thus, there was no need to make additional adjustments to the model output. Since 2010 is an existing model analysis year in the travel demand model, and since it was determined that there would be little to no differences in port-related VMT between 2010 and 2011, the PSRC decided to use the 2010 analysis year as a surrogate for the 2011 emissions inventory data. Truck trips to and from the Ports of Everett, Seattle, and Tacoma and the corresponding distances and travel times were extracted from the 2010 model run. The other ends of the trips were aggregated to the following geographies:

- Distribution Centers all analysis zones in the Green River Valley, from Renton to Sumner
- ➤ Interstate 5 South at the Nisqually River
- ➤ Interstate 90 at Snoqualmie Pass
- ➤ Interstate 5 North at the Skagit/Snohomish County line
- ➤ All other external stations
- Remainder of King County
- Snohomish County
- > Remainder of Pierce County
- Kitsap County
- > Rail yards

As noted previously, additional documentation prepared by the PSRC is included in Appendix B. The regional port-related emission estimates developed by the PSRC and the WDOE are specific to the counties within the PSCAA area, consisting of King, Kitsap, Pierce, and Snohomish Counties. Consistent with the 2005 emissions inventory methodology, emissions from truck activities in other counties in the inventory area were extrapolated from the PSCAA emissions using the ratios of port-related HDV to total HDV emissions to develop scaling factors. For example, if VOC emissions from port-related HDVs in the PSCAA area made up 7% of all HDV emissions in the PSCAA area, then each county's overall VOC emissions (from HDVs) would be multiplied by 7% to estimate the county-level port-related VOC emissions from HDVs. The overall county-specific HDV emissions used in developing the county-level extrapolations are from the WDOE's 2005 Air Emissions Inventory, 57 the most recent complete set of county-level HDV emissions.

⁵⁷WA Dept. of Ecology, 29 August 2006.

The regional port-related emission estimates developed by the PSRC and the WDOE are specific to the counties within the PSCAA area, consisting of King, Kitsap, Pierce, and Snohomish Counties. Consistent with the 2005 emissions inventory methodology, emissions from truck activities in other counties in the inventory area were extrapolated from the PSCAA emissions using the ratios of port-related HDV to total HDV emissions to develop scaling factors. For example, if VOC emissions from port-related HDVs in the PSCAA area made up 7% of all HDV emissions in the PSCAA area, then each county's overall VOC emissions (from HDVs) would be multiplied by 7% to estimate the county-level port-related VOC emissions from HDVs. The overall county-specific HDV emissions used in developing the county-level extrapolations are from the WDOE 2005 Air Emissions Inventory, 58 the most recent complete set of county-level HDV emissions.

7.7 Emission Estimates

For HDV emissions estimates in this section, there are two geographical domains:

- ➤ Port includes heavy-duty vehicle emissions on-terminal and in queues onterminal and adjacent to the terminal
- Airshed includes heavy-duty vehicle emissions beyond the port domain to the airshed boundary. Emissions are estimated for the first drop or last pick-up from/to the terminals.

It should be noted that the estimates in Sections 7.7.1 and 7.7.2 are exclusive due to the method differences described in the previous sections.

⁵⁸WA Dept. of Ecology, 29 August 2006.

7.7.1 HDV Port Emissions

The 2011 heavy-duty vehicle port emissions are summarized in this section. Table 7.4 summarizes the port heavy-duty vehicle emission estimates for criteria pollutants and for greenhouse gases.

Table 7.4: 2011 Total HDV Port Emissions by Terminal, tpy

Terminal	NO_x	VOC	CO	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO_2e
ID								
PSS070	14.16	1.23	8.24	0.013	0.163	0.150	0.163	1,399
PSS050	37.80	3.22	20.87	0.037	0.459	0.422	0.459	3,926
PSS060	4.48	0.38	2.35	0.005	0.057	0.052	0.057	486
PSS080	11.26	0.96	6.27	0.011	0.136	0.125	0.136	1,161
PSS030	0.56	0.04	0.32	0.000	0.007	0.006	0.007	56
PSS020A	0.05	0.00	0.03	0.000	0.000	0.000	0.000	7
PSS020B	0.02	0.00	0.01	0.000	0.000	0.000	0.000	3
PST070	1.57	0.14	0.94	0.001	0.017	0.016	0.017	151
PST030	2.41	0.22	1.44	0.002	0.027	0.025	0.027	230
PST050	4.85	0.41	2.68	0.004	0.059	0.054	0.059	504
PST020	5.49	0.47	3.13	0.005	0.065	0.060	0.065	555
PST040	1.86	0.16	1.01	0.002	0.023	0.021	0.023	198
PST060	5.51	0.46	2.94	0.005	0.069	0.064	0.069	590
PST100	1.25	0.09	0.48	0.001	0.019	0.018	0.019	168
PST010	0.07	0.00	0.04	0.000	0.000	0.000	0.000	6
PST090	0.10	0.01	0.05	0.000	0.001	0.001	0.001	9
PST120	0.16	0.02	0.11	0.000	0.002	0.002	0.002	15
PST110	0.23	0.02	0.15	0.000	0.003	0.002	0.003	21
PST130	0.63	0.06	0.40	0.000	0.006	0.006	0.006	58
PSA010	0.10	0.01	0.06	0.000	0.001	0.001	0.001	8
PSE010	0.12	0.01	0.06	0.000	0.002	0.001	0.002	12
PSO010	0.09	0.00	0.06	0.000	0.001	0.001	0.001	8
BNSF SIG	8.20	0.71	4.62	0.008	0.098	0.090	0.098	835
UP Argo	8.58	0.74	4.96	0.008	0.100	0.092	0.100	855
Total	109.6	9.4	61.2	0.1	1.3	1.2	1.3	11,261

Tables 7.5 and 7.6 present the contribution between running (driving) and idling port emissions for heavy-duty trucks.

Table 7.5: 2011 Total HDV Port Emissions - Driving by Terminal, tpy

Terminal	Total Miles	NO _x	VOC	CO	SO_2	PM_{10}	$PM_{2.5}$	DPM	CO ₂ e
ID	Total Willes	110 _x	100	00	00_2	1 1/1 10	1 1412.5	DIM	00 ₂ c
PSS070	301,444	4.12	0.31	1.65	0.005	0.062	0.057	0.062	533
PSS050	1,126,416	15.38	1.17	6.15	0.019	0.233	0.214	0.233	1,991
PSS060	168,562	2.30	0.18	0.92	0.003	0.035	0.032	0.035	298
PSS080	320,268	4.37	0.33	1.75	0.005	0.066	0.061	0.066	566
PSS030	19,240	0.30	0.02	0.15	0.000	0.004	0.004	0.004	34
PSS020A	na	na	na	na	na	na	na	na	na
PSS020B	na	na	na	na	na	na	na	na	na
PST070	25,704	0.35	0.03	0.14	0.000	0.005	0.005	0.005	45
PST030	51,937	0.81	0.07	0.39	0.001	0.011	0.010	0.011	92
PST050	144,300	1.97	0.15	0.79	0.002	0.030	0.027	0.030	255
PST020	137,280	1.87	0.14	0.75	0.002	0.028	0.026	0.028	243
PST040	63,158	0.86	0.07	0.35	0.001	0.013	0.012	0.013	112
PST060	194,266	2.65	0.20	1.06	0.003	0.040	0.037	0.040	343
PST100	78,000	0.90	0.06	0.25	0.001	0.016	0.015	0.016	138
PST010	1,795	0.03	0.00	0.02	0.000	0.000	0.000	0.000	3
PST090	2,031	0.03	0.00	0.01	0.000	0.000	0.000	0.000	4
PST120	4,500	0.08	0.01	0.05	0.000	0.001	0.001	0.001	8
PST110	2,430	0.04	0.00	0.02	0.000	0.001	0.000	0.001	4
PST130	15,840	0.29	0.03	0.17	0.000	0.003	0.003	0.003	28
PSA010	1,999	0.04	0.00	0.02	0.000	0.000	0.000	0.000	4
PSE010	4,025	0.07	0.01	0.03	0.000	0.001	0.001	0.001	7
PSO010	1,902	0.04	0.00	0.02	0.000	0.000	0.000	0.000	3
BNSF SIG	217,264	2.97	0.23	1.19	0.004	0.045	0.041	0.045	384
UP Argo	193,333	2.64	0.20	1.06	0.003	0.040	0.037	0.040	342
Total	3,075,692	42.1	3.2	16.9	0.05	0.6	0.6	0.6	5,438

Table 7.6: 2011 Total HDV Port Emissions - Idling by Terminal, tpy

Terminal	Total Hours	NO _x	voc	СО	SO_2	\mathbf{PM}_{10}	$PM_{2.5}$	DPM	CO_2e
ID POSSOTO	405.020	40.04	0.00		0.000	0.404	0.002	0.4.04	0.66
PSS070	195,939	10.04	0.92	6.59	0.008	0.101	0.093	0.101	866
PSS050	437,693	22.42	2.05	14.72	0.018	0.226	0.208	0.226	1,934
PSS060	42,584	2.18	0.20	1.43	0.002	0.022	0.020	0.022	188
PSS080	134,513	6.89	0.63	4.52	0.006	0.070	0.064	0.070	595
PSS030	5,002	0.26	0.02	0.17	0.000	0.003	0.002	0.003	22
PSS020A	1,125	0.05	0.00	0.03	0.000	0.000	0.000	0.000	7
PSS020B	530	0.02	0.00	0.01	0.000	0.000	0.000	0.000	3
PST070	23,868	1.22	0.11	0.80	0.001	0.012	0.011	0.012	106
PST030	31,162	1.60	0.15	1.05	0.001	0.016	0.015	0.016	138
PST050	56,277	2.88	0.26	1.89	0.002	0.029	0.027	0.029	249
PST020	70,720	3.62	0.33	2.38	0.003	0.037	0.034	0.037	313
PST040	19,505	1.00	0.09	0.66	0.001	0.010	0.009	0.010	86
PST060	55,867	2.86	0.26	1.88	0.002	0.029	0.027	0.029	247
PST100	6,750	0.35	0.03	0.23	0.000	0.003	0.003	0.003	30
PST010	718	0.04	0.00	0.02	0.000	0.000	0.000	0.000	3
PST090	1,300	0.07	0.01	0.04	0.000	0.001	0.001	0.001	6
PST120	1,650	0.08	0.01	0.06	0.000	0.001	0.001	0.001	7
PST110	3,746	0.19	0.02	0.13	0.000	0.002	0.002	0.002	17
PST130	6,732	0.34	0.03	0.23	0.000	0.003	0.003	0.003	30
PSA010	1,119	0.06	0.01	0.04	0.000	0.001	0.001	0.001	5
PSE010	1,006	0.05	0.00	0.03	0.000	0.001	0.000	0.001	4
PSO010	1,065	0.05	0.00	0.04	0.000	0.001	0.001	0.001	5
BNSF SIG	102,114	5.23	0.48	3.43	0.004	0.053	0.049	0.053	451
UP Argo	116,000	5.94	0.54	3.90	0.005	0.060	0.055	0.060	513
Total	1,316,985	67.4	6.2	44.3	0.1	0.7	0.6	0.7	5,824

7.7.2 HDV Airshed Emissions – Exclusive of Port Emissions

The PSRC estimated Class 8 heavy-duty vehicles emissions using MOBILE6.2 for the following pollutants: NO_x, VOC, CO, SO₂, CO₂, PM₁₀ and PM_{2.5}. DPM estimates were not directly calculated by the model, but are considered equal to the PM₁₀ values because all particulate matter emitted from diesel engines is DPM. Table 7.7 provides the estimated annual emissions for the total port-related on-road HDV activity by county, while Table 7.8 summarizes the total airshed emissions by clean air agency region. The data provided by the PSRC assumes that port-related on-road HDV activity occurs seven days per week/365 days per year. In general, cargo terminals in the Puget Sound region operate only five days per week/260 days per year and operate on nights and weekends on an as-needed basis. The assumption of 365 days of activity results in a very conservative estimate of port-related on-road HDV activity was not scaled back in order to maintain consistency between the WDOE and PSRC data sets.

Table 7.7: 2011 Total HDV Airshed Emissions by County Exclusive of Port Emissions, tpy

County	NO _x	voc	СО	SO_2	PM_{10}	$PM_{2.5}$	DPM	CO_2e
Clallam	27.9	1.7	7.6	0.0	0.7	0.5	0.7	4,558
Island	25.2	1.5	6.8	0.0	0.6	0.5	0.6	4,113
Jefferson	19.8	1.2	5.4	0.0	0.5	0.4	0.5	3,227
King	1,026.3	61.6	278.1	1.6	24.7	19.5	24.7	167,441
Kitsap	99.8	6.0	27.0	0.2	2.4	1.9	2.4	16,279
Mason	27.0	1.6	7.3	0.0	0.6	0.5	0.6	4,402
Pierce	377.0	22.6	102.1	0.6	9.1	7.2	9.1	61,496
San Juan	2.1	0.1	0.6	0.0	0.0	0.0	0.0	335
Skagit	75.9	4.6	20.6	0.1	1.8	1.4	1.8	12,391
Snohomish	327.6	19.7	88.8	0.5	7.9	6.2	7.9	53,447
Thurston	135.4	8.1	36.7	0.2	3.3	2.6	3.3	22,096
Whatcom	86.0	5.2	23.3	0.1	2.1	1.6	2.1	14,024
Total	2,230	134	604	3	54	42	54	363,809

Table 7.8: Distribution of 2011 Total HDV Airshed Emissions by Clean Air Agency Exclusive of Port Emissions, tpy

Region	NO _x	voc	СО	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO_2e
NWCAA	189.2	11.4	51.3	0.2	4.5	3.5	4.5	30,863
ORCAA	210.1	12.6	57.0	0.2	5.1	4.0	5.1	34,283
PSCAA	1,830.7	109.9	496.0	2.9	44.1	34.8	44.1	298,663
Total	2,230	134	604	3	54	42	54	363,809

7.8 Emission Comparison, 2011 vs 2005

In this section, emissions in 2011 are compared back to emissions estimated in the 2005 inventory. Because of changes in estimating methodologies, adjustments have been made to the 2005 emission estimates to place them on an even footing with the 2011 estimates and allow for reasonably reliable comparisons. For this reason, the 2005 emissions displayed in the following tables do not correspond directly with the numbers in the 2005 PSEI report. The use of port-specific model year information instead of the state-wide distribution has not been accounted for, because there is no information on the actual 2005 model year distribution of trucks calling at the ports.

The 2011 vs 2005 comparison for total port heavy-duty vehicle emissions is summarized in Table 7.9 and the change 2011 vs 2005 is presented in Figure 7.6. With the exception of CO₂e emissions, emissions in 2011 were lower than 2005 emissions by 6% to 96%. The onterminal emissions are lower primarily due to the use of ULSD fuel and changes in the truck fleet caused by turnover during the six years between inventories and the "clean truck" programs implemented by the Ports of Tacoma and Seattle. The changes include both fewer old trucks and the presence of 2007 and newer trucks that were not on the market in 2005.

Table 7.9: 2011 vs 2005 Total HDV Port Emissions Comparison, tpy

Year	NO _x	voc	CO	SO_2	\mathbf{PM}_{10}	PM _{2.5}	DPM	CO_2e
2011	109.6	9.4	61.2	0.1	1.3	1.2	1.3	11,262
2005	119.9	10.0	82.6	2.3	2.5	2.3	2.5	11,178
Change, tpy	-10.3	-0.6	-21.4	-2.2	-1.2	-1.1	-1.2	83
Change, %	-9%	-6%	-26%	-96%	-48%	-48%	-48%	1%

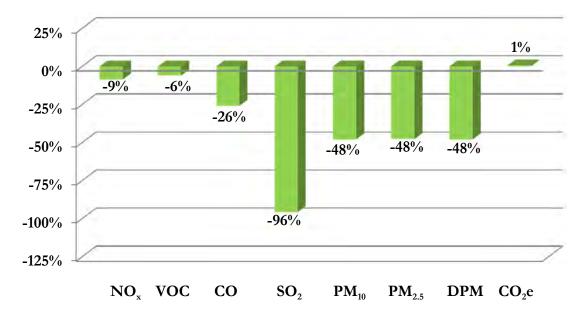
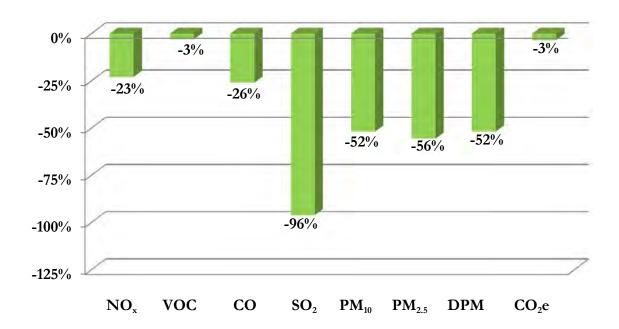


Figure 7.6: 2011 vs 2005 Total HDV Port Emissions Change

On-terminal activity is fairly similar between the two years, as presented in Table 7.10. The VMT was 4% higher in 2011 than in 2005 and the total idling time was 3% lower. These relatively minor levels of change are reflected in the minimal 1% increase in CO₂e emissions, since there has been little change in the fuel efficiency of on-road trucks over the past few years, and CO₂ emissions are directly related to fuel consumption.

Table 7.10: 2011 vs 2005 Total HDV Port VMT and Idling Hours Comparison

Year	VMT	Idling Hours
2011	3,075,692	1,316,985
2005	2,955,210	1,351,468
Change, tpy	120,482	-34,483
Change, %	4%	-3%



The 2011 vs 2005 comparison for on-road heavy-duty vehicle airshed emissions is summarized in Table 7.11. All of the pollutant emissions in 2011 were lower than in 2005. The substantial reduction in SO_2 emissions was due to the use of ULSD. Particulate emissions decreased due to the ports' clean truck programs, the effects of fleet turnover, and the use of ULSD.

Table 7.11: 2011 vs 2005 Total HDV Airshed Emissions Comparison, tpy

Year	NO _x	voc	CO	SO_2	PM ₁₀	$\mathbf{PM}_{2.5}$	DPM	CO_2e
2011	2,230	134	604	3	54	42	54	363,809
2005	2,892	138	816	84	112	95	112	376,668
Change, tpy	-662	-4	-212	-81	-58	-53	-58	-12,859
Change, %	-23%	-3%	-26%	-96%	-52%	-56%	-52%	-3%

Figure 7.7: 2011 vs 2005 Total Airshed HDV Emissions Change

The 2011 and 2005 comparison for the total port and airshed, port-related heavy-duty vehicle emissions for Puget Sound is summarized in Table 7.12. In 2011, emissions decreased for all pollutants as compared to 2005.

Table 7.12: 2011 vs 2005 Total HDV Port and Airshed Emissions Comparison, tpy

Year	NO _x	voc	СО	SO_2	PM ₁₀	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
2011	2,340	143	666	3	55	44	55	375,071
2005	3,010	148	896	87	114	98	114	387,633
Change, tpy	-670	-5	-231	-83	-59	-54	-59	-12,562
Change, %	-22%	-3%	-26%	-96%	-52%	-55%	-52%	-3%

Figure 7.8: 2011 vs 2005 Total HDV Port and Airshed Emissions Change

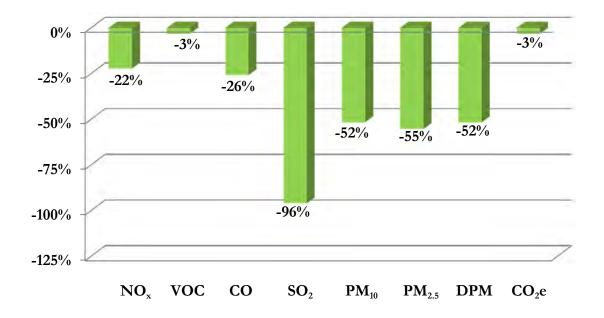


Figure 7.9 illustrates the differences in the heavy-duty vehicle model year distributions used for the 2011 and 2005 emissions inventories. Because the port truck-specific information was not available in 2005, the distribution was a general distribution of heavy-duty trucks operating in the Puget Sound area, not specific to port trucks. In 2011, the Ports of Seattle, Tacoma, and Olympia provided model year distribution information specific to trucks that called at the marine terminal truck gates at ports, providing a more accurate depiction of the distribution of port trucks by model year. It is apparent in the figure that the 2005 distribution included more gate calls by the older, high-emitting, pre-1994 trucks that have since been subject to the ports' truck programs. Albeit in small percentages, some much cleaner 2007 and newer trucks showed up in the 2011 distribution. These differences account for most of the reductions seen in the emission comparisons between 2011 and 2005.

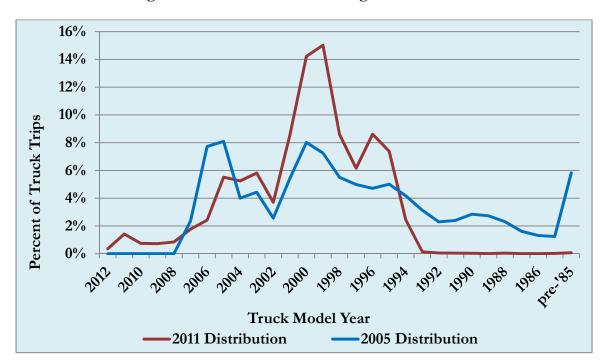


Figure 7.9: 2011 and 2005 HDV Age Distributions

SECTION 8 FLEET VEHICLES

Section 8 provides an overview of the fleet vehicle source category, which consists primarily of light-duty vehicles and some on-terminal heavy-duty vehicles. A description of the methodology used to estimate emissions is provided in this section, as well as the emission estimates for this source category.

8.1 Source Description

There are three categories of fleet vehicles that are included in the inventory, consistent with the 2005 approach:

- Terminal fleet vehicles terminal-related vehicles owned and/or operated by the terminal operators and a Port that spend most of their time on the terminals and includes light-duty and heavy-duty vehicles. These vehicles include fueling trucks, shuttle/passenger, terminal cars/trucks, maintenance trucks, etc. Cargo related heavy-duty vehicles are reported in Section 7.
- ➤ Cruise terminal vehicles vehicles that are found on cruise terminals which include privately owned vehicles owned by cruise passengers and commercial minivans picking up and dropping passengers. These are typically light-duty vehicles.
- Import/export vehicles New import or export vehicles driven on or off oceangoing vessels at Port of Tacoma's Marshall Avenue Auto Terminal. These are typically passenger vehicles and light-duty trucks.

This section does not include emissions from:

- ➤ Commercial buses and taxis that drop off or pick up passengers at the cruise terminals. Commercial bus idling on or near cruise terminals associated the drop-off or pick-up of cruise passengers is reported in Section 7.
- ➤ Heavy-duty trucks that transport the new import or export vehicles to/from the Marshall Auto Terminal (reported in Section 7).
- > Employee personal vehicles

The following marine terminals and facilities were included in the inventory:

- Port of Anacortes terminal fleet vehicles
- ➤ Port of Everett terminal fleet vehicles
- ➤ Port of Olympia terminal fleet vehicles
- ➤ Port of Seattle terminal fleet vehicles and cruise terminal vehicles
- ➤ Port of Tacoma terminal fleet vehicles and import/export vehicles

8.2 Geographical Delineation

The geographical extent for fleet vehicles is described below:

- > Terminal fleet vehicles on-terminal
- Cruise terminal vehicles on-terminal and for Pier 66 adjacent related areas
- ➤ Import/export vehicles on-terminal

8.3 Data and Information Acquisition

The data collection approach focused on VMT in the geographical extents described in Section 8.2.

To determine activity for terminal fleet vehicles, one of two methods were used: 1) combining annual hours of operation and on-terminal speed limits to determine VMT or 2) reported VMT. For vehicles with no data available, VMT for other similar vehicles that had data were averaged and the averaged VMT was used. Please refer to section 8.4.1 for more information on terminal fleet vehicles.

To determine activity for cruise terminal vehicles, the following data was used: total passenger count and cruise ship call data by terminal. Please refer to section 8.4.2 for further information on cruise terminal vehicles.

To determine activity for import/export vehicles the following data was used: the annual vehicle throughput and average miles traveled on-terminal was collected. Please refer to section 8.4.3 for the count of import/export vehicles for 2011.

8.4 Operational Profiles

Operational profiles are described in the following subsections:

- > 8.4.1 Terminal fleet vehicles
- ➤ 8.4.2 Cruise terminal vehicles
- ➤ 8.4.3 Import/export vehicles

8.4.1 Terminal Fleet Vehicles

Terminal fleet vehicles consist of 805 passenger cars and trucks with a model year range of 1969 to 2012 (average model year, 2000). The 2011 mileage per vehicle ranged from zero to 40,665, with an inventory-wide average of 4,570. Table 8.1 shows the breakdown of the terminal fleet vehicles by terminal, number of vehicles, model year range and average, and fuel type.

Table 8.1: 2011 Terminal Fleet Vehicle Characteristics

Terminal	Count		Fuel/Engine Type							odel Ye	ear
ID		Gasoline	Diesel	Biodiesel	Hybrid	CNG	Propane	Electric	Min	Max	Avg
PSA010	12	12	0	0	0	0	0	0	1970	2011	1997
PSE010	65	64	1	0	0	0	0	0	1978	2008	1996
PSO010	14	14	0	0	0	0	0	0	1969	2005	1992
PSS010	214	162	5	26	18	2	0	1	1990	2012	2001
PSS050	126	115	11	0	0	0	0	0	1979	2007	1999
PSS060	9	9	0	0	0	0	0	0	1994	2006	2001
PSS080	55	55	0	0	0	0	0	0	1998	2008	2006
PST010	101	100	0	0	0	0	1	0	1979	2010	2001
PST020	33	31	2	0	0	0	0	0	2000	2005	2004
PST030	32	30	2	0	0	0	0	0	1979	2008	2000
PST040	21	3	18	0	0	0	0	0	1977	2004	1986
PST050	29	29	0	0	0	0	0	0	1990	2008	2004
PST055	4	4	0	0	0	0	0	0	1983	2004	1995
PST060	48	39	9	0	0	0	0	0	1999	2008	2004
PST070	14	14	0	0	0	0	0	0	1989	2007	1999
PST080	2	2	0	0	0	0	0	0	1998	2009	2004
PST100	5	5	0	0	0	0	0	0	2000	2005	2003
PST120	3	0	3	0	0	0	0	0	2000	2008	2004
PST130	5	1	4	0	0	0	0	0	1979	2010	2001
BNSF SIG Yard	13	6	7	0	0	0	0	0	1997	2008	2001
Total	805	695	62	26	18	2	1	1			

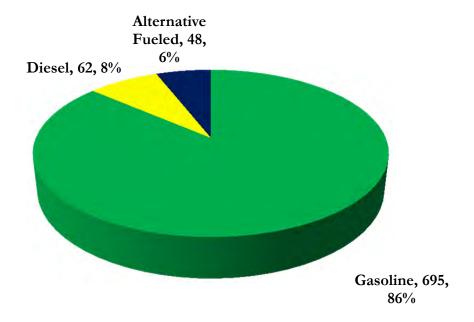


Table 8.2 and Figure 8.1 presents, the fuel-type distribution of terminal fleet vehicles inventoried.

Table 8.2: 2011 Terminal Fleet Vehicle Count by Fuel Type

Fuel Type	Count
Gasoline	695
Diesel, ULSD	62
Biodiesel, B20	26
Hybrid, gasoline	18
CNG	2
Propane	1
Electric	1

Figure 8.1: 2011 Terminal Fleet Vehicle Fuel Type Distribution

8.4.2 Cruise Terminal Vehicles

There are two terminals that have associated cruise terminal vehicles are Port of Seattle's Pier 66 and Terminal 91.

A total of 885,949 passengers passed through the Port of Seattle cruise terminals in 2011 for 195 vessel cruises. It was assumed that $40\%^{59}$ of the passengers used personal vehicles (rather than commercial transportation) to get to the cruise terminals, and that each personal vehicle carried an average of three persons, for a total of 118,127 vehicles. Of the 195 cruises, 63 trips (32%) were from Pier 66 and 132 trips (68%) were from Terminal 91, thus 37,800 vehicles were assigned to Pier 66 and 80,326 vehicles were assigned to Terminal 91.

In addition to the passenger-owned vehicles, commercial minivans used to transport passengers were included in the inventory. It was estimated that there were 240 commercial minivan trips in 2011 and the distance traveled on-terminal (Pier 91) or adjacent to the terminal (Pier 66) was estimated to be 0.25 miles, with a speed of 15 mph. All commercial minivans were assumed to be gasoline-fueled.

It should be noted that all off-terminal vehicle miles traveled and associated emissions are accounted for by the PSRC and regional clean air agencies in their area emissions inventories. Annual trips related to cruise operations are a very small fraction of total regional vehicle miles traveled and thus are not calculated separately in this inventory.

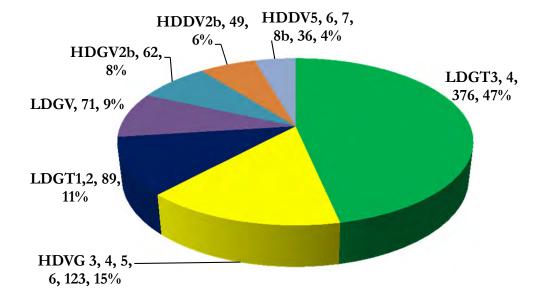
8.4.3. Import/Export Vehicles

The Port of Tacoma Marshall Avenue Auto Terminal 2011 throughput was 162,434 vehicles. Model years were assumed to be 2011 or later, and the vehicles were estimated to be driven two miles each. Ninety nine percent of the vehicles were assumed to be cars and one percent of the vehicles were assumed to be light trucks, as reported by the Port. All vehicles were assumed to be gasoline fueled.

8.5 Emission Reduction Technologies Identified

Approximately six percent of the terminal fleet vehicles (48) are alternatively fueled and thus emission benefits overall are anticipated to be nominal. The alternatively fueled terminal fleet vehicles included: 26 vehicles that use biodiesel, 18 hybrid vehicles, 1 electric vehicle, 2 vehicles that use natural gas and 1 propane.

⁵⁹Consistent with data reported by Heffron Transportation, Inc., Transportation Technical Report for Draft EIS Cruise Terminal at Terminal 91, 14 September 2006.


8.6 Emissions Estimating Methodology

The EPA MOBILE6.2 model was used to calculate vehicle emissions as described in Section 7.6. Table 8.3 and Figure 8.2 presents the 2012 terminal fleet vehicles types based on the MOBILE 6.2vehicle classifications.

Table 8.3: 2011 Terminal Fleet Vehicle MOBILE6.2 Classifications

Vehicle Classification	GVWR (lbs)	Model Abbreviation	Count
Light-Duty Gasoline Trucks	6,001 to 8,500	LDGT3 and 4	376
Light-Duty Gasoline Trucks	0-6,000	LDGT1 and 2	89
Heavy-Duty Gasoline Vehicles	8,501 – 10,000	HDGV2b	62
Light-Duty Gasoline Vehicles	Passenger Cars	LDGV	71
Heavy-Duty Gasoline Vehicles	10,001 – 26,000	HDGV3, 4, 5 and 6	123
Heavy-Duty Diesel Vehicles	16,001 – 33,000	HDDV5, 6, 7 and 8b	36
Heavy-Duty Diesel Vehicles	8,501 – 10,000	HDDV2b	49

Figure 8.2: 2011 Terminal Fleet Vehicle MOBILE6.2 Classifications

While detailed information was not available for all terminal fleet vehicles, approximately 47% percent of these vehicles are light-duty gasoline fueled trucks with GVWR of 6,001-8,500 lbs. Approximately 11% are similar, but smaller, trucks with a GVWR of up to 6,000 lbs. About 15% are heavy-duty gasoline fueled vehicles with a GVWR of 10,001 – 26,000 lbs. Approximately 9% percent of the vehicles are passenger cars, and the remainder of the fleet consists of heavy-duty vehicles, both gasoline and diesel-fueled.

Thirty-nine terminal fleet vehicles (less than 5% of the total) had model years ranging from 1969 to 1986. These model years were reassigned to 1987, the earliest year that MOBILE6.2 can accommodate, since the model includes only the previous 25 years.

For cruise terminal vehicle, MOBILE6.2 was used to compute a fleet average emission rate for each pollutant, since vehicle model years were not available. These composite factors are weighted averages of the emission factors associated with the model years in the registration data provided by the Seattle Department of Transportation.

The emission factors for nitrous oxides (N₂O) and methane (CH₄) are presented in Tables 8.4 (alternative fuels) and 8.5 (gasoline and diesel fuels).⁶⁰

Table 8.4: Alternative Fueled LDV and HDV Emissions Factors for N₂O and CH₄, g/mile

Vehicle Type	Fuel Type	N_2O	CH ₄
LDV	Propane	0.008	0.038
LDV	Ethanol	0.076	0.043
HDV	Propane	0.150	0.108

Table 8.5: Gasoline and Diesel Fueled LDV and HDV Emissions Factors for N_2O and CH_4 , g/mile

	Light-Duty Vehicles								Heavy-Duty Vehicles			
	Gasoline				Diesel		Gasoline		Diesel			
Model	Passenger Car		LI	LDV		Passenger Car		All		All		
Year	N ₂ O	CH ₄	N ₂ O	CH ₄	N ₂ O	CH ₄	N ₂ O	CH ₄	N ₂ O	CH ₄		
2004-2011	0.0036	0.0173	0.0066	0.0163	0.015	0.0105	0.0134	0.0333	0.0048	0.0051		
1994-2003	0.0429	0.0271	0.0871	0.0452	na	na	0.175	0.0655	0.0048	0.0051		
1987-1993	0.0647	0.0704	0.1056	0.0776	na	na	0.2135	0.263	0.0048	0.0051		

⁶⁰EPA 2006.

8.7 Emission Estimates

This section summarizes fleet vehicle related emissions as described above. The 2011 Terminal fleet and cruise terminal vehicles emissions are presented in Table 8.6.

Table 8.6: 2011 Total Terminal Fleet Vehicle Emissions by Terminal, tpy

Terminal	NO_x	voc	СО	SO_2	PM_{10}	PM _{2.5}	DPM	CO ₂ e
PSA010	0.06	0.04	0.40	0.000	0.001	0.001	0.000	22
PSE010	0.79	0.80	7.38	0.005	0.009	0.008	0.002	273
PSO010	0.01	0.00	0.03	0.000	0.000	0.000	0.000	2
PSS050	1.32	0.63	6.79	0.007	0.020	0.018	0.014	403
PSS060	0.04	0.02	0.30	0.000	0.000	0.000	0.000	20
PSS080	0.16	0.08	1.50	0.004	0.002	0.001	0.000	22 0
BNSF SIG Yard	0.17	0.03	0.38	0.001	0.003	0.003	0.002	50
PSS020	0.01	0.01	0.13	0.000	0.000	0.000	0.000	5
PSS010	1.12	0.23	3.62	0.007	0.013	0.012	0.003	405
PST050	0.18	0.08	1.80	0.004	0.003	0.003	0.000	192
PST080	0.03	0.00	0.07	0.000	0.000	0.000	0.000	16
PST120	0.02	0.00	0.01	0.000	0.001	0.001	0.001	6
PST055	0.01	0.00	0.03	0.000	0.000	0.000	0.000	2
PST030	0.12	0.07	0.84	0.001	0.001	0.001	0.000	47
PST130	0.12	0.02	0.20	0.001	0.001	0.001	0.000	56
PST070	0.02	0.01	0.10	0.000	0.000	0.000	0.000	6
PST020	0.07	0.03	0.52	0.001	0.001	0.001	0.000	39
PST100	0.03	0.01	0.18	0.000	0.000	0.000	0.000	14
PST040	0.14	0.04	0.25	0.000	0.007	0.006	0.007	12
PST010	0.71	0.33	4.37	0.006	0.007	0.007	0.000	321
PST060	1.34	0.35	5.56	0.012	0.022	0.020	0.014	719
Total	6.4	2.8	34.5	0.048	0.090	0.083	0.042	2,828

Table 8.7 presents the import/export vehicle emissions for the Port of Tacoma's Marshall Avenue Auto Terminal.

Table 8.7: 2011 Import/Export Vehicle Emissions, tpy

Class	NO _x	voc	СО	SO_2	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
Cars	0.0076	0.0146	0.1784	0.0024	0.0013	0.0012	0.0000	131
Light trucks	0.0002	0.0002	0.0022	0.0000	0.0000	0.0000	0.0035	2
Total	0.0078	0.0148	0.1806	0.0024	0.0013	0.0012	0.0035	133

8.8 Emission Comparison, 2011 vs 2005

The 2011 and 2005 comparison for terminal fleet vehicles and cruise terminal vehicles are summarized in Table 8.8. In 2011, despite an increase in terminal fleet vehicle counts from 2005, there was a reduction for NO_x, VOC, CO, DPM and GHG emissions. PM and SO₂emissions increased. The varying emission changes could be due to different fleet mix of gasoline, propane and diesel powered vehicles as compared to 2005 based on a more complete data set in 2011. The reductions are due to a newer and cleaner fleet and use of hybrid vehicles and alternative fuel, such as biodiesel.

Table 8.8: Terminal Fleet Vehicle 2011 vs 2005 Emissions Comparison, tpy

Year	NO _x	voc	СО	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
2011	6.4	2.8	34.5	0.048	0.090	0.083	0.042	2,828
2005	9.8	5.4	49.8	0.039	0.083	0.080	0.079	3,237
Change, tpy	-3.4	-2.6	-15.3	0.009	0.007	0.003	-0.037	-409
Change, %	-34%	-48%	-31%	24%	8%	3%	-47%	-13%

Table 8.9 summarizes the terminal fleet vehicle count and there was a 31% increase in 2011 as compared to 2005. In particular, the vehicle fleet's count increased 16% for the Port of Seattle and 38% for the Port of Tacoma.

Table 8.9: Terminal Fleet Vehicle 2011 vs 2005 Count Comparison

Year	Fleet Count
2011	805
2005	614
Change	191
Change, %	31%

SECTION 9 EMISSIONS COMPARISON BY PORT

This section summarizes maritime-related emissions associated with the Ports of Everett, Olympia, Seattle, and Tacoma. The Port of Anacortes elected not to provide information relating to cargo throughputs and other data needed for this section; therefore they are not included in Section 9. Comparisons are provided between the 2011 emission estimates and emissions previously estimated for 2005.

For the Port of Everett and Port of Olympia specific comparisons, the source category emissions are tabulated similar to the 2005 report, as follows:

- Port emissions within port terminals, adjacent rail yards, and adjacent waterways
 - Ocean-going vessel emissions (hotelling and maneuvering activities)
 - Harbor vessel emissions (10% of total recreational vessel emissions related to port-owned marinas Ports of Everett and Olympia)
 - Cargo handling equipment emissions
 - Locomotive emissions (on-terminal and adjacent rail yards switching activities)
 - Heavy-duty vehicle emissions (queuing and on-terminal activities)
 - Fleet vehicle emissions (on-terminal activities)

The following were not included in the Port of Everett, Port of Olympia, and petroleum facilities summaries:

- ➤ Ocean-going vessels transiting mode emissions and emissions from activities that are not directly associated with the operations at port terminals or petroleum facilities.
- ➤ Harbor vessel emissions from activities that are not directly associated with the operations at Ports of Everett or Olympia terminals or petroleum facilities.
- ➤ Line-haul locomotive emissions (line-haul activities were not identified at these ports).
- ➤ Heavy-duty vehicles on-road emissions outside the ports' terminals.

For 2011, the Port of Seattle and Port of Tacoma increased the resolution from the previous report to get a better understanding of port-related emissions allocating them into three geographical zones, compared to one zone in 2005. For comparison purposes the 2011 and 2005 emissions were allocated into the following three geographical zones:

- Port –emissions within port terminals, adjacent rail yards, and adjacent waterways
 - Ocean-going vessel emissions (hotelling and maneuvering activities)
 - Harbor vessel emissions (port-related commercial harbor and government vessel activities)
 - Harbor vessel emissions (10% of total recreational vessel emissions related to port-owned marinas)
 - Cargo handling equipment emissions
 - Locomotive emissions (switching and line haul activities)

- Heavy-duty vehicle emissions (queuing and on-terminal activities)
- Fleet vehicle emissions (on-terminal activities)
- Air District all port-related emissions within PSCAA four county boundary (Pierce, King, Kitsap, and Snohomish Counties)
 - Ocean-going vessel emissions (hotelling, maneuvering, and transit emissions)
 - Harbor vessel emissions (port-related commercial harbor and government vessel activities)
 - Harbor vessel emissions (50% of total recreational vessel emissions related to port-owned marinas)
 - Cargo handling equipment emissions
 - Locomotive emissions
 - Heavy-duty vehicle emissions
 - Fleet vehicle emissions
- ➤ Airshed all port-related emissions within the entire emissions inventory domain
 - Ocean-going vessel emissions (hotelling, maneuvering, and transit emissions)
 - Harbor vessel emissions (commercial harbor and government vessel activities)
 - Harbor vessel emissions (100% of the recreational vessel emissions related to port-owned marinas)
 - Cargo handling equipment emissions
 - Locomotive emissions
 - Heavy-duty vehicle emissions
 - Fleet vehicle emissions

The following were not included in the Port of Seattle and Port of Tacoma summaries:

- Cean-going vessel emissions from activities that are not directly associated with the operations at either the Port of Tacoma or Port of Seattle terminals.
- ➤ Harbor vessel emissions from activities that are not directly associated with the operations at either the Port of Tacoma or Port of Seattle terminals

In some cases, the methods used to estimate emissions for a source category or part of a source category in the 2005 PSEI were changed or updated for the 2011 PSEI to reflect improvements in data, methodologies, or calculations. In such cases, the 2005 emissions were recalculated using the 2011 methodology, or otherwise appropriately adjusted to account for the changes, in order to provide a valid basis for comparison. The comparisons are presented as 2011 and 2005 emission estimates in tons per year, the difference between years in tons per year, and the difference as a percentage increase or decrease. The percentage differences are indicative of the trend and magnitude of the changes occurring between 2011 and 2005.

9.1 Emissions Calculation and Allocation Methodology Changes

Changes in emission calculation methodologies are discussed below for each source category:

Ocean-Going Vessels

The ocean-going vessel emission calculation methodology used in the 2011 inventory is similar to the methodology used in 2005. The maneuvering and hotelling allocations are slightly different in 2011 due to refinements in the resolution of vessel movements associated with modes of operation, thus the 2005 maneuvering and hotelling allocations were adjusted to match 2011 for comparison.

In 2005, port-related ocean-going vessel emissions were allocated to only to the port zone (in adjacent waters). As mentioned in Sections 2.2 and 9.1, in 2011, the Port of Tacoma and Seattle are reporting port-related emissions in the three geographical zones (port, air district, airshed), which resulted in a refinement of allocating 2005 emissions for each port. The 2005 total ocean-going vessel emissions for each port did not change, only refinements to the allocations based on the new zones.

Harbor Vessels

The commercial harbor vessel emissions for assist tugs, tank barges, and port-owned vessels were included for the respective Port of Seattle and Port of Tacoma comparisons only.

The emissions calculation methodology was similar to the methodology used in 2005, with the exception of updated load factors used in 2011. The load factors for harbor tug, ferry, excursion vessel and workboat were updated in 2011 based on updated information from Washington State Ferries for the ferry load factor, EPA NONROAD for excursion vessel load factor, and the latest POLA and POLB emissions inventories⁶¹ for workboat load factor. For commercial harbor vessel emissions comparison, the 2005 emissions were adjusted for the updated load factor so that the emissions would be comparable.

A similar methodology was used for recreational vessels in 2011 and 2005. The same assumptions for percent of engine type (diesel, gasoline 2-stroke, gasoline 4-stroke) and engine size were used in both inventories. For recreational vessels, NONROAD2008a was used to estimate 2011 and 2005 emissions. This was done to allow for a direct comparison.

In 2005, port-related commercial harbor and government vessels were not included in the port specific breakouts. For 2011, the port-related commercial harbor and government vessel emissions are allocated within the applicable new geographical zones.

For recreational vessels, in 2005 all recreational vessel emissions from port-owned marinas were included with the specific port-related emissions. For 2011, recreational vessels from port owned marinas are broken out by the newly redefined geographical zones, as applicable and described above in Section 9.1, to make more direct comparisons within each zone.

⁶¹ POLA: http://www.portoflosangeles.org/pdf/2011_Air_Emissions_Inventory.pdf POLB: http://www.polb.com/civica/filebank/blobdload.asp?BlobID=10194

Cargo Handling Equipment

The cargo handling equipment emission calculation methodology used in the 2011 inventory is similar to the methodology used in 2005. The one exception is the load factor used for diesel yard tractors. The 0.59 EPA NONROAD load factor was used in the 2005 EI and 0.39 was used in the 2011 EI based on a 2008 study of yard tractors operating in a port environment. Thus, the 2005 emissions were re-calculated using the 2011 load factor for diesel yard tractors in order for the 2011 and 2005 emissions to be comparable.

There were no allocation changes for cargo handling equipment as the equipment does not operate outside the terminals.

Locomotives

The only change in the locomotive emission calculation methodology used in the 2011 inventory as compared to the 2005 methodology is the use of an updated value for brake-specific fuel consumption (BSFC) that affects the estimates of CO₂ emissions. The EPA published an updated emission factor document in April 2009⁶³. That document includes a different value for BSFC from the value used for the 2005 PSEI, which was based on prior EPA guidance. The result of the change is higher estimates of CO₂ emissions from switching locomotives than that in the 2005 PSEI report.

Allocations for 2005 did not change and 2011 port-related locomotive emissions for Port of Tacoma and Port of Seattle we allocated into the three geographic zones.

Heavy-Duty Vehicles

Two changes were made to the emission calculation methodology for HDVs used in the 2011 inventory as compared to the 2005 methodology. One was an adjustment to on-road emission estimates to account for differences in the current regional travel demand model used by the PSRC to estimate on-road activity and emissions. The other was emission factor adjustments made to account for differences in the size categories of HDVs included in the composite emission factors. The 2011 emission factors are specific to the heaviest size categories of HDVs that are typical of the trucks that call on port terminals, while the 2005 emission factors had included smaller size categories that are less common in the fleet.

Allocations for 2005 did not change and 2011 port-related heavy-duty vehicle emissions for Port of Tacoma and Port of Seattle we allocated into the three geographic zones.

Fleet Vehicles – Terminal Fleet Vehicles

Terminal fleet vehicles are the only fleet vehicles evaluated in this section as the focus is to look at vehicles residing on the terminals. There is no change in the terminal fleet vehicle emission calculation methodology used in the 2011 inventory as compared to the 2005 methodology.

_

⁶² Ports of Los Angeles and Long Beach, San Pedro Bay Ports Yard Tractor Load Factor Study, December 2008.

⁶³ EPA, Emission Factors for Locomotives: EPA-420-F-09-025, Office of Transportation and Air Quality, April 2009

9.2 Port of Everett

In 2011, the TEU and tonnage in metric tons or tonnes of cargo increased compared to 2005 for the Port of Everett. In 2005, the Port added 3 new international shipping lines and in 2006, the Port recruited and signed an agreement with a cement company. These changes have brought increased activity to the Port and have resulted in TEU throughput doubling since 2005 and almost a 50% increase in cargo tonnage, as presented in Table 9.1.

Table 9.1: Port of Everett 2011 vs 2005 TEU and Cargo Throughput Comparison

	Container	Cargo
Year	Throughput	Throughput
	(TEU)	(tonnes)
2011	20,918	152,995
2005	9,561	103,757
Change, %	119%	47%

Metrics are used to track air emissions efficiencies of operations on emissions per unit of cargo throughput basis. Table 9.2 presents a simple metric of tons of emissions (excluding port-related recreational vessels) per 10,000 tonnes of cargo in 2011 and 2005. The port tons of emissions per 10,000 tonnes of cargo decreased in 2011, representing an improvement in air emissions-related efficiencies from 2005.

Table 9.2: Port of Everett 2011 vs 2005 Port Tons of Emissions per 10,000 Tonnes of Cargo Comparison

Year	NO_x	voc	СО	SO_2	\mathbf{PM}_{10}	PM _{2.5}	DPM	CO_2e
2011	8.73	0.63	2.93	3.52	0.55	0.48	0.51	524
2005	12.17	0.79	3.47	3.88	0.65	0.58	0.57	642
Change (%)	-28%	-20%	-15%	-9%	-15%	-17%	-9%	-18%

The emissions-related efficiency improvements from 2011 vs 2005 range from 9% less DPM/CO emissions to 28% less NO_x , on a ton of emissions per 10,000 tonnes cargo moved through the port basis. The 2011 vs 2005 emissions-related efficiency changes are presented by pollutant in graphical form in Figure 9.1.

Figure 9.1: Port of Everett 2011 vs 2005 Port Tons of Emissions per 10,000 Tonnes of Cargo Change

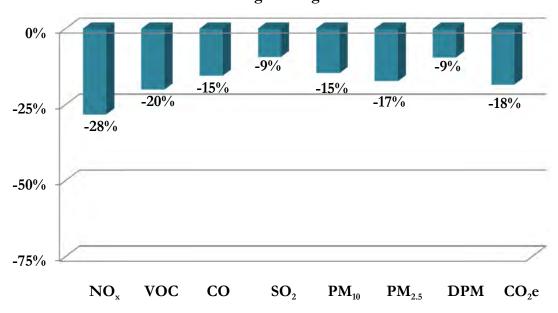


Table 9.3 presents a summary comparison of the 2011 and 2005 emissions by source category, with the 2005 emissions being recalculated or adjusted as discussed in Section 9.1. Each source category's emissions comparison for the Port of Everett is discussed in the following subsections.

Table 9.3: Port of Everett 2011 vs 2005 Port Emissions Comparison, tpy

	NO_x	voc	СО	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO_2e
2011								
OGV, hotelling & maneuvering	47.2	1.4	3.8	53.315	3.942	3.154	3.363	3,059
Recreational vessels	7.6	8.4	82.8	0.015	0.184	0.172	0.054	956
Locomotives	62.1	5.0	9.0	0.500	2.200	2.000	2.200	3,298
Cargo handling equipment	23.4	2.4	24.6	0.013	2.300	2.200	2.300	1,375
Heavy-duty vehicles	0.1	0.0	0.1	0.000	0.002	0.001	0.002	12
Terminal fleet vehicles	0.8	0.8	7.4	0.005	0.009	0.008	0.002	273
Total	141.2	18.0	127.7	53.848	8.636	7.534	7.920	8,972
2005								
OGV, hotelling & maneuvering	21.7	0.7	1.7	33.635	2.201	1.761	1.385	1,983
Recreational vessels	7.9	17.2	115.6	0.186	0.350	0.325	0.060	929
Locomotives	79.8	4.6	8.4	4.914	2.028	1.866	2.028	3,057
Cargo handling equipment	23.0	2.4	22.1	1.663	2.456	2.383	2.450	1,406
Heavy-duty vehicles	1.0	0.1	0.7	0.018	0.020	0.019	0.020	90
Terminal fleet vehicles	0.7	0.4	3.1	0.005	0.010	0.010	0.009	126
Total	134.2	25.4	151.6	40.422	7.066	6.363	5.952	7,590
% Change								
OGV, hotelling & maneuvering	117%	114%	121%	59%	79%	79%	143%	54%
Recreational vessels	-4%	-51%	-28%	-92%	-48%	-47%	-10%	3%
Locomotives	-22%	8%	7%	-90%	8%	7%	8%	8%
Cargo handling equipment	2%	1%	11%	-99%	-6%	-8%	-6%	-2%
Heavy-duty vehicles	-88%	-88%	-91%	-100%	-90%	-95%	-90%	-87%
Terminal fleet vehicles	8%	96%	138%	0%	-10%	-20%	-78%	116%
Total	5%	-29%	-16%	33%	22%	18%	33%	18%

Ocean-Going Vessels

The hotelling and maneuvering ocean-going vessel emissions at the Port of Everett increased in 2011 as compared to 2005. Table 9.4 presents the OGV emissions comparison for 2011 and 2005. The increase in ocean-going vessel emissions is due to increases in the number of vessel activities and TEU throughput which doubled in 2011 as compared to 2005.

Table 9.4: Port of Everett 2011 vs 2005 OGV Port Emissions Comparison, tpy

Emissions	NO_x	voc	СО	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO_2e
2011	47.2	1.4	3.8	53.3	3.9	3.2	3.4	3,059
2005	21.7	0.7	1.7	33.6	2.2	1.8	1.4	1,983
Change, tpy	25.5	0.8	2.1	19.7	1.7	1.4	2.0	1,076
Change, %	117%	114%	121%	59%	79%	79%	143%	54%

The increase in emissions is directly related to the increase in ocean-going vessel activity as presented in Table 9.5. Inbound activity counts are based on MarEx data and only include ocean-going vessel counts arriving directly from sea and shifts from other ports in the inventory domain to the designated port. Barge calls are not included in the ocean-going vessel inbound activity.

Table 9.5: Port of Everett 2011 vs 2005 OGV Activity Comparison

	OGV
Year	Inbound
	Activity
2011	103
2005	47
Change, %	119%

Harbor Vessels - Recreational Vessels

Table 9.6 presents the recreational vessel emissions comparison for 2011 vs 2005. Most of the recreational vessel emissions decreased in 2011 when compared to 2005. This change is most likely due to the combination of use of lower sulfur fuel by diesel and gasoline engines and the emissions model assuming a cleaner fleet in 2011 than in 2005. Since there is no detailed information for the recreational vessel engines, the emissions model makes assumptions regarding the fleet mix. EPA has cleaner engine standards for gasoline engines, which reduced VOC, CO and PM in 2011.

For the Port of Everett, recreational vessel count increased 11% in 2011 due to the marina expansion.

Table 9.6: Port of Everett 2011 vs 2005 Port Recreational Vessels Emissions Comparison, tpy

Year	NO _x	voc	СО	SO_2	PM_{10}	PM _{2.5}	DPM	CO ₂ e
2011	7.6	8.4	82.8	0.02	0.18	0.17	0.05	955.7
2005	7.9	17.2	115.6	0.19	0.35	0.33	0.06	928.7
Change (tpy)	-0.3	-8.8	-32.8	-0.17	-0.17	-0.15	-0.01	27.1
Change (%)	-4%	-51%	-28%	-92%	-48%	-47%	-10%	3%

Cargo Handling Equipment

Table 9.7 presents the emissions estimate comparison for calendar year 2011 and 2005 for cargo handling equipment in tons per year and as a percent change. Cargo handling equipment emissions decreased significantly for SO₂ due to the mandated use of ULSD in all diesel equipment. PM emissions also decreased as a result of using ULSD in 2011. Table 9.8 presents the activity and equipment count comparison for calendar year 2011 and 2005 for cargo handling equipment. NO_x, VOC and CO each had a slight increase in emissions as the result of the activity increase shown in Table 9.8.

Table 9.7: Port of Everett 2011 vs 2005 Port CHE Emissions Comparison, tpy

Year	NO _x	voc	CO	SO ₂	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
2011	23.4	2.40	24.6	0.013	2.30	2.20	2.30	1,375
2005	23.0	2.38	22.1	1.663	2.46	2.38	2.45	1,406
Change, tpy	0.4	0.02	2.5	-1.650	-0.16	-0.18	-0.15	-31
Change, %	2%	1%	11%	-99%	-6%	-8%	-6%	-2%

Table 9.8: Port of Everett 2011 vs 2005 CHE Activity and Equipment Count Comparison

Year	Activity (hp-hr)	Count
2011	2,222,824	74
2005	2,163,785	62
Change, %	3%	19%

Locomotives

Table 9.9 presents the port emissions (on-terminal and adjacent rail yards) estimate comparison for calendar year 2011 and 2005 for switching locomotive emissions in tons per year and as a percent change. The port locomotive emissions are lower for most of the pollutants in 2011 than in 2005 due to a combination of improved fuel efficiency for the locomotives, and use of lower emissions locomotives. The lower emission locomotives are the result of the Class 1 railroads placing newer, lower emission locomotives into service throughout their fleets. CO and greenhouse gas emissions increased in 2011 as compared to 2005 due to increased throughput at the Port of Everett.

Table 9.9: Port of Everett 2011 vs 2005 Port Locomotive Emissions Comparison, tpy

Year	NO _x	voc	CO	SO ₂	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
2011	62	5	9	1	2	2	2	3,298
2005	80	5	8	5	2	2	2	3,057
Change, tpy Change, %	-18 -23%	0 0%	1 12%	-4 -81%	0 0%	0 0%	0 0%	241 8%

Heavy-Duty Vehicles

Table 9.10 presents the emissions estimate comparison for calendar year 2011 and 2005 for on-terminal heavy-duty vehicles in tons per year and as a percent change. The on-terminal heavy-duty vehicle emissions were reduced by 87-100% for all pollutants in 2011. This is due to the a lower number of truck trips and idling time, the use of ULSD, as reported by the Port, and newer trucks in 2011 as compared to the 2005 fleet.

Table 9.10: Port of Everett 2011 vs 2005 Port HDV Emissions Comparison, tpy

Year	NO _x	voc	CO	SO_2	PM_{10}	PM _{2.5}	DPM	CO ₂ e
2011	0.12	0.01	0.06	0.00	0.002	0.001	0.002	12
2005	0.98	0.08	0.68	0.02	0.020	0.019	0.020	90
Change, tpy	-0.86	-0.07	-0.62	-0.02	-0.02	-0.02	-0.02	-78
Change, %	-88%	-88%	-91%	-100%	-90%	-95%	-90%	-87%

Fleet Vehicles – Terminal Fleet Vehicles

Table 9.11 presents the emissions estimate comparison for calendar year 2011 and 2005 for terminal fleet vehicles in tons per year and as a percent change. In 2011, there were a total of 65 terminal fleet vehicles inventoried which was more than the 39 inventoried in 2005. The increase in 2011 emissions for some of the pollutants may be due to the increase in the number of vehicles. The increase in CO emissions and decrease in PM emissions may be due to different engine types (gasoline, diesel, alternative-fueled) for 2011 and 2005 vehicle inventories.

Table 9.11: Port of Everett 2011 vs 2005 Port Terminal Fleet Vehicles Emissions Comparison, tpy

Year	NO _x	voc	СО	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
2011	0.8	0.8	7.4	0.005	0.009	0.008	0.002	273
2005	0.7	0.4	3.1	0.005	0.010	0.010	0.009	126
Change, tpy	0.1	0.4	4.3	0.000	-0.001	-0.002	-0.007	146
Change, %	8%	95%	138%	0%	-10%	-20%	-78%	116%

9.3 Port of Olympia

In 2011, no containers were handled at the Port of Olympia, but general cargo throughput increased fivefold between 2011 and 2005, as presented in Table 9.12.

Table 9.12: Port of Olympia 2011 vs 2005 TEU and Tonnage Comparison

Year	Container Throughput	Cargo Throughput
	(TEU)	(tonnes)
2011	0	711,536
2005	903	129,512
Change, %	-100%	449%

Table 9.13 presents a simple metric of total tons of emissions per 10,000 tonnes of cargo in 2011 and 2005. The port tons of emissions per 10,000 tonnes of cargo decreased in 2011, representing an improvement in air emissions-related efficiencies from 2005.

Table 9.13: Port of Olympia 2011 vs 2005 Port Tons of Emissions per 10,000 Tonnes of Cargo Comparison

Year	NO _x	VOC	СО	SO ₂	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
2011	7.6	0.4	2.6	1.9	0.5	0.5	0.5	753
2005	40.7	3.1	16.0	14.5	2.8	2.6	2.6	2,558
Change (%)	-81%	-86%	-84%	-87%	-82%	-82%	-83%	-71%

The emissions-related efficiency improvements from 2011 vs 2005 range from 71% less $CO2_e$ emissions to 87% less SO_2 , on a ton of emissions per 10,000 tonnes cargo moved through the port basis. The 2011 vs 2005 emissions-related efficiency changes are presented by pollutant in graphical form in Figure 9.1.

Figure 9.2: Port of Olympia 2011 vs 2005 Port Tons of Emissions per 10,000 Tonnes of Cargo Change

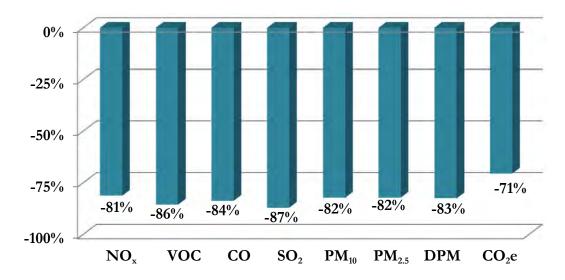


Table 9.14 presents a summary comparison of the 2011 and 2005 emissions by source category. Each source category emissions comparison for the Port of Olympia is discussed in the following subsections.

Table 9.14: Port of Olympia 2011 vs 2005 Port Emissions Comparison, tpy

	NO _x	voc	СО	SO ₂	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
2011								
OGV, hotelling & maneuvering	7.54	0.247	0.65	13.329	0.8525	0.682	0.511	779
Recreational vessels	2.35	2.583	25.48	0.005	0.0565	0.053	0.017	294
Locomotives, near-port	3.70	0.200	0.40	0.002	0.1000	0.100	0.100	164
Cargo handling equipment	42.90	2.700	17.40	0.039	2.6000	2.500	2.600	4,408
Heavy-duty vehicles, on-terminal	0.09	0.000	0.06	0.000	0.0010	0.001	0.001	8
Terminal fleet vehicles	0.01	0.004	0.03	0.000	0.0001	0.000	0.000	2
Total	56.58	5.734	44.02	13.374	3.6101	3.336	3.229	5,654
2005								
OGV, hotelling & maneuvering	10.72	0.316	0.84	14.595	0.9900	0.792	0.700	846
Recreational vessels	2.71	5.884	39.48	0.064	0.1196	0.111	0.021	317
Locomotives, near-port	14.98	0.869	1.58	0.923	0.3808	0.350	0.381	574
Cargo handling equipment	25.79	2.706	17.46	3.233	2.2559	2.188	2.253	1,774
Heavy-duty vehicles, on-terminal	1.26	0.105	0.85	0.024	0.0267	0.025	0.027	119
Terminal fleet vehicles	na	na	na	na	na	na	na	na
Total	55.45	9.880	60.21	18.839	3.7730	3.466	3.381	3,630
% Change								
OGV, hotelling & maneuvering	-30%	-22%	-23%	-9%	-14%	-14%	-27%	-8%
Recreational vessels	-13%	-56%	-35%	-93%	-53%	-52%	-19%	-7%
Locomotives, near-port	-75%	-77%	-75%	-100%	-74%	-71%	-74%	-71%
Cargo handling equipment	66%	0%	0%	-99%	15%	14%	15%	148%
Heavy-duty vehicles, on-terminal	-93%	-100%	-93%	-100%	-96%	-96%	-96%	-93%
Terminal fleet vehicles	na	na	na	na	na	na	na	na
Total	2%	-42%	-27%	-29%	-4%	-4%	-4%	56%

Ocean-Going Vessels

Table 9.15 presents the ocean-going vessel emissions comparison for 2011 and 2005. Hotelling and maneuvering ocean-going vessel emissions at the Port of Olympia decreased in 2011 as compared to 2005, while the ocean-going vessel activities increased (see Table 9.16). The difference may be due to different vessel types calling the Port in 2011 vs 2005, which has an effect on the engine size and load. Inbound activity counts are based on MarEx data and only include ocean-going vessel counts arriving directly from sea and shifts from other ports in the inventory domain to the designated port. Barge calls are not included in the ocean-going vessel inbound activity.

Table 9.15: Port of Olympia 2011 vs 2005 Port OGV Emissions Comparison, tpy

Emissions	NO _x	voc	СО	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO_2e
2011	7.5	0.2	0.6	13.3	0.9	0.7	0.5	779
2005	10.7	0.3	0.8	14.6	1.0	0.8	0.7	846
Change, tpy	-3.2	-0.1	-0.2	-1.3	-0.1	-0.1	-0.2	-67
Change, %	-30%	-22%	-23%	-9%	-14%	-14%	-27%	-8%

Table 9.16: Port of Olympia 2011 vs 2005 OGV Activity Comparison

	OGV
Year	Inbound
	Activity
2011	26
2005	20
Change, %	30%

Harbor Vessels - Recreational Vessels

Table 9.17 presents the recreation vessel emissions comparison for 2011 vs 2005. Most of the recreational vessel emissions decreased in 2011 when compared to 2005. This change is most likely due to the combination of use of lower sulfur fuel by diesel engines and the emissions model assuming a cleaner fleet in 2011 than in 2005. Since there is no detailed information for the recreational vessel engines, the emissions model makes assumptions regarding the fleet mix. EPA has cleaner engine standards for gasoline engines, which reduced VOC, CO and PM emissions in 2011.

For Port of Olympia, the recreational vessel count stayed the same in both inventory years.

Table 9.17: Port of Olympia 2011 vs 2005 Port Recreational Vessel Emissions Comparison, tpy

Year	NO _x	voc	CO	SO_2	\mathbf{PM}_{10}	PM _{2.5}	DPM	CO ₂ e
2011	2.35	2.58	25.48	0.005	0.056	0.053	0.017	294
2005	2.71	5.88	39.48	0.064	0.120	0.111	0.021	317
Change (tpy)	-0.36	-3.30	-14.00	-0.059	-0.063	-0.058	-0.004	-23
Change (%)	-13%	-56%	-35%	-93%	-53%	-52%	-19%	-7%

Cargo Handling Equipment

Table 9.18 presents the cargo handling equipment emissions estimate comparison for calendar year 2011 and 2005 in tons per year and as a percent change. Cargo handling equipment emissions decreased significantly for SO₂ due to the use of ULSD by all diesel equipment. The cargo handling equipment emissions increase for NO_x, PM and CO₂is due to the increased activity in 2011.

Table 9.18: Port of Olympia 2011 vs 2005 Port CHE Emissions Comparison, tpy

Year	NO _x	voc	СО	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
2011	42.9	2.7	17.4	0.04	2.6	2.5	2.6	4,408
2005	25.8	2.7	17.5	3.23	2.3	2.2	2.3	1,774
Change, tpy	17.1	0.0	-0.1	-3.19	0.3	0.3	0.3	2,634
Change, %	66%	0%	0%	-99%	15%	14%	15%	148%

Table 9.19 presents the activity and equipment count comparison for calendar year 2011 and 2005 for cargo handling equipment. The increase in activity and equipment count is reflective of the increased cargo tonnage in 2011 as compared to 2005.

Table 9.19: Port of Olympia 2011 vs 2005 CHE Activity and Equipment Count Comparison

Year	Activity (hp-hr)	Count
2011	7,314,297	53
2005	2,605,002	33
Change, %	181%	61%

Locomotives

Table 9.20 presents the port emissions (on-terminal and adjacent port areas) estimate comparison for calendar year 2011 and 2005 for switching locomotive emissions in tons per year and as a percent change. The port locomotive emissions are lower for all pollutants in 2011 due to a combination of improved fuel efficiency for the locomotives, and lower emissions locomotives.

Table 9.20: Port of Olympia 2011 vs 2005 Port Locomotive Emissions Comparison, tpy

Year	NO _x	voc	СО	SO_2	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
2011	4	0.2	0.4	0.0	0.1	0.1	0.1	164
2005	15	0.9	1.6	0.9	0.4	0.4	0.4	574
Change, tpy	-11	-0.7	-1.2	-0.9	-0.3	-0.3	-0.3	-410
Change, %	-75%	-77%	-75%	-100%	-74%	-71%	-74%	-71%

Heavy-Duty Vehicles

Table 9.21 presents the emissions estimate comparison for calendar year 2011 and 2005 for port heavy duty vehicles in tons per year and as a percent change. The on-terminal heavy-duty vehicle emissions are lower for all pollutants in 2011. This is due to a lower number of truck trips, idling time, the use of ULSD, as reported by the Port, and newer truck fleet in 2011 as compared to 2005.

Table 9.21: Port of Olympia 2011 vs 2005 Port HDV Emissions Comparison, tpy

Year	NO _x	voc	СО	SO_2	\mathbf{PM}_{10}	PM _{2.5}	DPM	CO ₂ e
2011	0.090	0.000	0.060	0.000	0.001	0.001	0.001	8
2005	1.260	0.105	0.855	0.024	0.027	0.025	0.027	119
Change, tpy	-1.170	-0.105	-0.795	-0.024	-0.026	-0.024	-0.026	-111
Change, %	-93%	-100%	-93%	-100%	-96%	-96%	-96%	-93%

9.4 Port of Seattle

As part of the 2011 inventory update for the Port of Seattle, port-related port emissions were quantified with the similar approach used in 2005 and in addition port-related emissions were quantified for the entire airshed. To achieve a direct comparison, the 2005 data was recalculated using the 2011 emissions estimate methodology (as described in the previous sections and Section 10). In 2011, the TEU throughput of containers at the Port of Seattle decreased, the throughput of metric tons of cargo increased, and cruise passenger counts increased 29% as compared to that of 2005 and as presented in Table 9.22.

Table 9.22: Port of Seattle 2011 vs 2005 TEU and Cargo Throughput Comparison

	Container		Cruise
Year	Throughput	Cargo	Passengers
	(TEU)	(tonnes)	
2011	2,033,535	22,762,678	885,949
2005	2,087,929	20,564,860	686,978
Change, %	-3%	11%	29%

The 2011 vs 2005 emissions and efficiency comparisons for the Port of Seattle are presented in subsections 9.4.1 2011 vs 2005 Port Emissions Comparisons and 9.4.2 2011 vs 2005 Airshed Emissions Comparisons below.

9.4.1 2011 vs 2005 Port Emissions Comparisons

Table 9.23 presents a simple metric of TEU emissions efficiency, expressed in port tons of emissions per 10,000 TEU, for 2011 and 2005. The port tons of emissions per 10,000 TEU decreased in 2011, representing an improvement in air emissions-related efficiencies from 2005. It should be noted that port-related recreational vessel emissions are not included because they are not associated with the movement of cargo and that port-related cruise ship emissions are included in this simple metric.

Table 9.23: Port of Seattle 2011 vs 2005 Port Tons of Emissions per 10,000 TEU Comparison

Year	NO _x	voc	СО	SO ₂	\mathbf{PM}_{10}	PM _{2.5}	DPM	CO ₂ e
2011	8.6	0.5	1.9	3.0	0.4	0.4	0.4	661
2005	10.3	0.7	4.3	5.3	0.6	0.5	0.6	707
Change (%)	-16%	-30%	-56%	-44%	-30%	-30%	-29%	-6%

The port emissions-related efficiency improvements from 2011 vs 2005 range from 6% less CO₂e emissions to 54% less CO, on a ton of emissions per 10,000 TEU moved through the port basis. The 2011 vs 2005 emissions-related efficiency changes are presented by pollutant in graphical form in Figure 9.3.

Figure 9.3: Port of Seattle 2011 vs 2005 Port Tons of Emissions per 10,000 TEU Change

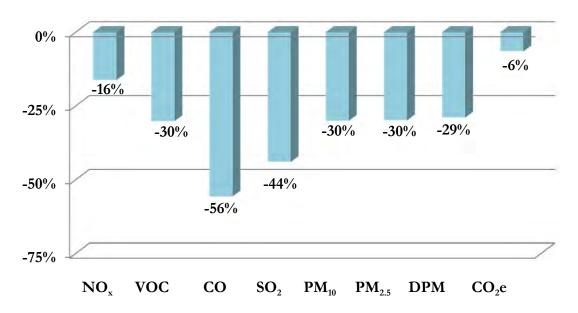


Table 9.24 presents a simple metric of cargo emissions efficiency, expressed in port tons of emissions per 10,000 tonnes of cargo, for 2011 and 2005. The port tons of emissions per 10,000 tonnes of cargo decreased in 2011, representing an improvement in air emissions-related efficiencies from 2005. It should be noted that port-related recreational vessel emissions are not included because they are not associated with the movement of cargo and that port-related cruise ship emissions are included in this simple metric.

Table 9.24: Port of Seattle 2011 vs 2005 Port Tons of Emissions per 10,000 Tonnes of Cargo Comparison

Year	NO _x	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
2011	0.77	0.04	0.17	0.27	0.04	0.03	0.04	59
2005	1.04	0.07	0.44	0.54	0.06	0.05	0.06	72
Change (%)	-26%	-39%	-61%	-51%	-38%	-38%	-37%	-18%

The port cargo emissions efficiencyimprovements 2011 vs 2005 range from 17% less CO_2 e emissions to 60% less CO tons of emissions per 10,000 tonnes cargo moved through the port. The changes in the 2011 vs 2005 emissions normalized to cargo throughput for all pollutants are presented in graphical form in Figure 9.4.

Figure 9.4: Port of Seattle 2011 vs 2005 Port Tons of Emissions per 10,000 Tonnes of Cargo Change

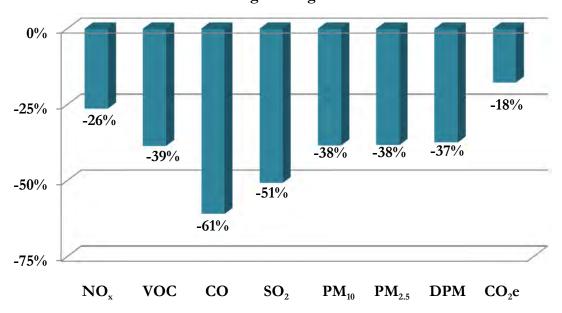


Table 9.25 presents a summary comparison of the 2011 vs 2005 Port Emissions by source category. Each source category emissions comparison for the Port of Seattle is discussed in the following subsections. For the Port of Seattle, harbor vessels below include port-owned and commercial harbor vessels.

Table 9.25: Port of Seattle 2011 vs 2005 Port Emissions Comparison, tpy

	NO _x	VOC	CO	SO_2	PM_{10}	PM _{2.5}	DPM	CO ₂ e
2011								
OGV, hotelling & maneuvering	748	26	66	600.51	47.69	38.15	38.62	54,479
OGV, transit	0	0	0	0.00	0.00	0.00	0.00	0
Harbor vessels	334	22	72	0.21	13.24	12.21	13.04	20,415
Recreational vessels	6	6	61	0.05	0.14	0.14	0.04	708
Locomotives	290	20	45	2.54	10.50	9.60	10.50	16,828
Cargo handling equipment	306	18	158	0.30	16.70	16.20	16.70	34,561
Heavy-duty vehicles	68	6	38	0.07	0.82	0.76	0.82	7,038
Terminal fleet vehicles	3	1	12	0.02	0.03	0.03	0.02	1,053
Total	1,754	99	454	603.69	89.12	77.09	79.75	135,083
2005								
OGV, hotelling & maneuvering	861	28	72	978.73	73.84	59.08	58.86	60,474
OGV, transit	0	0	0	0.00	0.00	0.00	0.00	0
Harbor vessels	316	22	66	33.74	13.79	12.71	13.58	18,073
Recreational vessels	7	15	104	0.17	0.31	0.29	0.05	832
Locomotives	448	25	55	40.22	13.27	12.21	13.27	20,561
Cargo handling equipment	418	51	616	52.27	27.62	26.80	27.40	38,135
Heavy-duty vehicles	96	8	67	1.82	1.99	1.83	1.99	8,884
Terminal fleet vehicles	5	3	31	0.02	0.02	0.02	0.02	1,403
Total	2,151	152	1,012	1,106.95	130.85	112.93	115.18	148,362
% Change								
OGV, hotelling & maneuvering	-13%	-7%	-8%	-39%	-35%	-35%	-34%	-10%
OGV, transit	na	na	na	na	na	na	na	na
Harbor vessels	6%	-1%	9%	-99%	-4%	-4%	$-4^{0}/_{0}$	13%
Recreational vessels	-20%	-60%	-41%	-71%	-55%	-52%	-14%	-15%
Locomotives	-35%	-19%	-18%	-94%	-21%	-21%	-21%	-18%
Cargo handling equipment	-27%	-64%	-74%	-99%	-40%	-40%	-39%	-9%
Heavy-duty vehicles	-29%	-28%	-43%	-96%	-59%	-59%	-59%	-21%
Terminal fleet vehicles	-43%	-70%	-60%	20%	67%	60%	-19%	-25%
Total	-18%	-35%	-55%	-45%	-32%	-32%	-31%	-9%

Ocean-Going Vessels

The ocean-going vessel hotelling and maneuvering port emissions at the Port of Seattle decreased for all pollutants in 2011 as compared to that in 2005. This is due to a combination of the decreased activity and emission reduction strategies used in 2011 to reduce vessel emissions while at berth. Some of the cruise vessels use shore power while at berth and other cruise and shipping lines participated in the At-Berth-Clean (ABC) Fuels Program and switched to low sulfur fuel use while at berth in 2011. Table 9.26 presents the ocean-going vessel emissions comparison for 2011 vs 2005, and Table 9.27 presents the change in vessel inbound activities. Inbound activity counts are based on MarEx data and only include ocean-going vessel counts arriving directly from sea and shifts from other ports in the inventory domain to the designated port. Barge calls are not included in the ocean-going vessel inbound activity.

Table 9.26: Port of Seattle 2011 vs 2005 OGV Port Emissions Comparison, tpy

Emissions	NO_x	voc	СО	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
2011	748.3	26.2	66.2	600.5	47.7	38.2	38.6	54,479
2005	860.7	28.2	72.2	978.7	73.8	59.1	58.9	60,474
Change, tpy	-112.4	-2.0	-5.9	-378.2	-26.2	-20.9	-20.2	-5,995
Change, %	-13%	-7%	-8%	-39%	-35%	-35%	-34%	-10%

Table 9.27: Port of Seattle 2011 vs 2005 OGV Activity Comparison

	OGV
Year	Inbound
	Activities
2011	1,136
2005	1,197
Change, %	-5%

Harbor Vessels - Commercial Harbor and Government Vessels

Table 9.28 presents the comparison for 2011 vs 2005 of port commercial harbor and government vessel emissions related to the Port. The NO_x , CO and greenhouse emissions increased, while SO_2 emissions decreased and PM emission remained the same in 2011. The lower SO_2 emissions are due to the use of lower sulfur fuel in 2011. The increased NO_x and CO emissions were due to increased assist tug and workboat activity for the Port of Seattle.

Table 9.28: Port of Seattle 2011 vs 2005 Port Commercial Harbor and Government Vessel Emissions Comparison, tpy

Туре	NO _x	voc	СО	SO ₂	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
2011	334	22	72	0	13	12	13	20,415
2005	316	22	66	34	14	13	14	18,073
Change (%)	6%	-1%	9%	-99%	-4%	-4%	-4%	13%

Harbor Vessels - Recreational Vessels

Table 9.29 presents the comparison for 2011 vs 2005 of port recreational vessel emissions related to port-owned marinas. Again, it should be noted that it is assumed that 10% of the total recreational vessel emissions occurs in the port zone.

Table 9.29: Port of Seattle 2011 vs 2005 Port Recreational Vessel Emissions Comparison, tpy

Year	NO_x	voc	СО	SO ₂	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO ₂ E
2011	5.7	6.2	61.4	0.01	0.14	0.13	0.04	708
2005	7.1	15.4	103.5	0.17	0.31	0.29	0.05	832
Change (tpy)	-1.5	-9.2	-42.2	-0.16	-0.17	-0.16	-0.01	-123
Change (%)	-20%	-60%	-41%	-94%	-55%	-55%	-20%	-15%

Cargo Handling Equipment

Table 9.30 presents the port emissions estimate comparison for calendar year 2011 and 2005 for cargo handling equipment in tons per year and as a percent change. Cargo handling equipment port emissions decreased significantly for SO₂ and this is due to the use of ULSD by all diesel equipment. PM emissions also decreased as a result of using ULSD in 2011. Note the port and airshed emissions for cargo handling equipment are the same, because equipment operations do not move beyond the port terminals. Cargo handling equipment emissions decreased for all pollutants as a result of the use of 164 DOCs, 5 DPFs, 7 on-road engines, and decreased activity. The equipment retrofits, DOCs and DPFs, lower VOC, CO, and PM emissions, while on-road engines lower NO_s, VOC and PM emissions.

Table 9.30: Port of Seattle 2011 vs 2005 Port CHE Emissions Comparison, tpy

Year	NO _x	voc	CO	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
2011	305.5	18.4	158.0	0.3	16.7	16.2	16.7	34,561
2005	418.1	50.7	616.3	52.3	27.6	26.8	27.4	38,135
Change, tpy	-112.6	-32.3	-458.3	-52.0	-10.9	-10.6	-10.7	-3,573
Change, %	-27%	-64%	-74%	-99%	-40%	-40%	-39%	-9%

Table 9.31 presents the activity and equipment count comparison for calendar year 2011 and 2005 for cargo handling equipment. The activity and equipment count decreased in 2011 and could be due to the slight decrease in TEU throughput.

Table 9.31: Port of Seattle 2011 vs 2005 CHE Activity and Equipment Count Comparison

Year	Activity (hp-hr)	Count
2011	56,822,638	504
2005	64,089,026	514
Change, %	-11%	-2%

Locomotives

Table 9.32 presents the port emissions (on-terminal and adjacent rail yards) estimate comparison for calendar year 2011 and 2005 for line-haul and switching locomotive emissions in tons per year and as a percent change. The port locomotive emissions are lower for all pollutants in 2011 due to a combination of lower throughput, improved fuel efficiency for the locomotives, and lower emissions locomotives. The lower locomotive emissions are the result of turnover of the line-haul locomotive fleet to newer and cleaner locomotives.

Table 9.32: Port of Seattle 2011 vs 2005 Port Locomotive Emissions Comparison, tpy

Year	NO _x	voc	СО	SO ₂	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
2011	290	20	45	3	11	10	11	16,828
2005	448	25	55	40	13	12	13	20,561
Change, tpy	-158	-5	-10	-38	-3	-3	-3	-3,733
Change, %	-35%	-19%	-18%	-94%	-21%	-21%	-21%	-18%

Heavy-Duty Vehicles

Table 9.33 shows the port emissions estimate comparison for calendar year 2011 and 2005 for on-terminal heavy duty vehicles in tons per year and as a percent change. The onterminal HDV emissions are lower for all pollutants in 2011. This is due to newer trucks calling the terminals, the use of ULSD, less on-terminal idling as reported by the terminals, and fewer reported truck trips, in 2011 compared with 2005.

Table 9.33: Port of Seattle 2011 vs 2005 Port HDV Emissions Comparison, tpy

Year	NO_x	voc	СО	SO ₂	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
2011	68.3	5.8	38.1	0.1	0.8	0.8	0.8	7,038
2005	96.5	8.1	67.4	1.8	2.0	1.8	2.0	8,884
Change, tpy	-28.1	-2.3	-29.3	-1.8	-1.2	-1.1	-1.2	-1,845
Change, %	-29%	-28%	-43%	-96%	-59%	-59%	-59%	-21%

Fleet Vehicles – Terminal Fleet Vehicles

Table 9.34 presents the emissions estimate comparison for calendar year 2011 and 2005 for terminal fleet vehicles in tons per year and as a percent change. In 2011, there were a total of 404 terminal fleet vehicles inventoried which was more than the 347 inventoried in 2005. With the exception of SO₂ and PM emissions which increased, some pollutant emissions are lower in 2011 as compared to 2005. This may be due to the lower reported activity levels by the terminals. Emissions from cruise terminal cars/minivans vehicles are not included in the comparison, as the focus of this section is to evaluate vehicles residing on the terminals.

Table 9.34: Port of Seattle 2011 vs 2005 Port Fleet Vehicle Emissions Comparison, tpy

Year	NO _x	voc	СО	SO_2	PM_{10}	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
2011	2.7	1.0	12.3	0.018	0.035	0.032	0.017	1,053
2005	4.7	3.2	30.9	0.015	0.021	0.020	0.021	1,403
Change, tpy	-2.0	-2.2	-18.5	0.003	0.014	0.012	-0.004	-350
Change, %	-43%	-70%	-60%	20%	67%	60%	-19%	-25%

9.4.2 2011 vs 2005 Airshed Emissions Comparisons

Quantifying the changes of Port of Seattle operations throughout the airshed (i.e. the entire emissions inventory geographical domain) is an improvement made during the 2011 update. Similar to the simple metric used for port emissions, this evaluation utilized data from the original 2005 inventory for comparison purposes to the 2011 activity and used 2011 methods for estimating emissions. Table 9.35 presents the Port of Seattle-related airshed TEU emissions efficiency, expressed in airshed tons of emissions per 10,000 TEU, changes from 2011 vs 2005. The airshed tons of emissions per 10,000 TEU decreased in 2011, representing an improvement in air emissions-related efficiencies from 2005. It should be noted that port-related recreational vessel emissions are not included because they are not associated with the movement of cargo and that port-related cruise ship emissions are included in this simple metric.

Table 9.35: Port of Seattle 2011 vs 2005 Airshed Tons of Emissions per 10,000 TEU Comparison

Year	NO _x	voc	СО	SO_2	PM_{10}	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
2011	37.0	1.7	5.8	18.5	1.9	1.6	1.9	2,783
2005	47.8	2.1	9.0	22.7	2.6	2.2	2.5	2,859
Change (%)	-23%	-17%	-35%	-18%	-25%	-26%	-25%	-3%

The Port of Seattle-related airshed TEU emissions efficiency changes from 2011 vs 2005 range from 3% less CO₂e emissions to 34% less CO emissions per 10,000 TEU moved through the port. The changes in the 2011 vs 2005 airshed emissions normalized to TEU throughput for all pollutants are presented in graphical form in Figure 9.5.

Figure 9.5: Port of Seattle 2011 vs 2005 Airshed Tons of Emissions per 10,000 TEU Change

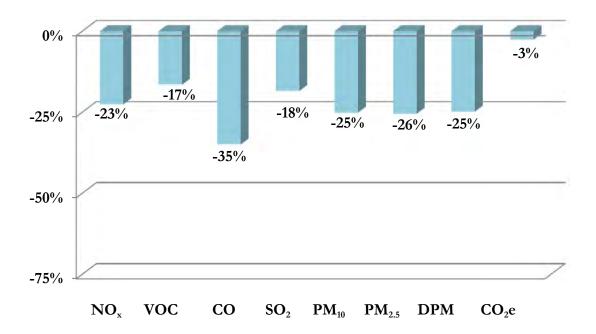


Table 9.36 presents the Port of Seattle-related airshed cargo emissions efficiency, expressed in airshed tons of emissions per 10,000 tonnes of cargo, for 2011 and 2005. The airshed tons of emissions per 10,000 tonnes of cargo decreased in 2011, representing an improvement in air emissions-related efficiencies from 2005. It should be noted that port-related recreational vessel emissions are not included because they are not associated with the movement of cargo. Port-related cruise ship emissions are included in this simple metric because they are part of port operations.

Table 9.36: Port of Seattle 2011 vs 2005 Airshed Tons of Emissions per 10,000 Tonnes of Cargo Comparison

Year	NO_x	voc	СО	SO ₂	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
2011	3.3	0.2	0.5	1.7	0.2	0.1	0.2	249
2005	4.9	0.2	0.9	2.3	0.3	0.2	0.3	290
Change (%)	-32%	-27%	-43%	-28%	-34%	-34%	-34%	-14%

The Port of Seattle-related airshed cargo emissions efficiency improvements from 2011 vs 2005 range from 14% less CO₂e emissions to 42% less CO emissions per 10,000 tonnes cargo moved through the port. The changes in the 2011 vs 2005 emissions normalized to cargo throughput for all pollutants are presented in graphical form in Figure 9.6.

Figure 9.6: Port of Seattle 2011 vs 2005 Airshed Tons of Emissions per 10,000 Tonnes of Cargo Change

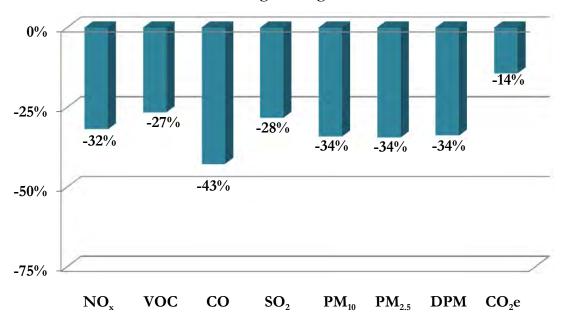


Table 9.37 presents a summary comparison of the Port of Seattle-related 2011 and 2005 airshed emissions by source category. The reasons behind the 2011 vs 2005 emissions changes for the airshed zone are generally the same as in the port comparisons in the previous subsection 9.4.1. For the Port of Seattle, harbor vessels below include port-owned and commercial harbor vessels.

Table 9.37: Port of Seattle 2011 vs 2005 Airshed Emissions Comparison, tpy

	NO_x	voc	СО	SO_2	PM_{10}	PM _{2.5}	DPM	CO_2e
2011								
OGV, hotelling & maneuvering	748	26	66	600.51	47.69	38.15	38.62	54,479
OGV, transit	4,106	158	366	3,150.77	264.57	211.66	257.71	202,078
Harbor vessels	418	24	82	0.25	16.43	15.15	16.23	25,048
Recreational vessels	57	62	614	0.11	1.36	1.27	0.40	7083
Locomotives	680	42	111	6.15	24.85	22.85	24.85	41,870
Cargo handling equipment	306	18	158	0.30	16.70	16.20	16.70	34,561
Heavy-duty vehicles	1,270	83	390	1.81	25.27	22.55	25.27	206,887
Terminal fleet vehicles	3	1	12	0.02	0.03	0.03	0.02	1,053
Total	7,588	414	1,799	3,759.93	396.90	327.86	379.80	573,059
2005								
OGV, hotelling & maneuvering	861	28	72	978.73	73.84	59.08	58.86	60,474
OGV, transit	5,639	198	461	3,521.17	336.38	269.11	327.21	226,887
Harbor vessels	534	26	96	55.46	22.36	20.59	22.14	29,737
Recreational vessels	71	154	1,035	1.67	3.14	2.91	0.54	8317
Locomotives	1,026	52	131	84.31	28.90	26.59	28.90	47,898
Cargo handling equipment	418	51	616	52.27	27.62	26.80	27.40	38,135
Heavy-duty vehicles	1,506	75	465	42.94	53.60	48.25	53.60	192,389
Terminal fleet vehicles	5	3	31	0.02	0.02	0.02	0.02	1,403
Total	10,060	587	2,907	4,736.54	545.87	453.34	518.69	605,240
% Change								
OGV, hotelling & maneuvering	-13%	-7%	-8%	-39%	-35%	-35%	-34%	-10%
OGV, transit	-27%	-20%	-21%	-11%	-21%	-21%	-21%	-11%
Harbor vessels	-22%	-8%	-14%	-100%	-27%	-26%	-27%	-16%
Recreational vessels	-20%	-60%	-41%	-93%	-57%	-56%	-26%	-15%
Locomotives	-34%	-19%	-15%	-93%	-14%	-14%	-14%	-13%
Cargo handling equipment	-27%	-64%	-74%	-99%	-40%	-40%	-39%	-9%
Heavy-duty vehicles	-16%	10%	-16%	-96%	-53%	-53%	-53%	8%
Terminal fleet vehicles	-43%	-70%	-60%	20%	67%	60%	-19%	-25%
Total	-25%	-29%	-38%	-21%	-27%	-28%	-27%	-5%

9.5 Port of Tacoma

As part of the 2011 inventory update for the Port of Tacoma port-related emissions were quantified with the similar at-port methodology used in 2005. In addition, port-related emissions were quantified for the entire airshed zone. This was done for the 2005 data and recalculated using the 2011 emissions estimate methodology (as described in the previous sections and Section 10). In 2011, the cargo throughput in TEU and in metric tonnes for the Port of Tacoma decreased as compared to 2005, as presented in Table 9.38.

Table 9.38: Port of Tacoma 2011 vs 2005 TEU and Cargo Throughput Comparison

Year	Container Throughput	Cargo Throughput
	(TEU)	(tonnes)
2011	1,488,795	17,270,252
2005	2,070,000	20,400,000
Change, %	-28%	-15%

The 2011 vs 2005 emissions and efficiency comparisons for the Port of Tacoma are presented in subsections 9.4.1 2011 vs 2005 port emissions comparisons and 9.4.2 2011 vs 2005 airshed emissions comparisons below.

9.5.1 2011 vs 2005 Port Emissions Comparisons

Table 9.39 presents a simple metric of TEU emissions efficiency, expressed in tons of emissions per 10,000 TEU, for 2011 and 2005. The port tons of emissions per 10,000 TEU decreased in 2011, representing an improvement in air emissions-related efficiencies from 2005. It should be noted that port-related recreational vessel emissions are not included because they are not associated with the movement of cargo.

Table 9.39: Port of Tacoma 2011 vs 2005 Port Tons of Emissions per 10,000 TEU Comparison

Year	NO _x	voc	СО	SO ₂	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
2011	8.48	0.42	1.65	2.77	0.43	0.37	0.37	633
2005	9.21	0.43	1.70	3.66	0.48	0.42	0.42	634
Change (%)	-8%	-2%	-3%	-24%	-12%	-12%	-10%	0%

The port TEU emissions efficiency changes in 2011 vs 2005 range from 2% less VOC emissions to 24% less SO₂, expressed in port tons of emissions per 10,000 TEU moved through the port. The changes in the 2011 vs 2005 emissions normalized to TEU throughput for all pollutants are presented in graphical form in Figure 9.7. Note there was no significant change in CO₂e emissions from 2011 vs 2005. It should be noted that port-related recreational vessel emissions are not included because they are not associated with the movement of cargo.

Figure 9.7: Port of Tacoma 2011 vs 2005 Port Tons of Emissions per 10,000 TEU Change

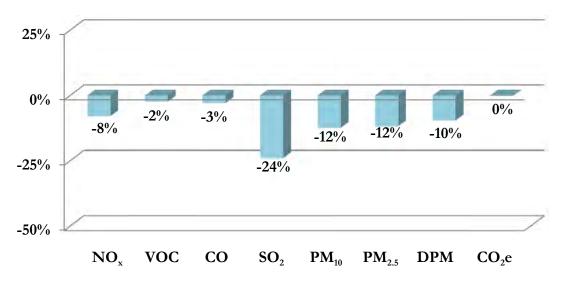


Table 9.40 presents a simple metric of port tons of emissions per 10,000 tonnes of cargo in 2011 and 2005. The port tons of emissions per 10,000 tonnes of cargo decreased in 2011, representing an improvement in air emissions-related efficiencies from 2005. It should be noted that port-related recreational vessel emissions are not included because they are not associated with the movement of cargo.

Table 9.40: Port of Tacoma 2011 vs 2005 Port Tons of Emissions per 10,000 Tonnes of Cargo Comparison

Year	NO _x	voc	СО	SO_2	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
2011	0.73	0.036	0.14	0.24	0.04	0.03	0.03	54
2005	0.93	0.043	0.17	0.37	0.05	0.04	0.04	64
Change (%)	-22%	-17%	-18%	-36%	-25%	-25%	-24%	-15%

The port cargo emissions efficiency improvements 2011 vs 2005 range from 15% less CO_2 e emissions to 36% less SO_2 tons of emissions per 10,000 tonnes cargo moved through the port. The changes in the 2011 vs 2005 emissions normalized to cargo throughput for all pollutants are presented in graphical form in Figure 9.8.

Figure 9.8: Port of Tacoma 2011 vs 2005 Port Tons of Emissions per 10,000 Tonnes of Cargo Change

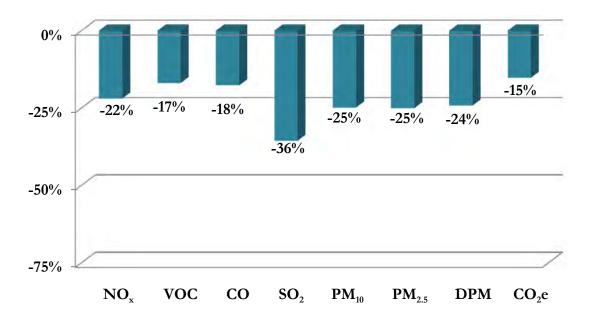


Table 9.41 provides a summary comparison of the 2011 and 2005 emissions by source category. Each source category emissions comparison for the Port of Tacoma is discussed in the following subsections. For the Port of Tacoma, there were no associated recreational or government (port-owned) harbor vessels.

Table 9.41: Port of Tacoma 2011 vs 2005 Port Emissions Comparison, tpy

	NO _x	voc	СО	SO ₂	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
	X			2	10	2.5		2 -
2011								
OGV, hotelling & maneuvering	375	12	32	410.18	29.00	23.20	21.12	30,273
OGV, transit	0	0	0	0.00	0.00	0.00	0.00	0
Commercial harbor vessels	291	10	44	0.16	11.82	10.88	11.82	17,485
Locomotives	364	25	54	2.37	12.35	11.35	12.35	20,015
Cargo handling equipment	206	13	88	0.20	10.00	9.70	10.00	22,486
Heavy-duty vehicles	24	2	13	0.02	0.29	0.27	0.29	2,505
Terminal fleet vehicles	3	1	14	0.02	0.04	0.04	0.02	1,429
Total	1,263	62	245	412.96	63.50	55.44	55.60	94,192
2005								
OGV, hotelling & maneuvering	645	21	54	676.17	47.05	37.64	33.79	47,465
OGV, transit	0	0	0	0.00	0.00	0.00	0.00	0
Commercial harbor vessels	278	6	38	29.45	12.20	11.23	12.20	15,815
Locomotives	589	33	71	45.66	17.09	15.72	17.09	25,500
Cargo handling equipment	370	26	160	5.40	22.92	22.26	23.01	38,646
Heavy-duty vehicles	21	2	13	0.42	0.46	0.42	0.46	2,049
Terminal fleet vehicles	4	2	15	0.02	0.04	0.04	0.04	1,689
Total	1,907	88	352	757.13	99.76	87.31	86.59	131,163
% Change								
OGV, hotelling & maneuvering	-42%	-41%	-41%	-39%	-38%	-38%	-38%	-36%
OGV, transit	na	na	na	na	na	na	na	na
Commercial harbor vessels	4%	64%	17%	-99%	-3%	-3%	-3%	11%
Locomotives	-38%	-25%	-24%	-95%	-28%	-28%	-28%	-22%
Cargo handling equipment	-44%	-51%	-45%	-96%	-56%	-56%	-57%	-42%
Heavy-duty vehicles	16%	21%	-1%	-95%	-37%	-36%	-37%	22%
Terminal fleet vehicles	-36%	-45%	-9%	33%	0%	-5%	-50%	-15%
Total	-34%	-30%	-30%	-45%	-36%	-37%	-36%	-28%

Ocean-Going Vessels

The ocean-going vessel hotelling and maneuvering port emissions at the Port of Tacoma decreased for all pollutants in 2011 as compared to that in 2005. This is partly due to decreased activity and partly due to the emission reduction strategies used in 2011 to reduce vessel emissions while at berth. Totem Ocean Trailer Express (TOTE) vessels used shore power while at berth –while two shipping lines, K-Line and Evergreen Marine, switched all of their vessels to low sulfur fuel while at berth in 2011. Table 9.42 presents the ocean-going vessel emissions comparison for 2011 vs 2005, and Table 9.43 presents the change in vessel inbound activities. Inbound activity counts are based on MarEx data and only include ocean-going vessel counts arriving directly from sea and shifts from other ports in the inventory domain to the designated port. Barge calls are not included in the ocean-going vessel inbound activity.

Table 9.42: Port of Tacoma 2011 vs 2005 Port OGV Emissions Comparison, tpy

Emissions	NO_x	voc	СО	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
2011	375.2	12.1	31.7	410.2	29.0	23.2	21.1	30,273
2005	644.8	20.5	53.8	676.2	47.0	37.6	33.8	47,465
Change, tpy	-269.6	-8.4	-22.1	-266.0	-18.1	-14.4	-12.7	-17,192
Change, %	-42%	-41%	-41%	-39%	-38%	-38%	-38%	-36%

Table 9.43: Port of Tacoma 2011 vs 2005 OGV Activity Comparison

	OGV
Year	Inbound
	Activity
2011	875
2005	1,093
Change, %	-20%

Harbor Vessels - Commercial Harbor Vessels

Table 9.44 presents the comparison for 2011 vs 2005 of port commercial harbor vessel emissions related to the Port. The lower SO₂ and particulate emissions are due to the use of lower sulfur fuel in 2011. The increases NOx, VOC, and CO₂e are due to increased activity in 2011.

Table 9.44: Port of Tacoma 2011 vs 2005 Port Commercial Harbor Vessel Emissions Comparison, tpy

Туре	NO _x	VOC	СО	SO ₂	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
2011	291	10	44	0.2	11.8	10.9	11.8	17,485
2005	278	6	38	29.5	12.2	11.2	12.2	15,815
Change (%)	4%	64%	17%	-99%	-3%	-3%	-3%	11%

Cargo Handling Equipment

Table 9.45 presents the emissions estimate comparison for calendar year 2011 and 2005 for cargo handling equipment in tons per year and as a percent change. Cargo handling equipment emissions decreased for all pollutants as a result of decreased activity and the implementation of emission control strategies that included retrofits of 117 DOCs, 48 DPFs, and use of 42 on-road engines in non-road applications. The equipment retrofits with DOCs and DPFs lowered VOC, CO, and PM emissions, while the use on-road engines lowered NO_x, VOC, and PM emissions.

Table 9.45: Port of Tacoma 2011 vs 2005 Port CHE Emissions Comparison, tpy

Year	NO _x	VOC	СО	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
2011	205.9	12.6	88.0	0.2	10.0	9.7	10.0	22,486
2005	370.3	25.6	160.2	5.4	22.9	22.3	23.0	38,646
Change, tpy	-164.4	-13.0	-72.2	-5.2	-12.9	-12.6	-13.0	-16,160
Change, %	-44%	-51%	-45%	-96%	-56%	-56%	-57%	-42%

Table 9.46 presents the activity and equipment count comparison for calendar year 2011 and 2005 for cargo handling equipment. The activity decreased in 2011 as a result of the decreased TEU and tonnage throughput. The equipment count increased due to some equipment being added in 2011 that was not included in 2005 and the fact that some equipment was kept in the inventory, even though it was not used.

Table 9.46: Port of Tacoma 2011 vs 2005 CHE Activity and Equipment Count Comparison

Year	Activity (hp-hr)	Count
2011	35,233,383	546
2005	68,330,199	518
Change, %	-48%	5%

Locomotives

Table 9.47 presents the port emissions (on-terminal and adjacent rail yards) estimate comparison for calendar year 2011 and 2005 for line-haul and switching locomotive emissions in tons per year and as a percent change. The port locomotive emissions are lower for all pollutants in 2011 due to a combination of lower throughput, improved fuel efficiency for the locomotives, and lower emissions locomotives. The lower emission locomotives are the result of turnover of the line-haul locomotive fleet to newer, cleaner locomotives and three lower emission locomotives that Tacoma Rail put into service during 2011.

Table 9.47: Port of Tacoma 2011 vs 2005 Port Locomotive Emissions Comparison, tpy

Year	NO _x	voc	CO	SO_2	\mathbf{PM}_{10}	PM _{2.5}	DPM	CO ₂ e
2011	364	25	54	2	12	11	12	20,015
2005	589	33	71	46	17	16	17	25,500
Change, tpy	-225	-8	-17	-43	-5	-4	-5	-5,485
Change, %	-38%	-25%	-24%	-95%	-28%	-28%	-28%	-22%

Heavy-Duty Vehicles

Table 9.48 presents the emissions estimate comparison for calendar year 2011 and 2005 for on-terminal heavy-duty vehicles in tons per year and as a percent change. The on-terminal heavy-duty vehicle emissions are lower for all pollutants in 2011 except for NOx and VOC, which are somewhat higher. The reductions are due to the use of ULSD and newer trucks calling the terminals in 2011 compared with 2005. The increases in emissions of NOx and VOC occurred because terminals reported overall higher numbers of truck trips (despite an overall drop in port throughput) and longer idling times. These increases in trips and idling also affected the reductions of the other pollutants, which would have decreased more had trips and idling remained the same. Driving and idling emissions of all pollutants were lower on a gram-per-mile and gram-per-hour basis in 2011 than in 2005, due to the fuel and truck fleet changes noted above.

The 2011 includes small number of port facilities that were placed in service after 2005 therefore not included in the 2005 EI. Estimated emissions from these facilities are not included in the 2011 emissions shown below, however they are included in the heavy-duty vehicle source category and overall emission estimates.

Table 9.48: Port of Tacoma 2011 vs 2005 Port HDV Emissions Comparison, tpy

Year	NO_x	voc	CO	SO_2	PM ₁₀	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
2011	21.8	1.9	12.2	0.0	0.3	0.2	0.3	2,237
2005	20.8	1.7	13.5	0.4	0.5	0.4	0.5	2,049
Change, tpy	1.0	0.2	-1.3	-0.4	-0.2	-0.2	-0.2	188
Change, %	5%	10%	-10%	-95%	-43%	-43%	-43%	9%

Fleet Vehicles – Terminal Fleet Vehicles

Table 9.49 presents the emissions estimate comparison for calendar year 2011 and 2005 for terminal fleet vehicles in tons per year and as a percent change. In 2011, there were a total of 297 terminal fleet vehicles inventoried which was more than the 216 inventoried in 2005. All emissions, except for SO₂ emissions, are lower or the same in 2011 as compared to 2005. This may be due to lower activity by the vehicles inventoried. Emissions from import/export vehicles are not included in the comparison, as the focus of this section is to evaluate vehicles residing on the terminals.

Table 9.49: Port of Tacoma 2011 vs 2005 Port Terminal Fleet Vehicles Emissions Comparison, tpy

Year	NO _x	voc	СО	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
2011	2.8	0.9	13.9	0.024	0.043	0.040	0.022	1,429
2005	4.3	1.7	15.3	0.018	0.043	0.042	0.042	1,689
Change, tpy	-1.5	-0.8	-1.4	0.006	0.000	-0.002	-0.021	-260
Change, %	-36%	-45%	-9%	33%	0%	-5%	-50%	-15%

9.5.2 2011 vs 2005 Airshed Emissions Comparisons

Quantifying the changes of Port of Tacoma operations throughout the airshed zone (i.e. the entire emissions inventory geographical domain) is an improvement made during the 2011 update. This evaluation utilized data from the original 2005 inventory for comparison purposes to the 2011 activity and used 2011 methods for estimating emissions. Table 9.50 presents tons of emissions per 10,000 TEU in 2011 and 2005. While other noncontainerized cargo activities increased at the Port of Tacoma, the containers throughput decreased significantly in 2011 as compared to that in 2005. As a result, the port-wide tons of emissions per 10,000 TEU increased in 2011 for most of the pollutants, with the exception of NO_x which remained the same and CO which decreased.

Table 9.50: Port of Tacoma 2011 vs 2005 Airshed Emissions, tons emissions per 10,000 TEU

Year	NO _x	voc	СО	SO_2	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
2011	37.2	1.6	5.2	20.0	2.0	1.7	1.9	2,665
2005	37.2	1.5	5.3	17.2	1.9	1.6	1.8	2,345
Change (%)	0%	7%	-3%	16%	5%	3%	3%	14%

The Port of Tacoma-related airshed TEU emissions efficiency changes from 2011 vs 2005 range from 3% less CO emissions to 16% more SO₂ emissions per 10,000 TEU moved through the port. The changes in the 2011 vs 2005 airshed emissions normalized to TEU throughput for all pollutants are presented in graphical form in Figure 9.9. The 2011 increases are due to the relationship between the number and types of ships calling the Port and the reduction in container throughput compared with 2005 conditions.

Figure 9.9: Port of Tacoma 2011 vs 2005 Airshed Tons of Emissions per 10,000 TEU Change

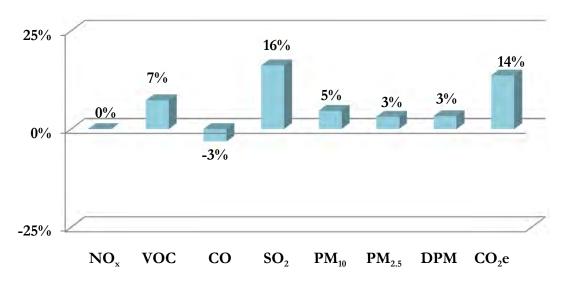


Table 9.51 presents the Port of Tacoma-related airshed cargo emissions efficiency, expressed in airshed tons of emissions per 10,000 tonnes of cargo (including both container and non-container cargo throughput), for 2011 and 2005. The efficiency improvements represent a meaningful improvement over this time and cargo is being handled and transported in a more effective manner, which resulted in reduced emissions per cargo tonnes handled by the port.

Table 9.51: Port of Tacoma 2011 vs 2005 Airshed Tons of Emissions per 10,000 Tonnes of Cargo Comparison

Year	NO _x	voc	СО	SO ₂	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
2011	3.2	0.1	0.4	1.7	0.2	0.1	0.2	230
2005	3.8	0.2	0.5	1.7	0.2	0.2	0.2	238
Change (%)	-15%	-9%	-18%	-1%	-11%	-12%	-12%	-3%

The Port of Tacoma-related airshed cargo emissions efficiency improvements from 2011 vs 2005 range from 1% less SO_2 emissions to 18% less CO, on an airshed emissions per 10,000 tonnes cargo moved through the port basis. The changes in the 2011 vs 2005 emissions normalized to cargo throughput for all pollutants are presented in graphical form in Figure 9.10.

Figure 9.10: Port of Tacoma 2011 vs 2005 Airshed Tons of Emissions per 10,000 Tonnes of Cargo Change

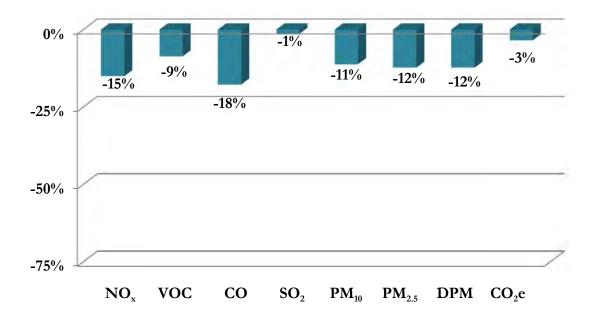


Table 9.52 provides a summary comparison of the 2011 and 2005 airshed emissions by source category. The reasons behind the 2011 vs 2005 emissions changes for the airshed zone are generally the same as outlined in the port comparisons in the previous subsection. For the Port of Tacoma, there were no associated recreational or government (port-owned) harbor vessels.

Table 9.52: Port of Tacoma 2011 vs 2005 Airshed Emissions Comparison, tpy

	NO _x	VOC	СО	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO_2e
2011								
OGV, hotelling & maneuvering	375	12	32	410.18	29.00	23.20	21.12	30,273
OGV, transit	3,257	122	280	2,561.76	216.39	173.12	202.75	153,472
Commercial harbor vessels	291	10	44	0.16	11.82	10.88	11.82	17,485
Locomotives	520	33	80	3.87	18.05	16.45	18.05	30,030
Cargo handling equipment	206	13	88	0.20	10.00	9.70	10.00	22,486
Heavy-duty vehicles	895	51	229	1.24	17.37	15.48	17.37	141,618
Terminal fleet vehicles	3	1	14	0.02	0.04	0.04	0.02	1,429
Total	5,546	241	768	2,977.43	302.68	248.86	281.13	396,792
2005								
OGV, hotelling & maneuvering	645	21	54	676.17	47.05	37.64	33.79	47,465
OGV, transit	4,069	143	332	2,736.89	245.01	196.01	234.39	166,921
Commercial harbor vessels	278	6	38	29.45	12.20	11.23	12.20	15,815
Locomotives	1,035	52	128	78.45	27.80	25.58	27.80	46,082
Cargo handling equipment	370	26	160	5.40	22.92	22.26	23.01	38,646
Heavy-duty vehicles	1,307	63	376	37.79	47.49	42.58	47.49	168,846
Terminal fleet vehicles	4	2	15	0.02	0.04	0.04	0.04	1,689
Total	7,709	312	1,103	3,564.18	402.52	335.33	378.72	485,463
% Change								
OGV, hotelling & maneuvering	-42%	-41%	-41%	-39%	-38%	-38%	-38%	-36%
OGV, transit	-20%	-15%	-15%	-6%	-12%	-12%	-13%	-8%
Commercial harbor vessels	4%	64%	17%	-99%	-3%	-3%	-3%	11%
Locomotives	-50%	-36%	-37%	-95%	-35%	-36%	-35%	-35%
Cargo handling equipment	-44%	-51%	-45%	-96%	-56%	-56%	-57%	-42%
Heavy-duty vehicles	-32%	-20%	-39%	-97%	-63%	-64%	-63%	-16%
Terminal fleet vehicles	-36%	-45%	-9%	33%	0%	-5%	-50%	-15%
Total	-28%	-23%	-30%	-16%	-25%	-26%	-26%	-18%

2011 Puget Sound Maritime Air Emissions Inventory Section 10 Clean Air Strategy Emission Reductions

SECTION 10 CLEAN AIR STRATEGY EMISSION REDUCTIONS

In 2007, the Ports of Seattle and Tacoma, along with the Port Metro Vancouver, British Columbia, developed the CAS in collaboration with regulatory air agencies, including Environment Canada, the PSCAA, the WDOE, and the United States Environmental Protection Agency. The CAS defines performance measures for reducing port-related air emissions.

As an addition to the 2011 Puget Sound Maritime Air Emissions Inventory, estimates have been developed of the emission reductions achieved in 2011 calendar year by the Port of Seattle and the Port of Tacoma through the implementation of CAS measures. This section provides the CAS emission reductions by port, by source category, and by Strategy measure. It should be noted that some emission reduction initiatives were implemented before 2011, but this section only provides emission reductions in calendar year 2011.

Emission reductions achieved during 2011 were estimated for the following CAS measures:

- > Ocean-going vessels: shore power and fuel switching by vessels at berth in 2011.
- ➤ Harbor vessels: early use of ULSD fuel in 2011 by commercial harbor vessels linked to port operations, such as assist tugs and port-owned vessels.
- Cargo handling equipment: engine retrofits and fleet turnover either due to newer equipment or engine repowers.
- ➤ Heavy duty vehicles: Scrappage programs, retrofits, and ban of 1994 and older trucks calling at the port terminals.
- ➤ Locomotives: early use of ULSD in switching locomotives, idle reduction, and repowering of switching locomotives.

10.1 Port of Seattle

Table 10.1 summarizes the 2011 emission reductions for the Port of Seattle for ocean-going vessels, harbor vessels, cargo handling equipment, switching locomotives, and heavy-duty vehicles.

Table 10.1: Port of Seattle 2011 Emission Reductions, tpy

Source Category	NO_x	voc	СО	SO_2	\mathbf{PM}_{10}	PM _{2.5}	DPM	CO ₂ e
Ocean-going vessels	38.51	0.84	2.29	371.00	23.51	18.81	19.10	1,778
Harbor craft	4.78	0.00	0.00	56.10	3.30	3.04	3.30	0
Cargo handling equipment	91.79	7.78	15.37	0.00	2.67	2.59	2.67	0
Locomotives	2.60	0.00	0.00	20.00	0.10	0.10	0.10	137
Heavy duty vehicles	135.94	1.32	0.00	0.00	8.16	7.28	8.16	0
Total	273.61	9.94	17.66	447.10	37.74	31.82	33.33	1,915

10.1.1 Ocean-Going Vessels

In 2009, the Port of Seattle launched the At-Berth Clean Fuels Incentive Program (ABC Fuels) which provides incentive for frequent callers to use less than 0.5% sulfur diesel fuel in auxiliary engines while at berth. In addition, some vessels voluntarily use shore power while at berth. The ocean-going vessels' emission reductions are due to approximately 375 vessel calls that switched fuel and 36 vessel calls for three cruise ships that used shore power while at berth in 2011. Table 10.2 presents the Port of Seattle OGV emission reductions.

Table 10.2: Port of Seattle 2011 OGV Emission Reductions, tpy

Measure	NO_x	voc	СО	SO_2	PM ₁₀	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
Shore Power	20.90	0.84	2.29	29.46	2.25	1.80	2.03	1,756
Fuel Switch	17.61	0.00	0.00	341.54	21.26	17.01	17.07	22
Total	38.51	0.84	2.29	371.00	23.51	18.81	19.10	1,778

10.1.2 Commercial Harbor Vessels

Emission reductions from assist tugs, Victoria Clipper, tank barges, and port-owned workboats are included in the reductions attributed to commercial harbor vessel associated with the Port of Seattle. In 2011, emission reduction measures included the use of ULSD for the full year by all 39 vessels associated with the Port, along with use of Tier 2 engines by three vessels that have been repowered. Table 10.3 presents the Port of Seattle 2011 commercial harbor vessel emission reductions.

Table 10.3: Port of Seattle 2011 Commercial Harbor Vessel Emission Reductions, tpy

Measure	NO _x	voc	CO	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
Lower sulfur fuel	0.00	0.00	0.00	56.10	3.26	3.00	3.26	0.00
Tier 2 engines	4.78	0.00	0.00	0.00	0.04	0.04	0.04	0.00
Total	4.78	0.00	0.00	56.10	3.30	3.04	3.30	0.00

10.1.3 Cargo Handling Equipment

The Port of Seattle and its tenants have installed DOCs and DPFs retrofits on their equipment and have purchased cargo handling equipment with on-road engines that have resulted in emission reductions. The 2011 emission reductions are due to 167 retrofits, 67 pieces of equipment with on-road engines, and fleet modernization (the purchase of newer equipment with lower-emitting engines or engine repowers). There is no PM or DPM emissions reduction due to fleet modernization because the emissions factors for PM in EPA's NONROAD model do not vary for Tier 1 to Tier 3 engines. EPA's Tier I PM standards are equivalent to pre Tier 1 emission rates and even though Tier 2 PM standards are lower than Tier 1, due to uncertainties in PM emissions, there is no change in PM emission rates between Tier 1, 2, and 3 engines. Table 10.4 presents the Port of Seattle 2011 CHE emission reductions.

Table 10.4: Port of Seattle 2011 CHE Emission Reductions, tpy

Measure	NO_x	voc	CO	SO ₂	\mathbf{PM}_{10}	PM _{2.5}	DPM	CO ₂ e
Retrofit	0.00	4.80	15.37	0.00	1.86	1.80	1.86	0
On-road Engines	15.77	1.46	0.00	0.00	0.81	0.79	0.81	0
Fleet Turnover	76.01	1.53	0.00	0.00	0.00	0.00	0.00	0
Total	91.79	7.78	15.37	0.00	2.67	2.59	2.67	0

10.1.4 Locomotives

The CAS includes numerous measures related to locomotive emissions, most of which are difficult to quantify in terms of emission reductions. The use of ULSD in switching locomotives produced a reduction of SO₂ emissions of approximately 94%, or 20 tons in 2011. Installation of idle reduction technologies in switching locomotives also resulted in emission reductions through the reduction of locomotive idling times. The Port's Louis Dreyfus terminal saw a 36% reduction in fuel consumption per ton of freight moved between 2010 and 2011 after installing such devices. Table 10.5 presents the Port of Seattle locomotive emission reductions.

Table 10.5: Port of Seattle 2011 Locomotive Emission Reductions, tpy

Measure	NO_x	voc	СО	SO_2	\mathbf{PM}_{10}	PM _{2.5}	DPM	CO ₂ e
Idling reduction	2.60	0.00	0.00	0.00	0.10	0.10	0.10	137
Lower sulfur fuel	0.00	0.00	0.00	20.00	0.00	0.00	0.00	0
Total	2.60	0.00	0.00	20.00	0.10	0.10	0.10	137

10.1.5 Heavy-Duty Vehicles

The Port of Seattle implemented the "Scrappage and Retrofits for Air in Puget Sound" or ScRAPS program which provided a financial incentive to scrap pre-1994 MY drayage trucks. Since the beginning of 2011, all drayage trucks that entered the Port of Seattle container terminals have been required to be 1994 or newer in order to be allowed access to the container terminals. This combination of factors resulted in a newer overall truck fleet than would have called in the absence of these measures. Table 10.6 presents the Port of Seattle heavy-duty vehicle emission reductions which are due primarily to the Port's Clean Truck Program entry requirements which prohibits trucks, pre-1994 model year, from entering port terminals.

Table 10.6: Port of Seattle 2011 HDV Emissions Reductions, tpy

Measure	NO _x	VOC	СО	SO_2	PM ₁₀	$PM_{2.5}$	DPM	CO ₂ e
Fleet Change	135.94	1.32	0.00	0.00	8.16	7.28	8.16	0

10.2 Port of Tacoma

Table 10.7 summarizes the 2011 emission reductions for the Port of Tacoma for ocean-going vessels, harbor vessels, cargo handling equipment, switching locomotives, and heavy-duty vehicles.

Table 10.7: Port of Tacoma 2011 Port Emission Reductions, tpy

Source Category	NO_x	voc	СО	SO_2	\mathbf{PM}_{10}	PM _{2.5}	DPM	CO ₂ e
Ocean-going vessels	21.41	0.50	1.34	132.69	8.46	6.77	6.10	1,159
Harbor craft	4.78	0.00	0.00	34.10	2.07	1.90	2.07	0
Cargo handling equipment	15.66	5.20	17.34	0.00	2.43	2.36	2.43	0
Locomotives	3.09	0.17	0.00	16.90	0.12	0.12	0.12	59
Heavy duty vehicles	58.18	0.76	0.00	0.00	3.56	3.17	3.56	0
Total	103.11	6.63	18.68	183.70	16.65	14.32	14.29	1,218

10.2.1 Ocean-Going Vessels

In 2010, the Port of Tacoma completed a project to retrofit two TOTE RoRo ships and one port terminal for shore power. These two vessels, which call twice weekly, used shore power while at berth for every call they made to the Totem Ocean Trail Express terminal. In addition, two shipping lines, K-Line and Evergreen Marine, used distillate fuel with 0.5% sulfur for hotelling operations while at berth in 2011. Table 10.8 presents the Port of Tacoma OGV emission reductions.

Table 10.8: Port of Tacoma 2011 OGV Emission Reductions, tpy

Measure	NO _x	voc	CO	SO_2	\mathbf{PM}_{10}	$PM_{2.5}$	DPM	CO ₂ e
Shore Power	15.73	0.50	1.34	20.01	1.43	1.15	1.15	1,150
Fuel Switch	5.68	0.00	0.00	112.69	7.03	5.62	4.95	9
Total	21.41	0.50	1.34	132.69	8.46	6.77	6.10	1,159

10.2.2 Harbor Vessels

Emission reductions from assist tugs and tank barges are included in the emission reductions achieved by Port of Tacoma related commercial harbor vessels. In 2011, the emission reduction measures included the use of ULSD for the full year by all 27 vessels associated with the Port along with the use of Tier 2 engines by three vessels that have been retrofit. Table 10.9 presents the Port of Tacoma 2011 commercial harbor vessel emission reductions.

Table 10.9: Port of Tacoma 2011 Commercial Harbor Vessel Emission Reductions, tpy

Measure	NO _x	voc	СО	SO_2	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO ₂ e
Lower sulfur fuel	0.00	0.00	0.00	34.10	2.03	1.86	2.03	0.00
Tier 2 engines	4.78	0.00	0.00	0.00	0.04	0.04	0.04	0.00
Total	4.78	0.00	0.00	34.10	2.07	1.90	2.07	0.00

10.2.3 Cargo Handling Equipment

The Port of Tacoma and its tenants have installed DOCs and DPFs retrofits on their equipment, repower CHE, and have purchased CHE with on-road engines that have resulted in emission reductions. The 2011 emission reductions are based on 165 retrofits, 20 pieces of equipment with on-road engines, 20 pieces of equipment with a combination of on-road engine and DOC retrofit, and fleet modernization (the purchase of newer equipment with lower-emitting engines or engine repowers). Table 10.10 presents the Port of Tacoma 2011 CHE emission reductions.

Table 10.10: Port of Tacoma 2011 CHE Emission Reductions, tpy

Measure	NO _x	VOC	CO	SO_2	PM_{10}	PM _{2.5}	DPM	CO ₂ e
Retrofit	0.00	4.19	16.84	0.00	2.07	2.01	2.07	0.00
On-road Engines	3.61	0.29	0.00	0.00	0.23	0.22	0.23	0.00
Combination	3.79	0.39	0.51	0.00	0.13	0.13	0.13	0.00
Fleet Turnover	8.26	0.33	0.00	0.00	0.00	0.00	0.00	0.00
Total	15.66	5.20	17.34	0.00	2.43	2.36	2.43	0.00

10.2.4 Locomotives

The CAS includes numerous measures related to locomotive emissions, most of which are difficult to quantify in terms of emission reductions. The use of ULSD in switching locomotives produced a reduction of SO₂ emissions of approximately 94%, or 17 tons in 2011.

Since 2007, Tacoma Rail has partnered with local, state and federal agencies to install idle reduction equipment and retire older less efficient locomotives to improve efficiency and reduce emissions. Tacoma Rail currently has Automatic Engine Start Stop devices on 85% of their fleet. In 2011 Tacoma Rail replaced three non-tier locomotives manufactured between 1956 and 1960 with newer repowered locomotives that meet EPA Tier 2 emission standards. Combined with an anti-idle function, the project significantly reduced air pollutant emissions and fuel consumption. The project reduced emissions by 75% and fuel use by 40% for each locomotive replaced. An additional component of this project was installation of onboard wheel flange lubrication technology on the three locomotives which were replaced, as well as five additional switcher locomotives owned and operated by Tacoma Rail. The wheel flange lubricator systems are designed to reduce wheel/rail friction thereby improving fuel efficiency.

In 2011, three switching locomotives at TEMCO, the Port of Tacoma grain terminal, were equipped with Automatic Engine Start Stop devices to limit excess idling. In addition to reducing GHG emissions the project significantly reduced diesel particulate emissions.

It should be noted that since the repowers occurred during 2011, the reductions shown are not for a full year, but are actual emission reductions in 2011; reductions should be greater in future years. Table 10.11 also includes the SO₂ reduction due to the use of ULSD in 2011 and TEMCO's estimated reductions due to the idle reduction devices. TEMCO's reductions were estimated by the WDOE for the period from July 2011 when they were installed until July 2012. The figures presented below are prorated to represent 2011 reductions only. The reductions achieved by Tacoma Rail have not been quantified because specific fuel savings information is not available, but would be significantly higher than those achieved by TEMCO, based on their relative levels of activity.

Table 10.11: Port of Tacoma 2011 Locomotives Emissions Reductions, tpy

Measure	NO_x	voc	CO	SO_2	PM ₁₀	PM _{2.5}	DPM	CO ₂ e
Repower	1.86	0.17	0.00	0.00	0.08	0.08	0.08	0
Lower sulfur fuel	0.00	0.00	0.00	16.90	0.00	0.00	0.00	0
Idling reduction	1.23	0.00	0.00	0.00	0.04	0.04	0.04	59
Total	3.09	0.17	0.00	16.90	0.12	0.12	0.12	59

2011 Puget Sound Maritime Air Emissions Inventory Section 10 Clean Air Strategy Emission Reductions

10.2.5 Heavy-Duty Vehicles

The Port of Tacoma implemented a Drayage Truck Emission Improvement Program to reduce heavy-duty vehicle emissions. As part of the program, the Port of Tacoma implemented a clean truck sticker registry identifying trucks compliant with program standards, which include a requirement that trucks be of model year 1994 or newer. This resulted in a newer overall truck fleet than would have called in the absence of this program. Table 10.12 presents the 2011 Port of Tacoma emission reductions for heavy-duty vehicles.

Table 10.12: Port of Tacoma 2011 HDV Emissions Reductions, tpy

Measure	NO_x	voc	СО	SO_2	PM_{10}	PM _{2.5}	DPM	CO ₂ e
Fleet Change	58.18	0.76	0.00	0.00	3.56	3.17	3.56	0

APPENDIX A – GLOSSARY

Air toxics – Toxic air pollutants, also known as hazardous air pollutants, are those pollutants that are known or suspected to cause cancer or other serious, chronic health effects, such as reproductive effects or birth defects, or adverse environmental effects.

Alternative fuel — Also known as "non-conventional fuels", is any material or substance that can be used as a fuel, other than fossil fuels, or conventional fuels of petroleum (oil), coal, propane, and natural gas. The term "alternative fuels" usually refers to a source of which energy is renewable (See "renewable fuel").

Area source – A general term for a source that is an aggregate of all emission sources within a defined spatial boundary. Though emissions from individual sources in an area are relatively small, collectively their emissions can be of concern - particularly where large numbers of sources are located in heavily populated areas.

Auxiliary engine – A small engine often used when a ship is in-transit, maneuvering, or hotelling.

Baseline Air Emissions Inventory – For a given air emission source category, a baseline inventory establishes a reference point with more detailed emission data than previously existed. An established baseline allows comparison with future inventories of similar precision to describe changes to the characteristics of the source category and intensity of the emissions.

Brake-Specific Fuel Consumption – A way to measure the efficiency of an engine by dividing rate of fuel consumption by the rate of power production.

Bunker Fuel - See "Fuel Oil"

Cargo handling equipment (CHE) – Equipment used to move cargo to and from marine vessels, railcars and trucks. This includes equipment such as cranes, rubber tired gantry cranes, terminal trucks, container handlers, bulk loaders, and forklifts.

Cold Ironing – Also called "Alternative Maritime Power" in application at the Port of Los Angeles and more generally referred to as "Shore Power." This specifically refers to an electrical connection made between the vessel and the terminal to provide full or partial operational power during hotelling periods. The primary motivation for cold ironing has been as a method to reduce emissions from the exhausts of auxiliary engines that would normally operate during hotelling. "Cold iron" is a reference to when ships mainly used boilers to produce steam for propulsion, heat, and power. When the steam production was shut down, the iron in the boiler housing would go cold.

Commercial vessel – Any vessel involved in commercial trade or business.

Criteria pollutants – A regulatory term that refers specifically to six outdoor air pollutants for which EPA is required to develop National Ambient Air Quality Standards (NAAQS), as codified in the federal Clean Air Act. These six are carbon monoxide (CO), lead, nitrogen dioxide (NO₂), particulate matter (PM), ozone, and sulfur oxides.

Deadweight tonnage – Refers to the total amount of weight that a vessel is carrying, minus the actual weight of the vessel.

Deterioration factor – For use in emission or performance calculation, this number accounts for the effect of gradual wear in the internal engine components in the course of normal operation.

Diesel— In standard use, this refers to a specific fractional distillate of fuel oil that is used as fuel in a combustion-ignition (CI) engine. Practically, diesel can refer generally to any hydrocarbon-dense oil with relatively low volatility that can be used as a combustion fuel. In common maritime use, diesel can refer to several varieties of distillate fuels including "Marine Diesel Oil" (MDO, aka DMB or DMC) and "Marine Gas Oil" (MGO, aka DMA or DMX) as specified by ISO 8217. Diesel can also be referred to by its sulfur content, such as the case of LSD (low sulfur diesel with less than 500ppm sulfur) or ULSD.

Diesel electric – Refers to equipment that uses electric motive systems that rely on electricity from diesel generators.

Diesel Oxidation Catalyst (DOC) – A flow-through canister, fit to an engine exhaust pipe, containing a honeycomb-like structure or substrate. The substrate has a large surface area that is coated with an active catalyst layer. This layer contains a small, well dispersed amount of precious metals such as platinum or palladium. As exhaust gases pass over the catalyst, carbon monoxide, gaseous hydrocarbons and liquid hydrocarbon particles (unburned fuel and oil) are oxidized, thereby reducing harmful emissions.

Diesel Particulate Matter (DPM) – Refers to particulate components of combustion products that are directly emitted from diesel engines. These include soot ("elemental" or "black" carbon) and other aerosols that are complex aggregates of hydrocarbons, metals, silicates, and other chemicals. In recent years, DPM has been singled out as posing a carcinogenic risk to people who regularly work in proximity to diesel equipment over the course of many years.

Diesel Particulate Filter (DPF) – A filter installed on the exhaust pipe of diesel engine to physically separate particulate matter from the exhaust stream. Some filters are single use (disposable), while others are designed to burn off the accumulated particulate, either through the use of a catalyst (passive), or through an active technology, such as a fuel burner which heats the filter to soot combustion temperatures

Economizer – A heat exchanger that transfers heat from the exhaust stream to a water circulation system to produce steam. Often used when a vessel is in transit, an economizer can allow the regular diesel powered boiler to be shut off.

Emission factor – A number specific to an engine or system that describes the amount of a pollutant that is generated per unit of activity, e.g. mg/mile or g/hr

Emulsified fuel – A homogenized blend of water into diesel fuel that changes the fuel combustion characteristics and resulting emissions. This strategy is mainly employed to reduce NO_x emissions but may also reduce PM and improve fuel economy.

EPA NONROAD model – NONROAD is a computer modeling program created and regularly updated by EPA that calculates past, present, and future emission inventories (i.e., tons of pollutant) for all non-road equipment categories except commercial marine, locomotives, and aircraft. For a specified geographic area, time period, and fuel type, the model estimates exhaust and evaporative hydrocarbons (HC), carbon monoxide (CO), oxides of nitrogen (NO_x), particulate matter (PM), sulfur dioxide (SO₂), and carbon dioxide (CO₂).

Exhaust gas recirculation (EGR) – A technique used in most gasoline and diesel powered engines to control emissions. Engine exhaust is mixed with engine intake air and recirculated through the combustion process. The result is a reduction in NO_x emissions due to lower combustion temperatures and reduction of excess oxygen.

Fine particulate matter – See *Particulate Matter*

Four-stroke engines – The most common type of engine for cars and trucks. This engine uses the 'Otto cycle' and consists of four strokes. 1. intake stroke, 2. compression stroke, 3. power (ignition) stroke, and 4. exhaust stroke.

Fuel correction factor(FCF) – A number used in emission inventory models to reflect the impact on emissions of commercially dispensed fuel compared to fuel used during the certification process. These factors are derived as the ratio of the impact of the dispensed fuel to the impact of the certification fuel.

Fuel Oil – A general term for viscous liquid fuels used for powering engines. In the maritime industry the following classifications are used.

- ➤ Marine gas oil (MGO) A purely distillate fuel (see "diesel")
- ➤ Marine diesel oil (MDO) A blend of gas oil and heavy fuel oil
- ➤ Intermediate fuel oil (IFO) A blend of gas oil and heavy fuel oil, with less gas oil than marine diesel oil
- ➤ **Medium fuel oil (MDO)** A blend of gas oil and heavy fuel oil, with less gas oil than intermediate fuel oil
- ➤ Heavy fuel oil (HFO) Pure or nearly pure residual oil (bunker fuel)

Fugitive emissions – Emissions not created through a defined process or controlled by a dedicated system. These can be due to equipment leaks, evaporative processes, materials processing, and windblown disturbances

GHG equivalent – Similar to "carbon equivalent" this refers to a method by which air emissions are standardized for comparison based on their "global warming potential" (GWP) as greenhouse gases. Each greenhouse gas differs in its ability to absorb heat in the atmosphere so will be presented in units of carbon equivalents, which weighs each gas by its GWP relative to carbon dioxide. For example, methane traps over 21 times more heat per molecule than carbon dioxide, and nitrous oxide absorbs 310 times more heat per molecule than carbon dioxide.

Greenhouse Gas – Substances in the atmosphere that absorb radiated heat form the earth's surface and also radiate heat back to the surface, causing a net retention of heat energy. Carbon dioxide, methane, and nitrous oxide are common examples.

Gross vehicle weight rating – The estimated total weight of a road vehicle that is loaded to capacity, including the weight of the vehicle, the passengers, fuel, cargo, and miscellaneous items. The rating allows the vehicle driver to know what routes are acceptable, depending on whether the roadways can accommodate a vehicle of the estimated weight.

Harbor vessel- A term that generally refers to vessels that do not make regular ocean passage. These include commercial fishing boats, tug boats, ferries, workboats, etc.; governmental (non-military) vessels such as ferries and other vessels; tank barges; and recreational vessels. For the purpose of this report, any vessel that is not an ocean-going vessel, recreational vessel, or tank barge, has been categorized as a commercial harbor vessel, government (non-military) vessels, tank barges, or recreational vessels.

Heavy-duty vehicle – A class 8 truck fueled by diesel and has a gross vehicle weight of 33,001 lbs or higher.

Hotelling - The period during which a vessel is secured at berth

Hydrocarbon – A chemical term referring to compounds that consists of carbon and hydrogen in various structures. Most common liquid fuels are primarily comprised of some form of hydrocarbon.

Integrated tug/barge – Any tug and barge combination with a specially designed connection system joining the two together. The combination allows the vessel to have increased sea keeping capabilities when compared to a separated tug and barge.

Intermediate fuel oil (IFO) – See Fuel Oil

Intermodal Container Transfer Facility – A rail yard that is located close to a port facility and is where a cargo transition between two different transportation modes (e.g. trucks, trains, or ships) occurs.

Light-duty vehicle (LDV) – Class 1 and 2 vehicles that can use gas or diesel fuel and have a gross vehicle weight of 6,000 lbs or less (class 1) or between 6,001 and 10,000 lbs (class 2).

Liquefied Natural Gas (LNG) – Natural gas that has been processed to remove impurities and heavy hydrocarbons and is then condensed into a liquid using extremely low temperature or high pressure.

Liquefied Petroleum Gas (LPG) – A mixture of hydrocarbon gases that are commonly used to fuel heating appliances and vehicles. The two most common forms of liquefied petroleum gas are propane and butane.

Load Factor (LF) - A ratio of an engine's average actual power used to its maximum power rating.

Low Sulfur Diesel (LSD) - See "Diesel"

Main line locomotives – Also called "line-haul," these are the largest class of locomotives and are designed for the heaviest loads, longest distances, and steepest grades.

Main propulsion engine – The engines on a vessel that are dedicated to movement of a ship over long distances.

Marine Diesel Oil (MDO) - See "Fuel Oil"

Maximum continuous rating – A value assigned to a piece of equipment by its manufacturer that sets a guideline for which the equipment can be operated for an unlimited period of time without damage.

National Ambient Air Quality Standards (NAAQS) – A term referring to a specific legal instrument under the federal Clean Air Act that creates enforceable limits to airborne concentrations of "criteria pollutants." NAAQS are currently required for six substances (See "criteria pollutants"). NAAQS can be of two types: "Primary NAAQS" are designed to protect human health, including sensitive populations such as children, the elderly, and individuals suffering from respiratory disease. "Secondary" NAAQS are designed to protect public welfare (e.g., building facades, visibility, crops, and domestic animals).

Non-Methane Organic Gas (NMOG) – Organic gases that exclude methane but account for all other organic pollutants that form a foundation for the formation of ozone.

Ocean-going vessel (OGV) – Vessels that operate in open oceanic waters.

Particulate Matter (PM) – A general term for any substance, except pure water, that exists as a liquid or solid in the atmosphere under normal conditions and is of microscopic or submicroscopic size but larger than molecular dimensions. Airborne PM can result from direct emissions of particles (primary PM) or from condensation of certain gases that have themselves been directly emitted or chemically transformed in the atmosphere (secondary PM). PM is often classified by size:

- ▶ *PM*_{2.5}- Also known as "fine" particulate matter, PM_{2.5} refers to the fraction of PM in a sample that is 2.5 microns in diameter or less. This size of PM is commonly associated with combustion and secondary PM.
- $ightharpoonup PM_{10}$ Also known as "coarse" particulate matter, PM_{10} refers to the fraction of PM in a sample that is 10 microns in diameter or less.

Polycyclic Aromatic Hydrocarbon (PAH) – One of the first atmospheric species to be identified as carcinogenic. PAHs are formed during the incomplete combustion of organic matter, e.g. coal, oil, wood, and petroleum. PAH's consist of two or more fused benzene rings in various configurations that, by definition, contain only carbon and hydrogen.

Polycyclic organic material – Compounds containing polycyclic aromatic hydrocarbons and derivatives.

Renewable Fuels – Fuels derived from sources that are regenerative or for all practical purposes cannot be depleted.

Residual oil - "Residual Fuel Oil" or "Bunker Fuel" - See "Fuel Oil".

Roll-on/Roll-off (RoRo) – A vessel featuring a built-in ramp for wheeled cargo to be 'rolled-on' and 'rolled-off' of the vessel.

Rubber Tired Gantry (RTG) Crane – A common piece of cargo handling equipment at marine terminals used to transfer containers from stacked storage to a vehicle.

Selective Catalytic Reduction (SCR) – A process where a gaseous or liquid reductant (most commonly ammonia or urea) is added to the flue or exhaust gas stream and absorbed onto a catalyst. The reductant reacts with NO_x in the exhaust gas to form H_2O (water vapor) and N_2 (nitrogen gas).

Sea water scrubbing – An exhaust treatment technique used on ships to reduce emissions by through physical and chemical interaction with sea water. When the exhaust comes in contact with the seawater, the SO₂ reacts with calcium carbonate to form a solid calcium sulfate and CO₂. Scrubbers also function by physically scavenging particles and gases from the air.

2011 Puget Sound Maritime Air Emissions Inventory Appendix A Glossary

Shaft generators – Provides electric power to a moving vessel by generating current from the rotation of the vessel's drive shaft.

Shore power – See "Cold Ironing"

Point source – A single, stationary point source of emissions that is immoveable for all practical purposes.

Switching locomotive – A locomotive that is used exclusively in a facility where rail cars are organized and assembled into trains.

Total organic gases – The sum of reactive and non-reactive organic gases in the air.

Twenty-foot Equivalent Unit (TEU) – A measure used for containerized cargo. One TEU is equivalent to one standard cargo container measured 20' x 8' x 8'6".

Two-stroke engines – A type of internal combustion engine that completes the same four processes as a four-stroke engine (intake, compression, power, and exhaust) in only two strokes of the piston rather than four. This is accomplished by using the space below the piston for air intake and compression, thus allowing the chamber above the piston to be used for just the power and exhaust strokes. This results in a power stroke with every revolution of the crank, instead of every second revolution as in a four-stroke engine. For this reason, two-stroke engines provide high specific power, so they are valued for use in portable, lightweight applications. Two stoke diesel engines are common in large marine vessels.

Ultra Low Sulfur Diesel (ULSD) - See "diesel."

Volatile Organic Compound (VOC) – A very board term used to describe the entire set of vapor-phase atmospheric organic chemicals except CO and CO₂.

2011 Puget Sound Maritime Air Emissions Inventory Appendix B Supporting Data

APPENDIX B - SUPPORTING DATA

APPENDIX B - SUPPORTING DATA

OCEAN-GOING VESSEL DATA

		` '	peed (Knots) Vessel Type	ē , ,	. ,	iler Energy Main Eng Fuel Type	0 7.	Aux Boiler Fuel Type
7825435	1980	14837	18.5 Auto Carrier	12356	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
7917551	1981	28223	19.5 Auto Carrier	13496	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
7917563	1981	28210	20 Auto Carrier	13500	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8016548	1982	28100	18.25 Auto Carrier	13500	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8018168	1982	17863	19.5 Auto Carrier	13542	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8107103	1982	41666	14.5 Auto Carrier	11180	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8204951	1984	44013	21 Auto Carrier	26921	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8204963	1984	44080	21 Auto Carrier	26921	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8204975	1984	43986	20.5 Auto Carrier	26919	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8320767	1985	28070	19.5 Auto Carrier	16980	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8321333	1985	28070	20 Auto Carrier	15190	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8415809	1985	13920	17.75 Auto Carrier	9179	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8517944	1986	12893	18.25 Auto Carrier	10591	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8602579	1987	15528	18 Auto Carrier	9000	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8607749	1987	14104	18.25 Auto Carrier	9650	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8608078	1988	23096	18 Auto Carrier	9445	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8608133	1987	9783	18 Auto Carrier	8870	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8608145	1987	9675	18.5 Auto Carrier	8870	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8608157	1987	12848	18 Auto Carrier	10597	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8608169	1987	12939	19.5 Auto Carrier	10591	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8612251	1987	14487	20.9 Auto Carrier	10298	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8612263	1987	14034	20.8 Auto Carrier	10298	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8616958	1987	15576	18.7 Auto Carrier	11511	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8709119	1987	9694	18 Auto Carrier	8871	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8709157	1987	12706	19.7 Auto Carrier	10592	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8712324	1988	18777	19 Auto Carrier	11694	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8718706	1988	12763	18 Auto Carrier	10592	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8912663	1988	12763	18.58 Auto Carrier	10592	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9053505	1994	17183	18.8 Auto Carrier	10813	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9056296	1994	14930	19 Auto Carrier	11916	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9070462	1994	13308	18 Auto Carrier	10371	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9077836	1995	14696	18.5 Auto Carrier	12269	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9082934	1995	15199	20.2 Auto Carrier	16358	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9088237	1996	13778	19.9 Auto Carrier	13899	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9088249	1997	12490	19.9 Auto Carrier	13899	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9103180	1994	18938	18.6 Auto Carrier	11695	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9110107	1994	15181	18.5 Auto Carrier	11475	1541	0 HFO (2.7% S)	HFO (2.7% S)	, ,
9121273	1995	48988	19.5 Auto Carrier	25000	1541	` ,	` /	HFO (2.7% S)
9121273				16358		0 HFO (2.7% S) 0 HFO (2.7% S)	HFO (2.7% S) HFO (2.7% S)	HFO (2.7% S)
	1997 1997	28142	20.5 Auto Carrier	14314	1541 1541	` /	` /	HFO (2.7% S)
9122966		21421	20.1 Auto Carrier			0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9138525	1998	28142	20.5 Auto Carrier	16358	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9150339	1998	14353	18.9 Auto Carrier	10592	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9150341	1998	14348	18.9 Auto Carrier	10592	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9153551	1998	15483	18 Auto Carrier	11416	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9158288	1998	22799	19 Auto Carrier	14123	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9158604	1997	21505	20.1 Auto Carrier	14314	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9166895	1998	13418	19 Auto Carrier	11916	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9169316	1999	16669	19.2 Auto Carrier	12357	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9174490	1998	22734	19.3 Auto Carrier	14121	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9175925	1998	14101	19 Auto Carrier	10592	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9177026	1999	12780	19.5 Auto Carrier	11060	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9177038	2000	12778	19.5 Auto Carrier	11060	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)

Vessel ID	Model Year	DWT (tons)	Max Speed (Knots) Vessel Type	Main Eng Power (kW)	Aux Eng Demand (kw)	Aux Boiler Energy Main Eng Fuel Type	Aux Eng Fuel Type	Aux Boiler Fuel Type
9177428		21523	18.53 Auto Carrier	14123	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9181376	1999	15894	19 Auto Carrier	11622	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9182289	1999	21526	19.3 Auto Carrier	14121	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9185047	2000	14067	18.9 Auto Carrier	10592	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9185463	2000	16886	20 Auto Carrier	14123	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9188805	1999	10817	18.5 Auto Carrier	9989	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9189251	1999	28126	20.5 Auto Carrier	14710	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9191307	2000	39516	20 Auto Carrier	20940	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9191321	2000	39516	20 Auto Carrier	20940	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9203291	1998	21511	19 Auto Carrier	14314	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9209271	2000	17693	20 Auto Carrier	14638	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9209518	2000	20144	19 Auto Carrier	14123	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9210438	2000	21400	20.5 Auto Carrier	15520	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9213454	2000	20202	20 Auto Carrier	14121	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9231688	2001	10454	18.5 Auto Carrier	9989	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9238519	2001	17201	20 Auto Carrier	13940	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9238521	2001	17232	20 Auto Carrier	13940	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9240160	2003	28388	20.5 Auto Carrier	16358	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9252204	2003	19879	20 Auto Carrier	14160	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9252228	2003	19893	20 Auto Carrier	14160	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9267687	2003	19512	20 Auto Carrier	14160	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9273894	2004	20111	20 Auto Carrier	15540	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9283875	2004	20146	20 Auto Carrier	15540	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9289908	2006	12600	20 Auto Carrier	14220	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9289910	2006	12249	20 Auto Carrier	14220	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9293571	2005	18947	20 Auto Carrier	15130	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9293612	2004	19628	19.5 Auto Carrier	13895	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9293624	2005	19628	19.5 Auto Carrier	13895	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9293636	2004	19086	20.65 Auto Carrier	14315	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9293648	2004	19080	20.65 Auto Carrier	12170	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9293662	2005	19093	20.65 Auto Carrier	10360	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9293894	2006	17713	20.7 Auto Carrier	15090		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9293911		17738	20.7 Auto Carrier	15090	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9302205		19628		13240		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9303194		18312	19.8 Auto Carrier	14280		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9303211		18318		14280		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9310109		19628		14315		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9319753		19628		14315		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9325233		18099		14280		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9332925		18700		15820	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9334246		15068		11440		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9338620		18864		15540		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9338632		12892		10999		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9338709		22755		15540		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9338840		18864		15130		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9338890		14342		11334	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9339818		18090		14280		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9339832		17673	20 Auto Carrier	12640		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9358888		12303		11060		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9361811		12300	20 Auto Carrier	12640	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9361823		12300	20 Auto Carrier	12640		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9362267	2006	17765	20 Auto Carrier	16360	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)

Vessel ID	Model Year D	WT (tons)	Max Speed (Knots) Vessel Type	Main Eng Power (kW)	Aux Eng Demand (kw)	Aux Boiler Energy Main Eng Fuel Type	Aux Eng Fuel Type	Aux Boiler Fuel Type
9367607	2009	17382	19.3 Auto Carrier	14120	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9372327	2007	15261	19.9 Auto Carrier	11560	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9372810	2009	17406	19.3 Auto Carrier	14120	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9375264	2008	22144	19.5 Auto Carrier	14315	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9377494	2008	30089	20.8 Auto Carrier	18080	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9377511	2008	30089		18080	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9381677	2008	17289	19.8 Auto Carrier	15090	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9384942	2007	22602	20.1 Auto Carrier	15540	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9391581	2009	21037	20 Auto Carrier	15820	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9392341	2010	15031	19.4 Auto Carrier	11441	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9395630	2011	13363	19.8 Auto Carrier	13560	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9397987	2008	18772	20.65 Auto Carrier	14315	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9398333	2009	22250	19.5 Auto Carrier	13240	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9402756	2008	12889	20 Auto Carrier	11620	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9403279	2010	14381	19.5 Auto Carrier	11336	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9403281	2010	14996	20 Auto Carrier	11440	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9426350	2009	21438	20 Auto Carrier	15544	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9426386	2009	17237	19.8 Auto Carrier	15092	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9432880	2008	12296	20 Auto Carrier	14220	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9432907	2008	12352	20 Auto Carrier	14220	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9442122	2010	11215	19.6 Auto Carrier	11620	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9442873	2008	18930	20 Auto Carrier	13260	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9477921	2009	20019	20 Auto Carrier	16360	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9481051	2011	12588	18 Auto Carrier	11060	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9481075	2011	10600	18 Auto Carrier	11060	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9494905	2009	17245	20.5 Auto Carrier	15090	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9515383	2011	41820	20.25 Auto Carrier	20100	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9519121	2009	22723	19.5 Auto Carrier	16360	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9531739	2010	21323	20.6 Auto Carrier	15544	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9544920	2011	17300	19.8 Auto Carrier	16360	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9553103	2010	22657	19.5 Auto Carrier	15540	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9554200	2010	19045	20 Auto Carrier	15100	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9584059	2010	18436	20 Auto Carrier	15130	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9610391	2011	18900	20 Auto Carrier	15820		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8307179		38309		5884		` ,	HFO (2.7% S)	HFO (2.7% S)
8308991	1985	38888		5884	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8319641	1984	38033		6660		` /	HFO (2.7% S)	HFO (2.7% S)
8413473	1986	34142		9540		` /	HFO (2.7% S)	HFO (2.7% S)
8517578		68283		8018		` ,	HFO (2.7% S)	HFO (2.7% S)
8800327	1990	68789		8994			HFO (2.7% S)	HFO (2.7% S)
8801022		68788		9017		` ,	HFO (2.7% S)	HFO (2.7% S)
8801785		68676		7205		` ,	HFO (2.7% S)	HFO (2.7% S)
8901107	1990	69637		8905		` ,	HFO (2.7% S)	HFO (2.7% S)
8903234	1992	69451	14 Bulk	8910		` ,	HFO (2.7% S)	HFO (2.7% S)
8905828		65434		9451		` ,	HFO (2.7% S)	HFO (2.7% S)
9011923		73505		8005		` ,	HFO (2.7% S)	HFO (2.7% S)
9013268		69337		8827		` ,	HFO (2.7% S)	HFO (2.7% S)
9040376		43415		7025		` ,	HFO (2.7% S)	HFO (2.7% S)
9041019		70046		9015		` ,	HFO (2.7% S)	HFO (2.7% S)
9046916		69555		7414		` ,	HFO (2.7% S)	HFO (2.7% S)
9047099		69271	14 Bulk	8827		` ,	HFO (2.7% S)	HFO (2.7% S)
9047104	1994	69283	14.5 Bulk	8798	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)

Vessel ID	Model Year	DWT (tons)	Max Speed (Knots) Vessel Type	e Main Eng Power (kW)	Aux Eng Demand (kw)	Aux Boiler Energy Main Eng Fuel Type	Aux Eng Fuel Type	Aux Boiler Fuel Type
9055993	1994	69930	14 Bulk	8458	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9074016	1993	69153	14.8 Bulk	10246	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9074470	1994	69286	14 Bulk	11254	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9075735	1995	73034	14.5 Bulk	8676	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9077226	1995	68371	14 Bulk	7635	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9077903	1994	64214	13.5 Bulk	8555	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9086954	1996	69091	14.5 Bulk	8827	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9087192	1995	70677	14 Bulk	8312	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9103178	1994	45228	14.3 Bulk	7943	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9104081	1995	45712	14 Bulk	7171	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9104457	1994	68591	14.1 Bulk	7635	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9105396	1995	27308	14.1 Bulk	5370		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9107667	1995	45483	14.6 Bulk	8561	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9111943	1995	45320	14.3 Bulk	7392	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9112325	1996	73080	13.5 Bulk	8680	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9115523	1996	70165		7723		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9118329	1996	45190	14.5 Bulk	7723		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9119971	1996			8165		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9120059	1996	70189		8827	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9122849	1996	71662		8701	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9123128	1996			8900		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9126302	1997	45584	14 Bulk	6958		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9128221	1997	73049		8682		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9128582	1995			9930		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9128922	1996			10916		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9131838	1997			8680		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9135523	1996			6179		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9138501	1997	74009		8900		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9138903	1997	32115	14.4 Bulk	7061	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9139256	1997			8701	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9139270	1996	70296	14 Bulk	9526		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9140009	1996			8562		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9147423	1998			8900		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9149392	1998			7451	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9156278	1998			8673		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9156838	1997			8385		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9159438	1997			6333	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9159567	1997			8878		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9162045	1997			8532		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9163295	1998			8827	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9163465	1998			7172		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9168491	1998			7172		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9170274	1998			10224		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9170298	1998			8827	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9176670	2000			7172		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9180906	2000			10750		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9181039	1999			8090		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9185736	1999			8878		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9185748	1998			8827	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9186376	1998			6074		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9186778	1999			7282		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9189768	1999	74356	14.5 Bulk	9209	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)

Vessel ID Model Year DWT (tons) Max Speed (Knots) Vessel Type Main Eng Power (kW) Aux Eng Demand (kw) Aux Boiler Energy Main Eng Fuel Type Aux Eng Fu	uel Type Aux Boiler Fuel Type
9190640 2002 72863 14.5 Bulk 12269 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9207417 1999 73807 14 Bulk 8900 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9207730 2000 74020 13.6 Bulk 8900 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9207766 2001 75971 14 Bulk 9010 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9208502 2000 72917 15 Bulk 10412 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9211559 2000 28355 14 Bulk 5392 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9213753 2000 31824 14 Bulk 6620 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9214161 1999 74242 15 Bulk 8827 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9216248 2001 74401 14.5 Bulk 10952 705 0 HFO (2.7% S) HFO (2.7%	
9216432 2001 74119 14.4 Bulk 8668 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9216444 2001 74119 14.4 Bulk 8668 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9216640 2001 75563 14 Bulk 9342 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9217216 2001 74297 14.7 Bulk 10224 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9217228 2001 74297 14.7 Bulk 10200 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9218167 2000 74269 14.5 Bulk 8827 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9218284 2001 73311 14.5 Bulk 8880 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9218301 2000 31877 13.5 Bulk 7060 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9218313 2000 31879 13.5 Bulk 7060 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9218791 2001 74540 14.5 Bulk 10952 705 0 HFO (2.7% S) HFO (2.7%	
9219032 2001 74297 14.5 Bulk 10200 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9219044 2002 75000 14.5 Bulk 10224 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9219458 2000 46644 14.5 Bulk 7428 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9221190 2001 76099 14.5 Bulk 12269 705 0 HFO (2.7% S) HFO (2.7%	
9221437 2001 73910 14.9 Bulk 10371 705 0 HFO (2.7% S) HFO (2.7%	
9222625 2001 52224 14.5 Bulk 9467 705 0 HFO (2.7% S) HFO (2.7%	
9224790 2002 74141 14.5 Bulk 10952 705 0 HFO (2.7% S) HFO (2.7%	
9224984 2001 75121 14.8 Bulk 11160 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9224996 2001 75169 14.8 Bulk 11160 705 0 HFO (2.7% S) HFO (2.7%	
9227649 2001 75121 14.5 Bulk 9800 705 0 HFO (2.7% S) HFO (2.7%	
9227687 2001 73996 14.5 Bulk 9989 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9228069 2002 74204 14.5 Bulk 9974 705 0 HFO (2.7% S) HFO (2.7%	
9229623 2002 74133 14.9 Bulk 11044 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9229635 2002 74133 14.9 Bulk 11044 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9230359 2002 73937 14.7 Bulk 10200 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9231303 2001 76623 15 Bulk 10320 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9231987 2003 50457 14.5 Bulk 9480 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9233351 2001 74272 14.1 Bulk 8827 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9235232 2001 74750 14 Bulk 10200 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9237280 2001 28287 14 Bulk 5390 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9245196 2002 52382 14.5 Bulk 8561 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9246619 2002 53094 15 Bulk 9480 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9249271 2003 53098 14 Bulk 7686 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9250701 2002 32474 14.3 Bulk 6620 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9251078 2002 32537 14.3 Bulk 6620 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9252058 2001 28492 13.5 Bulk 5850 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9252412 2003 75932 14.5 Bulk 8550 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9255593 2002 75162 14.5 Bulk 9260 705 0 HFO (2.7% S) HFO (2.7%	
9256353 2001 28470 13.5 Bulk 5850 705 0 HFO (2.7% S) HFO (2.7%	
9256872 2004 76015 14.5 Bulk 8550 705 0 HFO (2.7% S) HFO (2.7%	
9260859 2002 28379 13.5 Bulk 5850 705 0 HFO (2.7% S) HFO (2.7%	
9261798 2002 75007 14.5 Bulk 11290 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)
9262998 2003 32751 14.5 Bulk 6620 705 0 HFO (2.7% S) HFO (2.7%	S) HFO (2.7% S)

Vessel ID	Model Year D	OWT (tons)	Max Speed (Knots) Vessel Type	Main Eng Power (kW)	Aux Eng Demand (kw)	Aux Boiler Energy	Main Eng Fuel Type	Aux Eng Fuel Type	Aux Boiler Fuel Type
9263069	2004	45181	14 Bulk	8313	3 70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9263760	2002	28473	13.5 Bulk	5850	70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9264441	2002	50508	14.5 Bulk	7900	70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9267077	2004	31893	14.3 Bulk	6840	70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9267089	2004	31894	14.5 Bulk	6840	70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9267405	2002	53553	15 Bulk	9481	70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9268083	2003	31646	14.7 Bulk	7061	70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9268916	2004	33745	14 Bulk	6230	70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9272785	2003	52428	14.8 Bulk	7290	70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9274551	2004	32754	13.5 Bulk	6620	70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9274915	2004	52571	14.3 Bulk	7800	70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9276171	2004	76878	14 Bulk	9318	3 70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9276200	2004	28446	13.8 Bulk	5850	70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9277644	2004	52810	14.5 Bulk	8580	70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9277668	2004	52808	13.5 Bulk	8580	70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9278648	2003	35552	14.6 Bulk	7081	70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9279549	2004	75772	14.5 Bulk	8973	3 70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9281437	2004	73880	14.5 Bulk	11111	70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9281449	2004	73592	15 Bulk	11111	70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9282613	2004	35313	14.2 Bulk	6650	5 70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9284001	2004	32773	13.5 Bulk	6620	70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9284245	2005	56056	14.5 Bulk	9480	70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9284300	2004	56042	14.5 Bulk	9480	70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9284879	2004	76466	14.5 Bulk	9350	70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9285407	2003	34790	14 Bulk	7955	5 70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9286956	2005	76286	14 Bulk	10500	70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9287168	2005	76469	14.5 Bulk	8830	70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9287170	2005	76440	14 Bulk	8830	70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9287455	2004	74823	13.8 Bulk	10200	70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9287778	2004	77684	14.6 Bulk	7350	5 70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9290141	2005	75349	14.5 Bulk	11060	70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9291092	2005	75744	14.5 Bulk	8973	3 70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9291119	2005	75804	14.5 Bulk	8973	3 70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9291121	2005	75409	14.5 Bulk	8973	3 70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9293105	2003	53125	14.5 Bulk	9477	7 70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9293868	2005	29678	14.3 Bulk	6150	70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9294501	2004	76704		9230			0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9296274	2005	33733	14.3 Bulk	6620	70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9297929	2005	73691	14.4 Bulk	10200			0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9298521	2005	52498		7800			0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9300178		32573		7080			0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9300207	2004	32564		5627			0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9301055		82790		11000			0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9301720	2005	55257	14.5 Bulk	8200			0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9302750		76606		10320			0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9302786		76619		10320			0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9303144		75637		8973			0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9303376		32642		6620			0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9304576		76801		11060			0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9310616		28709		5900			0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9310757		32588		7780			0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9311189	2008	75886	14 Bulk	9010	70	5	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)

Vessel ID	Model Year D	WT (tons)	Max Speed (Knots) Vessel Type	Main Eng Power (kW)	Aux Eng Demand (kw)	Aux Boiler Energy Main Eng Fuel Type	Aux Eng Fuel Type	Aux Boiler Fuel Type
9311402	2005	31871	14.5 Bulk	6840	703	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9311414	2006	31886	14.5 Bulk	6840	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9312339	2004	28433	13.5 Bulk	5850	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9313292	2011	82499	14.5 Bulk	10150	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9314624	2008	77061	14.5 Bulk	9319	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9314636	2008	77061	14.5 Bulk	9319	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9314648	2007	82282	14.5 Bulk	10959	70:	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9316062	2006	76863	14.5 Bulk	9230	703	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9316218	2004	49400	14.5 Bulk	6880	703	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9316220	2004	55317	14.6 Bulk	8200	703	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9317365	2007	54881	14.5 Bulk	8208	703	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9317482	2005	46619	14.3 Bulk	7024	703	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9317494	2007	55728	14.5 Bulk	8208	703	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9317523	2008	82338	14.5 Bulk	9377	703	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9317690	2006	37504	14.5 Bulk	7061	703	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9317781	2006	31896	14.4 Bulk	6840	703	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9317793	2007	31883	14.5 Bulk	6840	703	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9321914	2007	75511	14.5 Bulk	11077	703	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9326158	2008	77376	14.5 Bulk	8789	703	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9331543	2006	75375	14.5 Bulk	10220	703	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9331696	2009	53000	14.7 Bulk	9479	703	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9335886	2008	32114	14.4 Bulk	6840	703	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9336775	2007	32576	14 Bulk	6620	703	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9336799	2005	32816	13.5 Bulk	6620	703	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9338541	2007	32142	14.4 Bulk	6840	703	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9340063	2008	55624	14.5 Bulk	9480	703	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9342918	2006	76585	15.3 Bulk	10320	703	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9358838	2006	74483	14 Bulk	8990	703	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9362231	2006	76629	14 Bulk	10320	709	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9363065	2008	75228	14 Bulk	8992	709	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9364758	2008	76432	14.5 Bulk	10200	709	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9364813	2006	53452	15 Bulk	9480			HFO (2.7% S)	HFO (2.7% S)
9367621	2007	28448	14 Bulk	5850	703	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9367633	2006	28442	13.5 Bulk	5850	703	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9370329	2008	29664	14.25 Bulk	6150	70:	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9370393		16383		4635		` ,	HFO (2.7% S)	HFO (2.7% S)
9377975	2008	33171	13.7 Bulk	6480		` ,	HFO (2.7% S)	HFO (2.7% S)
9377987	2008	33171		6480		` ,	HFO (2.7% S)	HFO (2.7% S)
9377999	2008	33171	13.7 Bulk	6480		` ,	HFO (2.7% S)	HFO (2.7% S)
9378008		33098		6480		· · · · · · · · · · · · · · · · · · ·	HFO (2.7% S)	HFO (2.7% S)
9379662		31890		6840		` ,	HFO (2.7% S)	HFO (2.7% S)
9379674		31922		6840		` ,	HFO (2.7% S)	HFO (2.7% S)
9379935		33157		6480		` ,	HFO (2.7% S)	HFO (2.7% S)
9381172		76629		12240		` ,	HFO (2.7% S)	HFO (2.7% S)
9384863		28416		5850		` ,	HFO (2.7% S)	HFO (2.7% S)
9387633		75093		11299		` ,	HFO (2.7% S)	HFO (2.7% S)
9391610		56548		8890		,	HFO (2.7% S)	HFO (2.7% S)
9397236		31887		7470		` ,	HFO (2.7% S)	HFO (2.7% S)
9403097		58803		8400		` ,	HFO (2.7% S)	HFO (2.7% S)
9403102		58792		8400		` ,	HFO (2.7% S)	HFO (2.7% S)
9404455		37852		8730		,	HFO (2.7% S)	HFO (2.7% S)
9404998	2010	55073	14.5 Bulk	8202	70:	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)

Vessel ID	Model Year	DWT (tons)	Max Speed (Knots)	Vessel Type	Main Eng Power (kW)	Aux Eng Demand (kw)	Aux Boiler Energy	Main Eng Fuel Type	Aux Eng Fuel Type	Aux Boiler Fuel Type
9413690	2009	75123	14	4 Bulk	8990	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9414149	2009	83611	14	4 Bulk	13560	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9420291	2009	55444	14.6	6 Bulk	8201	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9422794	2011	37221	14.5	5 Bulk	7458	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9423530	2009	58701	14	4 Bulk	8400	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9424089	2010	31881	14.4	4 Bulk	6840	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9424091	2010	31887	14.4	4 Bulk	6840	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9424106	2010	31889	14.4	4 Bulk	6840	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9424118	2011	31888	14.4	4 Bulk	6840	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9424120	2011	31872	14.4	4 Bulk	6840	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9424132	2011	31858	14.4	4 Bulk	6840	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9425904	2010	58117	14.5	5 Bulk	8400	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9426116	2010	93337	14.1	Bulk	13560	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9426776	2010	61611	14.5	5 Bulk	8208	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9430856	2009	55582	14.5	5 Bulk	9480	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9433547	2009	57000	14.2	2 Bulk	9480	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9436721	2010	57573	14.5	5 Bulk	9480	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9441312	2010	57809	14.3	Bulk	8700	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9443396	2010	32875	13.7	7 Bulk	6480	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9444924	2008	28333	14	4 Bulk	5850	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9445148	2008	28429	14	4 Bulk	5850	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9445203	2008	28342	13.5	5 Bulk	5850	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9452593	2010	79649	14	4 Bulk	11060	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9452622	2011	79602	14	4 Bulk	11060	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9454084	2010	58831	14.5	5 Bulk	8630	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9456238	2011	56770	14.7	7 Bulk	9480	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9456458	2010	56925	14.2	2 Bulk	9480	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9460318	2008	53450	13.5	5 Bulk	9480	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9465801	2009	75206	14	4 Bulk	8990	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9473341	2011	75200	14.5	5 Bulk	8833	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9473406	2009	33345	13.7	7 Bulk	6480	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9473573	2010	35000	14	4 Bulk	7900	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9475739	2010	33000	14.5	5 Bulk	7900	705	i	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9479010	2010	55640	14.5	5 Bulk	9480	705	i	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9481441	2010	79471	14.5	5 Bulk	11900	705	i	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9482483	2009	53390	14	4 Bulk	9480	705	i	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9483188	2009	55783	14.5	5 Bulk	9480	705	i	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9483827	2010	81000	14.4	4 Bulk	11060	705	i	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9486570	2010	37302	14	4 Bulk	7368	705	i	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9490777	2010	57970	14.3	Bulk	8700	705	i	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9492074	2011	79500	14	4 Bulk	11060	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9493638	2011	75618	14.5	5 Bulk	10200	705	i	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9494242	2010	56726	14.2	2 Bulk	9480	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9498901	2010	93282	14.1	Bulk	12240	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9512898	2011	82012	14.5	5 Bulk	14280	705		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9515682		28291		4 Bulk	5850			0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9515759				2 Bulk	9480			0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9523146				5 Bulk	11900			0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9523251				5 Bulk	9710			0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9530955				3 Bulk	7860			0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9533347				2 Bulk	9480			0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9533359		56604		2 Bulk	9480			0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
								` '	` '	` '

Vessel ID	Model Year	DWT (tons)	Max Speed (Knots) Vessel Type	Main Eng Power (kW)	Aux Eng Demand (kw)	Aux Boiler Energy Main Eng Fuel Type	Aux Eng Fuel Type	Aux Boiler Fuel Type
9537733	2011	75491	14.5 Bulk	10200	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9542465	2010	74951	14.5 Bulk	9230	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9545508	2010	33663	14 Bulk	7900	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9545510	2011	33723	14 Bulk	7900	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9548548	2009	76381	14.5 Bulk	10200	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9550199	2010	28349	14 Bulk	6150	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9557056	2011	61654	14.5 Bulk	8208	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9563380	2010	35052	14 Bulk	9960	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9567427	2011	56745	14.2 Bulk	9960	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9573842	2011	61508	14.5 Bulk	8450	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9583598	2010	75500	14.5 Bulk	8833	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9584140	2011	57000	14.2 Bulk	9480	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9584592	2011	81582	14.5 Bulk	11200	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9589671	2011	81340	14.5 Bulk	11400	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9592886	2010	57000	14.2 Bulk	9480	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9604732	2011	28240	14.5 Bulk	5850	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8021971	1982	33748	15 Bulk - Heavy Load	10001	610	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9382841	2007	4579	13 Bulk - Heavy Load	4920	610	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
7117278	1971	31364	16 Bulk - Self Discharging	9782	1163	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
7925613	1981	37448	13 Bulk - Self Discharging	6620	1163	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8009571	1982	67208	14.5 Bulk - Self Discharging	11339	1163	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8105492	1983	74973	14.5 Bulk - Self Discharging	11327	1163	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9370783	2008	49549	14 Bulk - Wood Chips	8360	705	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
7224306	1973	25651	22 Container1000	23538	1556	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
7602338	1978	24683	20 Container1000	23538	1556	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
7802718	1980	26350	20 Container1000	23538	1556	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
7908005	1983	30652	23.25 Container1000	31774	1556	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8419142	1987	21282	20 Container1000	16814	1556	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8419154	1987	20668	20 Container1000	16814	1556	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8419166	1987	20668	20 Container1000	16814	1556	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9117662	1995	14700	20 Container1000	10920	1556	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9155377	2000	23992		14325		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9202481	2000	21331	20 Container1000	15785		,	HFO (2.7% S)	HFO (2.7% S)
9221059			19.5 Container1000	13530		· · · · · · · · · · · · · · · · · · ·	HFO (2.7% S)	HFO (2.7% S)
9256377	2003		19.5 Container1000	15806		· · · · · · · · · · · · · · · · · · ·	HFO (2.7% S)	HFO (2.7% S)
9337597				16660		,	HFO (2.7% S)	HFO (2.7% S)
9344643	2007		21.3 Container1000	19619		. ,	HFO (2.7% S)	HFO (2.7% S)
9344679				19619		` ,	HFO (2.7% S)	HFO (2.7% S)
9344681	2007			19619		,	HFO (2.7% S)	HFO (2.7% S)
9344693				19619		. ,	HFO (2.7% S)	HFO (2.7% S)
9348986				12510		` ,	HFO (2.7% S)	HFO (2.7% S)
9357846				16663		,	HFO (2.7% S)	HFO (2.7% S)
9362712			20.5 Container1000	16663		` ,	HFO (2.7% S)	HFO (2.7% S)
9406960	2008		19.5 Container1000	16660		` ,	HFO (2.7% S)	HFO (2.7% S)
9435258			19.5 Container1000	16672		. ,	HFO (2.7% S)	HFO (2.7% S)
9470961	2010			18080		` ,	HFO (2.7% S)	HFO (2.7% S)
9398436				68639		` ,	HFO (2.7% S)	HFO (2.7% S)
7617890				20963		. ,	HFO (2.7% S)	HFO (2.7% S)
7617905				20963		. ,	HFO (2.7% S)	HFO (2.7% S)
9080998				16860		` ,	HFO (2.7% S)	HFO (2.7% S)
9110951	1995			22478		,	HFO (2.7% S)	HFO (2.7% S)
9122394	1996	34671	22 Container2000	22795	1916	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)

Vessel ID	Model Year D	WT (tons)	Max Speed (Knots) Vessel Type	Main Eng Power (kW)	Aux Eng Demand (kw)	Aux Boiler Energy Main Eng Fuel Type	Aux Eng Fuel Type	Aux Boiler Fuel Type
9162253		30007	* ' '	12240	1916		HFO (2.7% S)	HFO (2.7% S)
9162265		30007	20 Container2000	12240	1916	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9173135	1999	30135	20 Container2000	12240	1916	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9225407	2000	39128		21735	1916	· · · · · · · · · · · · · · · · · · ·	HFO (2.7% S)	HFO (2.7% S)
9240873	2002	34638		24814	1916	` ,	HFO (2.7% S)	HFO (2.7% S)
9241451	2003	33825		21560	1916	` '	HFO (2.7% S)	HFO (2.7% S)
9243590	2003	35925	22.2 Container2000	21727	1916	` ,	HFO (2.7% S)	HFO (2.7% S)
9294549		34704		24830	1916	` ,	HFO (2.7% S)	HFO (2.7% S)
9305881	2005	33651		20637	1916	` ,	HFO (2.7% S)	HFO (2.7% S)
9307841	2005	33082	22.6 Container2000	24533	1916	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9311763	2006	37800	22 Container2000	21769	1916	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9311787	2006	37800	22 Container2000	21769	1916	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9320001	2005	33813	21.9 Container2000	21769	1916	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9320037	2006	37929	21 Container2000	21769	1916	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9336191	2007	34241	22 Container2000	21660	1916	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9377133	2007	38070	21.85 Container2000	21769	1916	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9400825	2008	33613	22.2 Container2000	21735	1916	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9402639	2009	34194	22 Container2000	21660	1916	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9440306	2010	41253	22.3 Container2000	25039	1916	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
7907984	1982	30825	23.25 Container3000	31774	2382	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8718110	1989	49262	22 Container3000	30967	2382	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9001215	1995	45995	22.5 Container3000	30967	2382	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9071521	1994	45455	20.5 Container3000	20500	2382	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9110561	1995	45470	21 Container3000	20509	2382	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9118317	1996	45995	22.5 Container3000	30967	2382	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9253296	2003	48874	23.4 Container3000	31919	2382	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9334351	2007	41850	22.3 Container3000	26270	2382	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8613310	1988	60639	23 Container4000	42424	2973	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8902539	1991	67686	23 Container4000	36499	2973	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8902553	1991	67618	23 Container4000	36629	2973	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8902565	1991	67684	23 Container4000	36629	2973	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8902577	1992	65815	23 Container4000	36629	2973	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9036909	1993	67680	23 Container4000	36509	2973	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9038907	1993	67680	23.8 Container4000	36509	2973	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9038919	1994	65815	23 Container4000	36499	2973	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9077460	1995	66618	24.5 Container4000	43176	2973	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9102148	1995	62905	24.5 Container4000	43839		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9102150	1995	62905	24.5 Container4000	43843	2973	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9134244	1997	55604	25 Container4000	48634	2973	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9143166	1998	50059	24 Container4000	36479	2973	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9143544	1997	66771	24 Container4000	41129	2973	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9143568	1998	66577	24 Container4000	41129		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9144756	1997	62693	24.5 Container4000	48630	2973	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9144768	1998	62693	24.5 Container4000	48630	2973	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9193288	2000	67145	24 Container4000	40039	2973	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9193290	2000	67145	24 Container4000	40039	2973	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9193317	2000	66975		40039		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9200811	2000	66781		40058		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9200823	2000	66818	24 Container4000	40058		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9232084	2002	58724		41109		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9232101	2002	58724		41106		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9236535	2003	58254	25 Container4000	43920	2973	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)

Vessel ID	Model Year DV	WT (tons)	Max Speed (Knots) Vessel Type	Main Eng Power (kW)	Aux Eng Demand (kw)	Aux Boiler Energy Main Eng Fuel Type	Aux Eng Fuel Type	Aux Boiler Fuel Type
9252230		53554		36774	. ,	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9262118		50188		36543		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9279965		66694		41106		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9279977		66786		41106		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9301847		50500		36559		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9310056		52191		36559		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9312561		52191		36479		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9312597		52210		36479		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9320398		63638		39969		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9320439		63411		39952		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9326768		53682		36559		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9351581		50547		36559		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9375496		51752		36526		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9387102		65123		45759		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9389382		51733		40039		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9389409		51733		40039		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9404194		50574		36559		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9431707		50497		36559		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9450571	2009	50500		36559		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9492701		58200		43609		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9110377		68363		55569		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9111383		67298		54794		` ,	HFO (2.7% S)	HFO (2.7% S)
9111305		67272		54814		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9116577		63388		48634		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9116589		62386		48634		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9116591		63388		48634		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9116606		63388		48634		` ,	HFO (2.7% S)	HFO (2.7% S)
9116618		63388		48634		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9120750		69285		43100		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9161778		68955		54899		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9168831		63216		48634			HFO (2.7% S)	HFO (2.7% S)
9168843		63216		48634		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9168855		63216		48634		` ,	HFO (2.7% S)	HFO (2.7% S)
9168867		63216		48634		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9168879		63216		48634		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9169158		63216		48634		` ,	HFO (2.7% S)	HFO (2.7% S)
9169160		63216		48634		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9188154		63216		48634		· · · · · · · · · · · · · · · · · · ·	HFO (2.7% S)	HFO (2.7% S)
9196955		63216		48634		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9196967		63400		48634		· · · · · · · · · · · · · · · · · · ·	HFO (2.7% S)	HFO (2.7% S)
9196979		63388		48634		` ,	HFO (2.7% S)	HFO (2.7% S)
9196981	2001	63216		48634		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9196993		63216		48634		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9198264		68413		54945		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9198276		68303		54945		· · · · · · · · · · · · · · · · · · ·	HFO (2.7% S)	HFO (2.7% S)
9198288		68413		54925		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9200689		68996		54945		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9200089		68263		54945		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9213040		68196		54897		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9224532		71366		58839		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9246396		68910		43100		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9246401		69107		43100		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
7240401	2002	09107	24.5 Container5000	43100	4550	0 111 0 (2.7 / 0 3)	111 0 (2.7 /0 3)	111 (2.7703)

Vessel ID Mo	del Year D	WT (tons)	Max Speed (Knots) Vessel Type	Main Eng Power (kW)	Aux Eng Demand (kw)	Aux Boiler Energy Main Eng Fuel Type	Aux Eng Fuel Type	Aux Boiler Fuel Type
9247546	2001	67170	25 Container5000	57204	4356	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9247558	2001	67170	25 Container5000	57200	4356	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9247560	2001	67170	25.7 Container5000	57204	4356	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9248150	2003	67979	26.3 Container5000	54899	4356	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9260902	2002	67009	24.75 Container5000	57199	4356	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9260914	2003	67009	24.7 Container5000	57199	4356	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9267651	2002	67197	25 Container5000	57221	4356	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9278088	2004	68280	26 Container5000	54899	4356	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9281267	2004	68372	24.3 Container5000	41106	4356	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9287900	2004	68150	23.8 Container5000	41106	4356	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9288409	2004	67009	24.75 Container5000	57199	4356	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9290440	2005	66478	25 Container5000	45777	4356	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9290452	2005	66501	25 Container5000	45777		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9294800	2004	68280	26.5 Container5000	54899		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9295359	2005	67025	24.2 Container5000	45779		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9300312	2005	67209	25.6 Container5000	57203		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9302073	2006	71309	25 Container5000	62943		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9302102	2006	71283	25 Container5000	62943		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9302566	2006	68126	24 Container5000	41129		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9302580	2006	68135	24.3 Container5000	41106		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9305697	2006	71326	25 Container5000	58840		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9322475	2007	67986	24.3 Container5000	41129		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9322487	2007	68138	24.3 Container5000	36996		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9322499	2007	68009	24.3 Container5000	41129		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9437050	2010	65741	25 Container5000	40039		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9437062	2010	65710	25 Container5000 25 Container5000	40039		0 HFO (2.7% S) 0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9085522	1996	84900	25 Container5000 25 Container6000	54839		0 HFO (2.7% S) 0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9085534	1996	84900	24.6 Container6000	54859		. ,	` /	,
9085546	1996	84900				0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
	1996		24.6 Container6000	54839		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9085558		84900	25 Container6000	54839		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9085560	1997 1997	84900	25 Container6000	54839		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9107887		90456	25 Container6000	54839 65929		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9215828	2001	80551	26.4 Container6000			0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9215830	2001	80596	26.4 Container6000	65929		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9215842	2001	80494	26.4 Container6000	65929		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9215854	2001	80550	26.4 Container6000	65929		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9215866	2001	80551	26.4 Container6000	65929		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9241281	2002	75898	24.5 Container6000	48630		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9241293	2003	75898	24.5 Container6000	48634		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9241308	2002	75898	25 Container6000	48634		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9241310	2001	75898	25 Container6000	48634		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9241322	2002	75898	24.5 Container6000	48600		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9244922	2003	81577	26 Container6000	57074		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9244934	2003	81183	26 Container6000	57074		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9244946	2003	81094	26 Container6000	57074		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9247742	2003	81171	25 Container6000	61349		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9305647	2006	80262	25 Container6000	68519		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9307047	2005	72968	25 Container6000	62919		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9321017	2006	72968	26 Container6000	62919		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9323522	2007	80108	25 Container6000	68519		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9332884	2009	72982	25 Container6000	64198		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9385001	2009	72982	25 Container6000	62919	4815	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)

Vessel ID	Model Year	DWT (tons)	Max Speed (Knots) Ve	essel Type	Main Eng Power (kW)	Aux Eng Demand (kw)	Aux Boiler Energy Main Eng Fuel	l Type Aux En	g Fuel Type	Aux Boiler Fuel Type
9385013	2009	72982	25 Co	ontainer6000	62919	4815	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9385025	2009	72982	25 Co	ontainer6000	62919	4815	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9406647	2010	83217	25.6 Co	ontainer6000	57198	4815	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9229829	2001	100006	25.3 Co	ontainer7000	68639	4360	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9229831	2002	100003	25.3 Co	ontainer7000	68639	4360	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9229843	2002	100016	25.3 Co	ontainer7000	68639	4360	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9229855	2003	100019	25.3 Co	ontainer7000	68639	4360	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9285653	2004	93643	25.2 Co	ontainer7000	69619	4360	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9285665	2004	93659	25.2 Co	ontainer7000	68665	4360	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9285677	2004	93572	25.2 Co	ontainer7000	69619	4360	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9285689	2004	93728	25.2 Co	ontainer7000	69619	4360	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9285691	2004	93638	25.2 Co	ontainer7000	69619	4360	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9290464	2005	93542	25.2 Co	ontainer7000	68489	4360	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9290476	2005	93545	25.2 Co	ontainer7000	68489	4360	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9290488	2005	93570	25.2 Co	ontainer7000	68489	4360	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9295218	2005	93594	25.2 Co	ontainer7000	68489	4360	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9295220	2005	93558	25.2 Co	ontainer7000	68489	4360	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9300403	2006	78716	25.3 Co	ontainer7000	54941	4360	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9300415	2006	78796	25.3 Co	ontainer7000	54941	4360	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9300453	2007	78612	25.3 Co	ontainer7000	54941	4360	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9300477	2008	78733	25.3 Co	ontainer7000	54941	4360	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9198587	2000	104750	25 Co	ontainer8000	54839	4769	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9214903	2000	104750	25 Co	ontainer8000	54839	4769	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9260433	2003	109000	25 Co	ontainer8000	63030	4769	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9260445	2003	109000	25 Co	ontainer8000	63035	4769	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9260457	2004	109000	25 Co	ontainer8000	63035	4769	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9294989	2005	108180	25.3 Cc	ontainer8000	68489	4769	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9294991	2005	108106	25.3 Cc	ontainer8000	68489	4769	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9295244	2005	103800	25.21 Co	ontainer8000	68639	4769	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9295256	2005	103800	24.5 Cc	ontainer8000	68639	4769	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9299783	2005	101818	24.5 Cc	ontainer8000	68655	4769	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9305491	2006	101496	24.5 Cc	ontainer8000	68639	4769	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9318046	2006	100680	24.5 Co	ontainer8000	68639	4769	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9318060	2006	101505	24.5 Co	ontainer8000	68639	4769	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9318101	2007	101477	24.5 Cc	ontainer8000	68646	4769	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9320697	2007	103681	24.5 Cc	ontainer8000	68639	4769	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9320702	2007	103631	24.5 Co	ontainer8000	68639	4769	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9337925	2008	102453	25 Cc	ontainer8000	68519	4769	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9337949	2009	102418	25 Cc	ontainer8000	68519	4769	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9343716	2007	103800	25.2 Co	ontainer8000	68639	4769	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9343728	2008	103567	25 Cc	ontainer8000	68529	4769	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9343730	2008	103538	25.2 Cc	ontainer8000	68639	4769	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9398395	2009	108574	25.6 Cc	ontainer8000	68639	4769	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9398400	2009	108427	25.6 Cc	ontainer8000	68639	4769	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9398424	2010	108574	25.6 Cc	ontainer8000	68639	4769	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9433793	2011	101474	25.3 Co	ontainer8000	68519	4769	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9436355	2011	101386	25.3 Co	ontainer8000	68519	4769	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9448803	2011	102742	25.6 Cc	ontainer8000	68529	4769	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9450375	2009	103845	25.6 Cc	ontainer8000	72239	4769	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9450387	2009	103773	25.6 Cc	ontainer8000	72239	4769	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9450399	2010	104015	25 Cc	ontainer8000	68639	4769	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)
9450404	2010	104007	25 Cc	ontainer8000	57199	4769	0 HFO (2.7% S)	HFO (2	.7% S)	HFO (2.7% S)

Vessel ID	Model Year	DWT (tons)	Max Speed (Knots) Vessel Type	Main Eng Power (kW)	Aux Eng Demand (kw)	Aux Boiler Energy Main Eng Fuel Type	Aux Eng Fuel Type	Aux Boiler Fuel Type
9450428		, ,	. , , , , , , , , , , , , , , , , , , ,	68639	. ,	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9450430	201	0 103662	25 Container8000	68639	4769	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9450442	201	0 103995	25 Container8000	57199	4769	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9450600	201	0 107000	25.2 Container8000	72239	4769	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9450612	201	0 109021	25.2 Container8000	68519	4769	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9461465	201	0 102518	25.2 Container8000	68639	4769	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9461491	201	1 102455	25.2 Container8000	68639	4769	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9461506	201	1 102518	25.2 Container8000	68639	4769	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9146455	199	8 104700	25 Container9000	54839	4551	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9342516	200	8 110401	25.5 Container9000	68639	4551	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8708672	199	0 2420	15 Cruise	5038	3500	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9066667	199	5 4500	21 Cruise	36328	3500	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9072446	199	5 7260	21.5 Cruise	29249	10500	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9116864	199	7 8439	22.3 Cruise	50399	10500	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9156527	200	0 6150	22 Cruise	10400	3500	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9188037	200	0 7327	21 Cruise	5600	7000	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9188647	200	1 7200	22 Cruise	62369	10500	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9189419				71246		` ,	HFO (2.7% S)	HFO (2.7% S)
9189421	200	1 11778	24 Cruise	71246	10500	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9192351		1 8418		63360		· · · · · · · · · · · · · · · · · · ·	HFO (2.7% S)	HFO (2.7% S)
9195157				58799		` ,	HFO (2.7% S)	HFO (2.7% S)
9221281				10400		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9226891				10400		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9226906				63360		` ,	HFO (2.7% S)	HFO (2.7% S)
9228186				60702		· · · · · · · · · · · · · · · · · · ·	HFO (2.7% S)	HFO (2.7% S)
9342281				72079		` ,	HFO (2.7% S)	HFO (2.7% S)
5057931			e	14160		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
7119678			8	1232		` ,	HFO (2.7% S)	HFO (2.7% S)
8013027			e	15445		` ,	HFO (2.7% S)	HFO (2.7% S)
8406717			e	15445		` ,	HFO (2.7% S)	HFO (2.7% S)
8711318			8	5119		` ,	HFO (2.7% S)	HFO (2.7% S)
8908088			0	7949		` ,	HFO (2.7% S)	HFO (2.7% S)
9141211			e	5296		` ,	HFO (2.7% S)	HFO (2.7% S)
9148116			0	8775		` '	HFO (2.7% S)	HFO (2.7% S)
9150731			8	6650		` ,	HFO (2.7% S)	HFO (2.7% S)
9161168			e	8253		` ,	HFO (2.7% S)	HFO (2.7% S)
9187033			e	7800 7800		` ,	HFO (2.7% S)	HFO (2.7% S)
9187045 9202041			8	8250		` ,	HFO (2.7% S) HFO (2.7% S)	HFO (2.7% S) HFO (2.7% S)
9202041			e	13548		` '	` /	HFO (2.7% S)
9226047			8	13548		` ,	HFO (2.7% S) HFO (2.7% S)	HFO (2.7% S)
9226059			e	13548		` ,	HFO (2.7% S)	HFO (2.7% S)
9226061			e	13548		· · · · · · · · · · · · · · · · · · ·	HFO (2.7% S)	HFO (2.7% S)
9238818			8	15785		` ,	HFO (2.7% S)	HFO (2.7% S)
9243758			e e e e e e e e e e e e e e e e e e e	4350		` ,	HFO (2.7% S)	HFO (2.7% S)
9243736				7860		` ,	HFO (2.7% S)	HFO (2.7% S)
9290050			e	4320		` ,	HFO (2.7% S)	HFO (2.7% S)
9312157			e	5400		· · · · · · · · · · · · · · · · · · ·	HFO (2.7% S)	HFO (2.7% S)
9317042			8	3906		` ,	HFO (2.7% S)	HFO (2.7% S)
9331593			e	6300		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9347035			e e	7074		* ,	HFO (2.7% S)	HFO (2.7% S)
9357212			e e	5400		* ,	HFO (2.7% S)	HFO (2.7% S)
	_00	-=:0=		3100	1007	()	- (/ - ~/	- (~)

Vessel ID	Model Year	DWT (tons)	Max Speed (Knots) Vessel Type	Main Eng Power (kW)	Aux Eng Demand (kw)	Aux Boiler Energy Main Eng Fuel Type	Aux Eng Fuel Type	Aux Boiler Fuel Type
9358046	2006	5 12812	14 General Cargo	5400	1339	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9370135	2008	32221	14.3 General Cargo	6620	1339	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9385087	2008	32271	14.3 General Cargo	6620	1339	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9385491	2009	54204	14.5 General Cargo	8208	1339	134 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9402043	2007	7 12705	14 General Cargo	5400	1339	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9432153	2011	30000	19.2 General Cargo	16520	1339	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9435856	2009	17354	15 General Cargo	7074	1339	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9449493	2009	33392	13.7 General Cargo	6480	1339	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9449508	2009	32949	13.7 General Cargo	6480	1339	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9453793	2010	12696	15 General Cargo	5400	1339	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9501277	2010	12657	15 General Cargo	5400	1339	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9504267	2008	3 7966	12.2 General Cargo	2970	1339	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9511636	2010	10500	14.2 General Cargo	4320	1339	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9530307	2010	33324	13.8 General Cargo	8730	1339	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9530319	2010	33324	13.8 General Cargo	8726	1339	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9569528	2010	6264	13 General Cargo	3000	1339	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9271119	2002	2 0	15 ITB	6767	234	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9275438	2002	2 0	15 ITB	6767	234	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9275878	2002	2 0	15 ITB	6825	234	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9277369	2002	2 945	15 ITB	6767	234	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9369411	2009	786	15 ITB	7999	234	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9398474	2006	835	15 ITB	6825	234	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9503160	2008	3 1282	13.5 ITB	9054	234	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9503847	2008	3 428	12 ITB	2985	234	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9542609	2011	1 600	15 ITB	8160	234	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8225711	1982	2 13879	17 Reefer	6620	1402	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8906963	1992	2 10588	21 Reefer	11400	1402	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8917596	1993	3 11733	20 Reefer	12500	1402	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9019119	1993	3 10629	21 Reefer	11400	1402	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9019121	1993	3 10629	20.91 Reefer	11400	1402	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9038933	1994	11822	19.2 Reefer	12500	1402	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
7390117	1976	5 19480	21.5 RoRo	27216	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
7420493	1975	5 16138	21 RoRo	22067	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8508369	1994	4 10517	13.8 RoRo	6540	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9157430	1997	7 13046	15 RoRo	5296	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9162394	1997	7 9518	14 RoRo	4193	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9232278	2003	3 22437	24 RoRo	52198	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9232280	2003	3 22437	24 RoRo	52198	1541	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9165530	1998	3 106553	15.1 Tanker - Aframax	12000	990	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9192260	2000	105856	15.1 Tanker - Aframax	14314	990	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9242120	2003	3 113033	15 Tanker - Aframax	14313	990	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9247792	2003	3 106500	15.15 Tanker - Aframax	12240	990	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9251810	2002	2 106500	15.15 Tanker - Aframax	12240	990	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9265641	2003	3 107081	14.6 Tanker - Aframax	13530	990	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9271327	2003	3 105845	14.3 Tanker - Aframax	11547	990	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9281009	2004	115048	14.7 Tanker - Aframax	14303	990	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9282479	2005	5 114809	15.7 Tanker - Aframax	15801	990	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9292503	2005	5 115515	15.3 Tanker - Aframax	14313	990	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9292515	2005	5 115525	15.3 Tanker - Aframax	14313	990	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9292993	2005	5 104499	15 Tanker - Aframax	13548	990	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9299721	2006	5 106004	14.8 Tanker - Aframax	13548	990	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9304825	2006	5 109266	14.5 Tanker - Aframax	13570	990	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)

Vessel ID N	Model Year DW	T (tons)	Max Speed (Knots) Vessel Type	Main Eng Power (kW)	Aux Eng Demand (kw) Aux Boil	er Energy Main Eng Fuel Type	Aux Eng Fuel Type	Aux Boiler Fuel Type
9307152	2005	105712	15.25 Tanker - Aframax	12000	990	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9308857	2006	104955	15 Tanker - Aframax	13560	990	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9330599	2006	104866	14.2 Tanker - Aframax	13560	990	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9354301	2008	104535	15 Tanker - Aframax	15820	990	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9354313	2008	104542	15 Tanker - Aframax	15820	990	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9397808	2009	111402	15.45 Tanker - Aframax	14280	990	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9402316	2010	115123	15 Tanker - Aframax	13560	990	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9408530	2008	115462	15 Tanker - Aframax	13560	990	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9434890	2010	108835	14.5 Tanker - Aframax	13570	990	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9439539	2009	108760	15 Tanker - Aframax	13570	990	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9453999	2011	113968	15.5 Tanker - Aframax	14280	990	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9457593	2011	114542	15 Tanker - Aframax	13560	990	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9592238	2011	115669	15.5 Tanker - Aframax	13560	990	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9592252	2011	115674	15.7 Tanker - Aframax	13560	990	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
8800511	1990	40538	14 Tanker - Chemical	7830	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9145841	1996	45217	15.1 Tanker - Chemical	9989	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9157519	1997	16026	14.2 Tanker - Chemical	4891	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9161895	1998	19365	14.7 Tanker - Chemical	6179	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9168477	1998	19386	14.7 Tanker - Chemical	6179	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9230012	2001	16225	14 Tanker - Chemical	6300	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9241073	2004	46678	14 Tanker - Chemical	8310	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9248461	2002	24426	14.5 Tanker - Chemical	7980	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9263095	2003	19997	14.7 Tanker - Chemical	6230	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9278727	2004	25451	15.5 Tanker - Chemical	7080	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9281932	2005	51383	14.2 Tanker - Chemical	8561	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9299422	2005	29057	14 Tanker - Chemical	7150	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9301005	2005	51303	14.5 Tanker - Chemical	13560	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9304320	2005	19991	14.7 Tanker - Chemical	6150	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9304332	2005	19992	14.6 Tanker - Chemical	6150		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9307815	2005	50921	14.5 Tanker - Chemical	13560	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9307994	2007	46784		8555		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9308235	2006	19995		6230	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9331256	2006	19996		6230		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9333280	2006	47931		11060	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9340441	2007	19998		6150	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9343778	2006	19998		5296		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9345893	2006	19975		6230	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9349655	2007	20896		6150		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9353527	2007	46911		8580	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9353539	2007	46817		8580	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9353565	2009	46802		8700	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9353577	2009	46666		8700	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9353589	2010	46653		8700	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9353591	2010	46666		8700	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9353606	2011	46666		8580	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9360336	2007	47128		9480	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9388003	2008	46606		9960		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9391165	2009	19997		6480	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9392781	2009	47128		9480	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9393008	2008	19928		6230	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9396737	2008	50927		9480	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9407263	2008	73720	14.5 Tanker - Chemical	11299	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)

Vessel ID Mo	odel Year DV	WT (tons) M	ax Speed (Knots) Vessel Type	Main Eng Power (kW)	Aux Eng Demand (kw) Aux Boiler Energ	y Main Eng Fuel Type	Aux Eng Fuel Type	Aux Boiler Fuel Type
9407562	2009	48632	15 Tanker - Chemical	8580	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9408126	2010	48635	15 Tanker - Chemical	8580	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9408138	2010	48641	15 Tanker - Chemical	8580	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9411135	2009	37836	14.5 Tanker - Chemical	7860	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9422237	2010	46625	14.8 Tanker - Chemical	9480	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9425540	2010	50120	14.8 Tanker - Chemical	8580	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9426300	2009	26015	15.1 Tanker - Chemical	7080	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9426910	2009	19993	14.7 Tanker - Chemical	6480	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9430284	2010	46151	14.8 Tanker - Chemical	8598	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9436666	2008	40416	14 Tanker - Chemical	9480	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9439802	2009	50261	14.9 Tanker - Chemical	9480	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9478717	2010	50238	14.9 Tanker - Chemical	9480	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9490301	2010	26198	15.5 Tanker - Chemical	7470	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9490325	2011	26197	15.5 Tanker - Chemical	7450	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9494682	2011	47203	14.5 Tanker - Chemical	8598	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9499943	2008	12601	14.4 Tanker - Chemical	4200	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9597721	2011	21280	14.5 Tanker - Chemical	6150	937	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9118628	1997	46103	14.5 Tanker - Handysize	7944	693	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9149237	1998	47363	15 Tanker - Handysize	8310		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9149249	1998	47363	15 Tanker - Handysize	8310		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9183611	1999	46144	14.15 Tanker - Handysize	7679		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9183623	1999	46152	14.15 Tanker - Handysize	7679		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9221683	2000	47037	14.5 Tanker - Handysize	8683		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9354519	2007	45998	14.6 Tanker - Handysize	9267		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9363467	2009	45967	15.1 Tanker - Handysize	9267		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9367695	2008	47451	15.3 Tanker - Handysize	8580		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9367736	2008	47165	15 Tanker - Handysize	8580		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9402794	2010	47366	15.3 Tanker - Handysize	8580		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9451460	2010	46549	15.7 Tanker - Handysize	9480		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9459266	2011	45931	14.6 Tanker - Handysize	9480		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9555292	2010	47981	15 Tanker - Handysize	9480		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9031961	1993	66895	14.7 Tanker - Panamax	7963		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9035137	1993	66895	14.7 Tanker - Panamax	7963		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9252943	2003	71522	14.9 Tanker - Panamax	12440		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9254862	2003	70146	14.7 Tanker - Panamax	11444		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9256016	2003	68467	14.5 Tanker - Panamax	10002		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9281425	2005	74999	16 Tanker - Panamax	13539		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9288356	2005	70681	14.9 Tanker - Panamax	13548		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9301952	2006	74933	14.9 Tanker - Panamax	13548		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9301964	2007	74875	14.9 Tanker - Panamax	13548		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9307748	2006	54533	16.7 Tanker - Panamax	13700		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9307762	2007	54450	16.7 Tanker - Panamax	13700		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9342217	2008	76578	15.4 Tanker - Panamax	12268		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9351464	2007	73784	14.7 Tanker - Panamax	11299		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9382982	2009	74329	15.3 Tanker - Panamax	12240		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9407251	2007	73634	14.5 Tanker - Panamax	11299		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9425552	2010	50090	14.8 Tanker - Panamax	8580		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9433808	2010	50077	14.8 Tanker - Panamax	8580		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9433810	2011	50079	14.8 Tanker - Panamax	8580		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
7408081	1978	124644	17 Tanker - Suezmax	22067		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
7408093	1979	125133	17 Tanker - Suezmax	22067		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9035010	1993	135829	15 Tanker - Suezmax	15447		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
7033010	1773	1,3047	13 Talikei - Sueziliax	1344/	703	0 111 0 (2.7 /0 3)	111 (4.7/00)	111 0 (4.1700)

Puget Sound Emissions Inventory

Ocean-Going Vessel Data

Vessel ID	Model Year	DWT (tons)	Max Speed (Knots) Vessel Type	Main Eng Power (kW)	Aux Eng Demand (kw)	Aux Boiler Energy	Main Eng Fuel Type	Aux Eng Fuel Type	Aux Boiler Fuel Type
9087972	1995	149834	14.97 Tanker - Suezmax	15420	965		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9182746	1999	153015	13.5 Tanker - Suezmax	16910	965		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9193551	2001	141740	16.55 Tanker - Suezmax	22087	965		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9193563	2002	141740	16.55 Tanker - Suezmax	22087	965		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9206114	2003	141740	16.6 Tanker - Suezmax	22119	965		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9208069	2000	147080	14.62 Tanker - Suezmax	15403	965		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9230505	2002	159435	15.7 Tanker - Suezmax	18623	965		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9230892	2002	149921	15.5 Tanker - Suezmax	18624	965		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9233765	2003	159999	15.5 Tanker - Suezmax	18624	965		0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9244063	2004	141740	16.5 Tanker - Suezmax	2208	965	i	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9244659	2004	193049	15.3 Tanker - Suezmax	25198	965	i	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9244661	2005	193049	15.3 Tanker - Suezmax	25198	965	i	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9244673	2005	193048	15.3 Tanker - Suezmax	25198	965	i	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9250660	2006	141740	16.5 Tanker - Suezmax	22087	965	i	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9253894	2002	149991	15 Tanker - Suezmax	12372	965	i	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9271432	2006	193048	15.3 Tanker - Suezmax	25198	965	i	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9297905	2005	158344	15.5 Tanker - Suezmax	18623	965	i	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9311610	2006	162397	15.5 Tanker - Suezmax	21727	965	i	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9315185	2007	163216	15.6 Tanker - Suezmax	18888	965	i	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9336971	2007	153015	15.8 Tanker - Suezmax	18479	965	i	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9411226	2009	158769	15.8 Tanker - Suezmax	18660	965	i	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9427627	2009	157048	15.1 Tanker - Suezmax	18660	965	i	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9436446	2010	158555	15.5 Tanker - Suezmax	18660	965	i	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9446374	2009	158319	15.5 Tanker - Suezmax	18660	965	i	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9586722	2011	158777	15.5 Tanker - Suezmax	18660	965	i	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)
9589748	2011	158658	15.5 Tanker - Suezmax	18660	965	i	0 HFO (2.7% S)	HFO (2.7% S)	HFO (2.7% S)

Legend

Modes

T - Transit Link

X - Transition between Transit & Maneuvering

M - Maneuvering Link

NPE - Near Port Emissions - Emissions assigned to the "port area"

Puget Sound Emissions Inventory OGV-Routing: VICTORIA (NB1) to SEATTLE

Arrival

Arrival

Arrival

Arrival

X

L13

Lat/Long in WGS84 Datum

Sea_Tacoma

Sea_Tacoma

Sea_Tacoma

ElliottB_PS

ElliottB_PS

ElliottB_PS

Speed by Link (knots) Fast Fast Medium Slow Very Slow

Bulkers

15.2

15.2

15.2

12.0

12.0

12.0

10.1 0.0

10.1

10.1 0.0

10.1

10.1

0.0

0.0

0.0

16.8

16.6

16.6

16

15.5

16.1 6.9

16.1 6.9

16.1

7.2

7.2

6.9

6.9

6.9

16.5

16.5

16

15.5

0

0.0

0.0

0.0

0.0

0.0

																	Reefer	Tankers		CR-1	CR-1	CR-1	CR-1	CR-2	CR-2	CR-2	CR-2
DRAFT																Containe	r RO/RO	Log		Speed	PL	SL	BL	Speed	PL	SL	BL
Route	Arr/Dep	Mode	NPE :	Link ID	Start WP	Starti	ing WP I	Lat/Lon	End WP	Ending	g Waype	oint Lat/Lon	Dist. C	ounty (Cruise	Auto	Fishing	Fishing	Fishing	knots	(MW)	(MW)	(MW)	knots	(MW)	(MW)	(MW)
NB1_PortAngeles	s Arrival	T	N	L1	VP_A_1	48° 13′ 55	'' N 123	° 30′ 34′′ W	VP_A_2	48° 12′ 0	5′′N 1	.23° 28′ 55′′ W	2.1 Ca	lallam	18	0	0	0	0	12	9.8	7.0	0.0	16.6	15.2	10.1	0.0
NB1_PortAngeles	s Arrival	X	N	L2a	VP_A_2	48° 12′ 05	5′′ N 123	° 28′ 55′′ W	PS_A_5	48° 09′ 2	20′′N 1	23° 23′ 28′′ W	4.5 Ca	lallam	16	0	0	0	0	12	9.8	7.0	0.0	16	15.2	9.0	0.0
Sea_Tacoma	Arrival	M	N	L5	PS_A_5	48° 09′ 20)′′ N 123	° 23′ 28′′ W	PS_A_6	48° 09′ 5	8′′N 1	23° 23′ 25′′ W	0.6 Ca	lallam	8	0	0	0	0	12	5.6	7.0	0.0	10	8.0	10.1	0.0
Sea_Tacoma	Arrival	X	N	L6	PS_A_6	48° 09′ 58	'' N 123	° 23′ 25′′ W	PS_A_7	48° 11′ 5	6′′N 1	23° 06′ 35′′ W	11.4 Ca	lallam	18	0	0	0	0	12	9.8	7.0	0.0	18	14.0	10.1	0.0
Sea_Tacoma	Arrival	T	N	L7	PS_A_7	48° 11′ 56	''N 123	° 06′ 35′′ W	PS_A_8	48° 11′ 1	1"N 1	22° 52′ 23′′ W	9.5 Ca	lallam	SS	0	0	0	0	12	9.8	7.0	0.0	19.8	15.2	10.1	0.0
Sea_Tacoma	Arrival	T	N	L8	PS_A_8	48° 11′ 11	′′N 122	2° 52′ 23′′ W	PS_A_9	48° 10′ 5	57′′N 1	22° 48′ 01′′ W	2.9 Jef	ferson	SS	0	0	0	0	12	9.8	7.0	0.0	19.8	15.2	10.1	0.0
Sea_Tacoma	Arrival	T	N	L9	PS_A_9	48° 10′ 57	''' N 122	2° 48′ 01′′ W	PS_A_10	48° 06′ 3	5′′N 1	22° 40′ 10′′ W	6.8 Jef	ferson	SS	0	0	0	0	12	9.8	7.0	0.0	19.8	15.2	10.1	0.0
Sea_Tacoma	Arrival	T	N	L10	PS_A_10	48° 06′ 35	''N 122	2° 40′ 10′′ W	PS_A_11	48° 01′ 0	8′′N 1	22° 38′ 08′′ W	5.6 Jef	ferson	SS	0	0	0	0	18	16.1	6.9	0.0	19.8	15.2	10.1	0.0
Sea_Tacoma	Arrival	T	N	L11	PS_A_11	48° 01′ 08	'' N 122	2° 38′ 08′′ W	PS_A_12	47° 57′ 4	1′′N 1	22° 35′ 10′′ W	4.0 Isl	and	SS	0	0	0	0	18	16.1	6.9	0.0	16.8	15.2	10.1	0.0
Sea_Tacoma	Arrival	T	N	L12	PS_A_12	47° 57′ 41	′′ N 122	2° 35′ 10′′ W	PS_A_13	47° 56′ 3	88" N 1	22° 32′ 57′′ W	1.8 Isl	and	19	0	0	0	0	18	16.1	6.9	0.0	16.8	15.2	10.1	0.0

PS_A_13 47° 56′ 38′′ N 122° 32′ 57′′ W PS_A_14 47° 55′ 17′′ N 122° 30′ 06′′ W

EB_A_3 47° 38′ 16′′ N 122° 26′ 36′′ W EB_A_4 47° 36′ 52′′ N 122° 23′ 21′′ W

L14 PS_A_14 47° 55′ 17′′ N 122° 30′ 06′′ W PS_A_15 47° 45′ 54′′ N 122° 26′ 45′′ W

L1a PS_A_16 47° 39′ 42′′ N 122° 28′ 24′′ W EB_A_2 47° 39′ 21′′ N 122° 28′ 02′′ W

L2 EB_A_2 47° 39′ 21′′ N 122° 28′ 02′′ W EB_A_3 47° 38′ 16′′ N 122° 26′ 36′′ W

L15 PS_A_15 47° 45′ 54′′ N 122° 26′ 45′′ W PS_A_16 47° 39′ 42′′ N 122° 28′ 24′′ W

Total Distance 72.1 nm Note: SS - Service Speed

18

17

16

15

2.3 Kitsap

9.7 Kitsap

6.3 Kitsap

0.4 Kitsap

1.5 King

Puget Sound Emissions Inventory OGV-Routing: SEATTLE to VICTORIA (NB1) Lat/Long in WGS84 Datum

Speed by Link (knots)
Fast Fast Medium Slow Very Slow
Bulkers

Lat/Long in wos	001 Datum															Duikers									
																Tankers		CR-1	CR-1	CR-1	CR-1	CR-2	CR-2		CR-2
DRAFT														Containe	r RO/RO	Log		Speed	PL	SL	BL	Speed	PL	SL	BL
Route	Arr/Dep 1	Mode	NPE	Link ID	Start WP	Startin	ng WP Lat/l	Lon	End WP	Ending '	Waypoint Lat/Lon	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing	knots	(MW)	(MW)	(MW)	knots	(MW)	(MW)	(MW)
ElliottB_PS	Departure	M	Y	L1	EB_D_1	47° 36′ 52′	'N 122° 23	′21′′ W	EB_D_2	47° 38′ 22′	'' N 122° 26′ 27′′ W	2.6 King	14	0	0	0	0	13.5	13.2	7.0	0.0	13.5	12.1	10.1	0.0
ElliottB_PS	Departure	X	Y	L2	EB_D_2	47° 38′ 22′	'' N 122° 26	′ 27′′ W	PS_D_10	47° 39′ 42′	′′ N 122° 27′ 25′′ W	1.5 King	18	0	0	0	0	17.5	19.2	7.0	0.0	16.5	16.1	9.0	0.0
Tacoma_Sea	Departure	Τ	Y	L10	PS_D_10	47° 39′ 42′	'' N 122° 27	′ 25′′ W	PS_D_11	47° 41′ 54′	'' N 122° 26′ 47′′ W	2.3 King	SS	0	0	0	0	19.5	21.2	7.0	0.0	19.8	22.2	10.1	0.0
Tacoma_Sea	Departure	Τ	Y	L11	PS_D_11	47° 41′ 54′	'' N 122° 26	′ 47′′ W	PS_D_12	47° 45′ 52′	'' N 122° 25′ 49′′ W	4.0 Kitsap	SS	0	0	0	0	19.5	21.2	7.0	0.0	19.8	22.2	10.1	0.0
Tacoma_Sea	Departure	Τ	N	L12	PS_D_12	47° 45′ 52′	'N 122° 25	′49′′ W	PS_D_13	47° 46′ 40′	''N 122° 26′ 04′′ W	0.8 King	SS	0	0	0	0	19.5	21.2	7.0	0.0	19.8	22.2	10.1	0.0
Tacoma_Sea	Departure	Τ	N	L13	PS_D_13	47° 46′ 40′	'N 122° 26	′04′′W	PS_D_14	47° 48′ 06′	′′N 122° 26′ 29′′ W	1.5 Snohomis	SS	0	0	0	0	19.5	21.2	7.0	0.0	19.8	22.2	10.1	0.0
Tacoma_Sea	Departure	Τ	N	L14	PS_D_14	47° 48′ 06′	'N 122° 26	′ 29′′ W	PS_D_15	47° 52′ 36′	''N 122° 28′ 08′' W	4.6 Kitsap	SS	0	0	0	0	19.5	21.2	7.0	0.0	19.8	22.2	10.1	0.0
Tacoma_Sea	Departure	Τ	N	L15	PS_D_15	47° 52′ 36′	'N 122° 28	′08′′W	PS_D_16	47° 55′ 34′	′′N 122° 29′ 11′′ W	3.1 Island	SS	0	0	0	0	19.5	21.2	7.0	0.0	19.8	22.2	10.1	0.0
Tacoma_Sea	Departure	Τ	N	L16	PS_D_16	47° 55′ 34′	'N 122° 29	′11′′ W	PS_D_17	47° 57′ 01′	''N 122° 32′ 03′′ W	2.4 Island	SS	0	0	0	0	19.5	21.2	7.0	0.0	19.8	22.2	10.1	0.0
Tacoma_Sea	Departure	Τ	N	L17	PS_D_17	47° 57′ 01′	'N 122° 32	′03′′W	PS_D_18	47° 58′ 07′	′′ N 122° 34′ 19′′ W	1.9 Island	SS	0	0	0	0	19.5	21.2	7.0	0.0	19.8	22.2	10.1	0.0
Tacoma_Sea	Departure	Τ	N	L18	PS_D_18	47° 58′ 07′	'N 122° 34	′ 19′′ W	PS_D_19	48° 02′ 01′	''N 122° 37′ 40′′ W	4.5 Island	SS	0	0	0	0	19.5	21.2	7.0	0.0	19.8	22.2	10.1	0.0
Tacoma_Sea	Departure	Τ	N	L19	PS_D_19	48° 02′ 01′	'N 122° 37	′40′′W	PS_D_20	48° 04′ 48′	′′N 122° 38′ 31′′ W	2.8 Island	SS	0	0	0	0	19.5	21.2	7.0	0.0	19.8	22.2	10.1	0.0
Tacoma_Sea	Departure	Τ	N	L20	PS_D_20	48° 04′ 48′	'N 122° 38	′31′′ W	PS_D_21	48° 06′ 58′	′′N 122° 39′ 13′′ W	2.2 Jefferson	SS	0	0	0	0	19.5	21.2	7.0	0.0	19.8	22.2	10.1	0.0
Tacoma_Sea	Departure	Т	N	L21	PS_D_21	48° 06′ 58′	'' N 122° 39	′ 13′′ W	PS_D_22	48° 07′ 51′	'' N 122° 40′ 43′′ W	1.3 Jefferson	SS	0	0	0	0	19.5	21.2	7.0	0.0	19.8	22.2	10.1	0.0
Tacoma_Sea	Departure	Τ	N	L22	PS_D_22	48° 07′ 51′	"N 122° 40	′ 43′′ W	PS_D_23	48° 11′ 20′	'' N 122° 46′ 47′′ W	5.3 Island	SS	0	0	0	0	19.5	21.2	7.0	0.0	19.8	22.2	10.1	0.0
Tacoma_Sea	Departure	Τ	N	L23	PS_D_23	48° 11′ 20′	'N 122° 46	′ 47′′ W	PS_D_24	48° 11′ 44′	′′N 122° 48′ 45′′ W	1.4 Island	SS	0	0	0	0	19.5	21.2	7.0	0.0	19.8	22.2	10.1	0.0
Tacoma_Sea	Departure	Т	N	L24	PS_D_24	48° 11′ 44′	'' N 122° 48	′ 45′′ W	PS_D_25	48° 11′ 57′	′′N 122° 52′ 19′′ W	2.4 Jefferson	SS	0	0	0	0	19.5	21.2	7.0	0.0	19.8	22.2	10.1	0.0
Tacoma_Sea	Departure	Τ	N	L25	PS_D_25	48° 11′ 57′	'' N 122° 52	′ 19′′ W	PS_D_26	48° 12′ 45′	'' N 123° 06′ 35′′ W	9.5 Calallam	SS	0	0	0	0	19.5	21.2	7.0	0.0	19.8	22.2	10.1	0.0
Tacoma_Sea	Departure	X	N	L26	PS_D_26	48° 12′ 45′	'' N 123° 06	′35′′ W	PS_D_27	48° 10′ 33′	'' N 123° 23′ 03′′ W	11.2 Calallam	17	0	0	0	0	18	19.0	7.0	0.0	18	19.5	10.1	0.0
Tacoma_Sea	Departure	M	N	L27	PS_D_27	48° 10′ 33′	' N 123° 23	′03′′W	PS_D_28	48° 11′ 21′	'' N 123° 23′ 02′′ W	0.8 Calallam	8	0	0	0	0	10	12.0	7.0	0.0	10	11.0	10.1	0.0
Tacoma_Sea	Departure	X	N	L28a	PS_D_28	48° 11′ 21′	'' N 123° 23	′02′′W	VP_D_1	48° 13′ 18′	′′N 123° 26′ 59′′ W	3.2 Calallam	18	0	0	0	0	18	19.0	7.0	0.0	18	19.5	10.1	0.0
PortAngeles_Victo	oria Departure	T	N	L1	VP_D_1	48° 13′ 18′	′N 123° 26	′59′′W	VP_D_2	48° 14′ 41′	′′ N 123° 26′ 36′′ W	1.4 Calallam	SS	0	0	0	0	19.5	21.2	7.0	0.0	19.8	22.2	10.1	0.0
											tri 1 m.:	E0 E	3.7 00												

Total Distance 70.7 nm Note: SS - Service Speed

Puget Sound Emissions Inventory OGV-Routing: VICTORIA (NB1) to TACOMA

Lat/Long in WGS84 Datum

	Spe	eed by Linl	(knots)	
Fast	Fast	Medium	Slow	Very Slow
			Bulkers	
		Reefer	Tankers	

Route Arr/Dep Mode NPE Link ID Start WP Starting WP Lat/Lon End WP Ending Waypoint Lat/Lon Dist. County Cruise Auto Fishing Fishing Fishing NBI PortAngeles Arrival T N 1.1 VP_A_1 48° 13′ 55″ N 123° 30′ 34″ W VP_A_2 48° 12′ 05″ N 123° 28′ 55″ W 2.1 Calallam 18 0 0 0 0 0 0 0 0 0	DDAFT										_		DO /DO	T	
NB1_PortAngeles	DRAFT										(Containe	RO/RO	Log	
NB1_PortAngeles	Route	Arr/Dep	Mode	NPE	Link II	Start WP	Starting WP Lat/Lon	End WP	Ending Waypoint Lat/Lon	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
Sea_Tacoma Arrival M N L5 PS_A_5 48° 09′ 20″ N 123° 23′ 28″ W PS_A_6 48° 09′ 58″ N 123° 23′ 25″ W 0.6 Calallam 10 0 0 0 0 Sea_Tacoma Arrival X N L6 PS_A_6 48° 09′ 58″ N 123° 23′ 25″ W PS_A_7 48° 11′ 56″ N 123° 06′ 35″ W PS_A_7 48° 11′ 56″ N 123° 06′ 35″ W PS_A_8 48° 11′ 11″ N 122° 52′ 23″ W 9.5 Calallam SS 0	NB1_PortAngeles	Arrival	T	N	L1	VP_A_1	48° 13′ 55′′ N 123° 30′ 34′′ W	VP_A_2	48° 12′ 05′′ N 123° 28′ 55′′ W	2.1 Calallam	18	0	0	0	0
Sea_Tacoma Arrival X N L6 PS_A_6 48° 09′ 58″ N 123° 23′ 25″ W PS_A_7 48° 11′ 56″ N 123° 06′ 35″ W 11.4 Calallam 17 0	NB1_PortAngeles	Arrival	X	N	L2a	VP_A_2	48° 12′ 05′′ N 123° 28′ 55′′ W	PS_A_5	48° 09′ 20′′ N 123° 23′ 28′′ W	4.5 Calallam	16	0	0	0	0
Sea_Tacoma Arrival T N L7 PS_A_7 48° 11′ 56′ N 123° 06′ 35′ W PS_A_8 48° 11′ 11′ N 122° 52′ 23′ W 9.5 Calallam SS 0 0 0 0 Sea_Tacoma Arrival T N L8 PS_A_8 48° 11′ 11′ N 122° 52′ 23′ W PS_A_9 48° 10′ 57′ N 122° 48′ 01′ W 2.9 Jefferson SS 0 0 0 0 Sea_Tacoma Arrival T N L9 PS_A_9 48° 10′ 57′ N 122° 48′ 01′ W PS_A_10 48° 06′ 35″ N 122° 40′ 10″ W 6.8 Jefferson SS 0 0 0 Sea_Tacoma Arrival T N L10 PS_A_10 48° 06′ 35″ N 122° 40′ 10″ W PS_A_11 48° 01′ 08″ N 122° 38′ 08″ W 5.6 Jefferson SS 0 0 0 Sea_Tacoma Arrival T N L11 PS_A_11 48° 01′ 08″ N 122° 35′ 10″ W PS_A_11 48° 01′ 08″ N 122° 35′ 10″ W 40 40 18 Island SS 0 0 0 0 0 0 0	Sea_Tacoma	Arrival	M	N	L5	PS_A_5	48° 09′ 20′′ N 123° 23′ 28′′ W	PS_A_6	48° 09′ 58′′ N 123° 23′ 25′′ W	0.6 Calallam	10	0	0	0	0
Sea_Tacoma Arrival T N L8 PS_A_8 48° 11' 11'' N 122° 52' 23'' W PS_A_9 48° 10' 57'' N 122° 48' 01'' W PS_A_9 48° 10' 57'' N 122° 48' 01'' W PS_A_9 48° 10' 57'' N 122° 48' 01'' W PS_A_10 48° 06' 35'' N 122° 40' 10'' W PS_A_10 48° 06' 35'' N 122° 40' 10'' W PS_A_11 48° 01' 08'' N 122° 38' 08'' W PS_A_11 48° 01' 08'' N 122° 38' 08'' W PS_A_11 48° 01' 08'' N 122° 38' 08'' W PS_A_11 48° 01' 08'' N 122° 38' 08'' W PS_A_11 48° 01' 08'' N 122° 38' 08'' W PS_A_11 48° 01' 08'' N 122° 38' 08'' W PS_A_11 48° 01' 08'' N 122° 38' 08'' W PS_A_11 48° 01' 08'' N 122° 38' 08'' W PS_A_11 48° 01' 08'' N 122° 38' 08'' W PS_A_11 48° 01' 08'' N 122° 38' 08'' W PS_A_11 48° 01' 08'' N 122° 35' 10'' W PS_A_11 48° 01' 08'' N 122° 35' 10'' W PS_A_12 47° 57' 41'' N 122° 35' 10'' W 40 Island SS 0 0 0 Sea_Tacoma Arrival T N L12 PS_A_12 47° 57' 41'' N 122° 35' 10'' W PS_A_13 47° 56' 38'' N 122° 32' 57'' W PS_A_14 47° 55' 17'' N 122° 30' 06'' W PS_A_13 47° 56' 38'' N 122° 32' 57'' W PS	Sea_Tacoma	Arrival	X	N	L6	PS_A_6	48° 09′ 58′′ N 123° 23′ 25′′ W	PS_A_7	48° 11′ 56′′ N 123° 06′ 35′′ W	11.4 Calallam	17	0	0	0	0
Sea_Tacoma Arrival T N L9 PS_A_9 48° 10′ 57″ N 122° 48′ 01″ W PS_A_10 48° 06′ 35″ N 122° 40′ 10″ W 6.8 Jefferson SS 0 0 0 0 Sea_Tacoma Arrival T N L10 PS_A_10 48° 06′ 35″ N 122° 40′ 10″ W PS_A_11 48° 01′ 08″ N 122° 38′ 08″ W 5.6 Jefferson SS 0 0 0 0 Sea_Tacoma Arrival T N L11 PS_A_11 48° 01′ 08″ N 122° 38′ 08″ W PS_A_12 47° 57′ 41″ N 122° 35′ 10″ W 4.0 Island SS 0 <td>Sea_Tacoma</td> <td>Arrival</td> <td>Т</td> <td>N</td> <td>L7</td> <td>PS_A_7</td> <td>48° 11′ 56′′ N 123° 06′ 35′′ W</td> <td>PS_A_8</td> <td>48° 11′ 11′′ N 122° 52′ 23′′ W</td> <td>9.5 Calallam</td> <td>SS</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	Sea_Tacoma	Arrival	Т	N	L7	PS_A_7	48° 11′ 56′′ N 123° 06′ 35′′ W	PS_A_8	48° 11′ 11′′ N 122° 52′ 23′′ W	9.5 Calallam	SS	0	0	0	0
Sea_Tacoma Arrival T N L10 PS_A_10 48° 06′ 35″ N 122° 40′ 10″ W PS_A_11 48° 01′ 08″ N 122° 38′ 08″ W 5.6 Jefferson SS 0	Sea_Tacoma	Arrival	Т	N	L8	PS_A_8	48° 11′ 11′′ N 122° 52′ 23′′ W	PS_A_9	48° 10′ 57′′ N 122° 48′ 01′′ W	2.9 Jefferson	SS	0	0	0	0
Sea_Tacoma Arrival T N L11 PS_A_11 48° 01′ 08″ N 122° 38′ 08″ W PS_A_12 47° 57′ 41″ N 122° 35′ 10″ W 4.0 Island SS 0 0 0 0 Sea_Tacoma Arrival T N L12 PS_A_12 47° 57′ 41″ N 122° 35′ 10″ W PS_A_13 47° 56′ 38″ N 122° 32′ 57″ W 128° 32′ 57″ W 122° 32′ 32″ W 12	Sea_Tacoma	Arrival	Т	N	L9	PS_A_9	48° 10′ 57′′ N 122° 48′ 01′′ W	PS_A_10	48° 06′ 35′′ N 122° 40′ 10′′ W	6.8 Jefferson	SS	0	0	0	0
Sea_Tacoma Arrival T N L12 PS_A_12 47° 57′ 41″ N 122° 35′ 10″ W PS_A_13 47° 56′ 38″ N 122° 32′ 57″ W 1.8 Island SS 0 0 0 0 Sea_Tacoma Arrival T N L13 PS_A_13 47° 56′ 38″ N 122° 32′ 57″ W PS_A_14 47° 55′ 17″ N 122° 30′ 06″ W 2.3 Kitsap SS 0 0 0 Sea_Tacoma Arrival T N L14 PS_A_14 47° 55′ 17″ N 122° 30′ 06″ W PS_A_15 47° 45′ 54″ N 122° 26′ 45″ W 9.7 Kitsap SS 0 0 0 Sea_Tacoma Arrival T N L15 PS_A_15 47° 45′ 54″ N 122° 26′ 45″ W PS_A_16 47° 39′ 42″ N 122° 28′ 24″ W 6.3 Kitsap SS 0 0 0 Sea_Tacoma Arrival T N L16 PS_A_16 47° 39′ 42″ N 122° 28′ 24″ W PS_A_17 47° 34′ 32″ N 122° 27′ 32″ W 5.2 Kitsap 18 0 0 0 0 Sea_Tacoma Arrival T N <t< td=""><td>Sea_Tacoma</td><td>Arrival</td><td>Τ</td><td>N</td><td>L10</td><td>PS_A_10</td><td>48° 06′ 35′′ N 122° 40′ 10′′ W</td><td>PS_A_11</td><td>48° 01′ 08′′ N 122° 38′ 08′′ W</td><td>5.6 Jefferson</td><td>SS</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>	Sea_Tacoma	Arrival	Τ	N	L10	PS_A_10	48° 06′ 35′′ N 122° 40′ 10′′ W	PS_A_11	48° 01′ 08′′ N 122° 38′ 08′′ W	5.6 Jefferson	SS	0	0	0	0
Sea_Tacoma Arrival T N L13 PS_A_13 47° 56′ 38″ N 122° 32′ 57″ W PS_A_14 47° 55′ 17″ N 122° 30′ 06″ W 2.3 Kitsap SS 0 0 0 0 Sea_Tacoma Arrival T N L14 PS_A_14 47° 55′ 17″ N 122° 30′ 06″ W PS_A_15 47° 45′ 54″ N 122° 26′ 45″ W 9.7 Kitsap SS 0 0 0 Sea_Tacoma Arrival T N L15 PS_A_15 47° 45′ 54″ N 122° 26′ 45″ W PS_A_16 47° 39′ 42″ N 122° 28′ 24″ W 6.3 Kitsap SS 0 0 0 Sea_Tacoma Arrival T N L16 PS_A_16 47° 39′ 42″ N 122° 28′ 24″ W PS_A_17 47° 34′ 32″ N 122° 27′ 32″ W 5.2 Kitsap 18 0 0 0 Sea_Tacoma Arrival T N L17 PS_A_17 47° 34′ 32″ N 122° 27′ 32″ W PS_A_18 47° 31′ 51″ N 122° 26′ 34″ W 2.8 Kitsap 17 0 0 0 0 Sea_Tacoma Arrival T N <t< td=""><td>Sea_Tacoma</td><td>Arrival</td><td>Т</td><td>N</td><td>L11</td><td>PS_A_11</td><td>48° 01′ 08′′ N 122° 38′ 08′′ W</td><td>PS_A_12</td><td>47° 57′ 41′′ N 122° 35′ 10′′ W</td><td>4.0 Island</td><td>SS</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>	Sea_Tacoma	Arrival	Т	N	L11	PS_A_11	48° 01′ 08′′ N 122° 38′ 08′′ W	PS_A_12	47° 57′ 41′′ N 122° 35′ 10′′ W	4.0 Island	SS	0	0	0	0
Sea_Tacoma Arrival T N L14 PS_A_14 47° 55′ 17″ N 122° 30′ 06″ W PS_A_15 47° 45′ 54″ N 122° 26′ 45″ W 9.7 Kitsap SS 0 0 0 0 Sea_Tacoma Arrival T N L15 PS_A_15 47° 45′ 54″ N 122° 26′ 45″ W PS_A_16 47° 39′ 42″ N 122° 28′ 24″ W 6.3 Kitsap SS 0 0 0 Sea_Tacoma Arrival T N L16 PS_A_16 47° 39′ 42″ N 122° 28′ 24″ W PS_A_17 47° 34′ 32″ N 122° 27′ 32″ W 5.2 Kitsap 18 0 0 0 Sea_Tacoma Arrival T N L17 PS_A_17 47° 34′ 32″ N 122° 27′ 32″ W PS_A_18 47° 31′ 51″ N 122° 26′ 34″ W 2.8 Kitsap 17 0 0 0 Sea_Tacoma Arrival T N L18 PS_A_18 47° 31′ 51″ N 122° 26′ 34″ W PS_A_19 47° 26′ 44″ N 122° 24′ 45″ W 5.3 King 16 0 0 0 0	Sea_Tacoma	Arrival	Т	N	L12	PS_A_12	47° 57′ 41′′ N 122° 35′ 10′′ W	PS_A_13	47° 56′ 38′′ N 122° 32′ 57′′ W	1.8 Island	SS	0	0	0	0
Sea_Tacoma Arrival T N L15 PS_A_15 47° 45′ 54′′ N 122° 26′ 45′′ W PS_A_16 47° 39′ 42′′ N 122° 28′ 24′′ W 6.3 Kitsap SS 0 0 0 0 Sea_Tacoma Arrival T N L16 PS_A_16 47° 39′ 42′′ N 122° 28′ 24′′ W PS_A_17 47° 34′ 32′′ N 122° 27′ 32′′ W 5.2 Kitsap 18 0 0 0 0 Sea_Tacoma Arrival T N L17 PS_A_17 47° 34′ 32′′ N 122° 27′ 32′′ W PS_A_18 47° 31′ 51′′ N 122° 26′ 34′′ W 2.8 Kitsap 17 0 0 0 Sea_Tacoma Arrival T N L18 PS_A_18 47° 31′ 51′′ N 122° 26′ 34′′ W PS_A_19 47° 26′ 44′′ N 122° 24′ 45′′ W 5.3 King 16 0 0 0	Sea_Tacoma	Arrival	Т	N	L13	PS_A_13	47° 56′ 38′′ N 122° 32′ 57′′ W	PS_A_14	47° 55′ 17′′ N 122° 30′ 06′′ W	2.3 Kitsap	SS	0	0	0	0
Sea_Tacoma Arrival T N L16 PS_A_16 47° 39′ 42′′ N 122° 28′ 24′′ W PS_A_17 47° 34′ 32′′ N 122° 27′ 32′′ W 5.2 Kitsap 18 0 0 0 0 Sea_Tacoma Arrival T N L17 PS_A_17 47° 34′ 32′′ N 122° 27′ 32′′ W PS_A_18 47° 31′ 51′′ N 122° 26′ 34′′ W 2.8 Kitsap 17 0 0 0 Sea_Tacoma Arrival T N L18 PS_A_18 47° 31′ 51′′ N 122° 26′ 34′′ W PS_A_19 47° 26′ 44′′ N 122° 24′ 45′′ W 5.3 King 16 0 0 0	Sea_Tacoma	Arrival	Τ	N	L14	PS_A_14	47° 55′ 17′′ N 122° 30′ 06′′ W	PS_A_15	47° 45′ 54′′ N 122° 26′ 45′′ W	9.7 Kitsap	SS	0	0	0	0
Sea_Tacoma Arrival T N L17 PS_A_17 47° 34′ 32′′ N 122° 27′ 32′′ W PS_A_18 47° 31′ 51′′ N 122° 26′ 34′′ W 2.8 Kitsap 17 0 0 0 0 Sea_Tacoma Arrival T N L18 PS_A_18 47° 31′ 51′′ N 122° 26′ 34′′ W PS_A_19 47° 26′ 44′′ N 122° 24′ 45′′ W 5.3 King 16 0 0 0	Sea_Tacoma	Arrival	Т	N	L15	PS_A_15	47° 45′ 54′′ N 122° 26′ 45′′ W	PS_A_16	47° 39′ 42′′ N 122° 28′ 24′′ W	6.3 Kitsap	SS	0	0	0	0
Sea_Tacoma Arrival T N L18 PS_A_18 47° 31′ 51′′ N 122° 26′ 34′′ W PS_A_19 47° 26′ 44′′ N 122° 24′ 45′′ W 5.3 King 16 0 0 0	Sea_Tacoma	Arrival	Т	N	L16	PS_A_16	47° 39′ 42′′ N 122° 28′ 24′′ W	PS_A_17	47° 34′ 32′′ N 122° 27′ 32′′ W	5.2 Kitsap	18	0	0	0	0
	Sea_Tacoma	Arrival	Т	N	L17	PS_A_17	47° 34′ 32′′ N 122° 27′ 32′′ W	PS_A_18	47° 31′ 51′′ N 122° 26′ 34′′ W	2.8 Kitsap	17	0	0	0	0
Sea_Tacoma Arrival T N L19 PS_A_19 47° 26′ 44′′ N 122° 24′ 45′′ W PS_A_20 47° 23′ 09′′ N 122° 21′ 56′′ W 4.1 King 17 0 0 0	Sea_Tacoma	Arrival	Т	N	L18	PS_A_18	47° 31′ 51′′ N 122° 26′ 34′′ W	PS_A_19	47° 26′ 44′′ N 122° 24′ 45′′ W	5.3 King	16	0	0	0	0
	Sea_Tacoma	Arrival	Т	N	L19	PS_A_19	47° 26′ 44′′ N 122° 24′ 45′′ W	PS_A_20	47° 23′ 09′′ N 122° 21′ 56′′ W	4.1 King	17	0	0	0	0
Sea_Tacoma Arrival X Y L20 PS_A_20 47° 23′ 09′′ N 122° 21′ 56′′ W PS_A_21 47° 19′ 39′′ N 122° 27′ 52′′ W 5.3 King 14 0 0 0	Sea_Tacoma	Arrival	X	Y	L20	PS_A_20	47° 23′ 09′′ N 122° 21′ 56′′ W	PS_A_21	47° 19′ 39′′ N 122° 27′ 52′′ W	5.3 King	14	0	0	0	0
Sea_Tacoma Arrival M Y L21 PS_A_21 47° 19′ 39″ N 122° 27′ 52″ W PS_A_22 47° 19′ 10″ N 122° 28′ 05″ W 0.5 King 10 0 0 0	Sea_Tacoma	Arrival	M	Y	L21	PS_A_21	47° 19′ 39′′ N 122° 27′ 52′′ W	PS_A_22	47° 19′ 10′′ N 122° 28′ 05′′ W	0.5 King	10	0	0	0	0
Sea_Tacoma Arrival M Y L22 PS_A_22 47° 19′ 10′′ N 122° 28′ 05′′ W PS_A_23 47° 18′ 07′′ N 122° 27′ 41′′ W 1.1 Pierce 10 0 0 0	Sea_Tacoma	Arrival	M	Y	L22	PS_A_22	47° 19′ 10′′ N 122° 28′ 05′′ W	PS_A_23	47° 18′ 07′′ N 122° 27′ 41′′ W	1.1 Pierce	10	0	0	0	0

Total Distance 91.8 nm Note: SS - Service Speed

Note: Red numbers - engines off

Puget Sound Emissions Inventory OGV-Routing: TACOMA to VICTORIA (NB1)

Lat/Long in WGS84 Datum

Lat, Long III W Goo												Reefer	Tankers	
DRAFT										(Containe	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	Starting WP Lat/Lon	End WP	Ending Waypoint Lat/Lon	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
Tacoma_Sea	Departure	X	Y	L2	PS_D_2	47° 18′ 07′′ N 122° 27′ 41′′ W	PS_D_3	47° 19′ 20′′ N 122° 27′ 02′′ W	1.3 Pierce	10	0	0	0	0
Tacoma_Sea	Departure	X	Y	L3	PS_D_3	47° 19′ 20′′ N 122° 27′ 02′′ W	PS_D_4	47° 19′ 54′′ N 122° 26′ 03′′ W	0.9 Pierce	12	0	0	0	0
Tacoma_Sea	Departure	X	Y	L4	PS_D_4	47° 19′ 54′′ N 122° 26′ 03′′ W	PS_D_5	47° 23′ 04′′ N 122° 20′ 40′′ W	4.8 King	16	0	0	0	0
Tacoma_Sea	Departure	Т	N	L5	PS_D_5	47° 23′ 04′′ N 122° 20′ 40′′ W	PS_D_6	47° 26′ 56′′ N 122° 23′ 43′′ W	4.4 King	17	0	0	0	0
Tacoma_Sea	Departure	Т	N	L6	PS_D_6	47° 26′ 56′′ N 122° 23′ 43′′ W	PS_D_7	47° 34′ 32′′ N 122° 26′ 30′′ W	7.8 King	16	0	0	0	0
Tacoma_Sea	Departure	Т	N	L7	PS_D_7	47° 34′ 32′′ N 122° 26′ 30′′ W	PS_D_8	47° 35′ 55′′ N 122° 26′ 45′′ W	1.4 King	17	0	0	0	0
Tacoma_Sea	Departure	Τ	N	L8	PS_D_8	47° 35′ 55′′ N 122° 26′ 45′′ W	PS_D_9	47° 37′ 02′′ N 122° 26′ 56′′ W	1.1 Kitsap	20	0	0	0	0
Tacoma_Sea	Departure	Т	N	L9	PS_D_9	47° 37′ 02′′ N 122° 26′ 56′′ W	PS_D_10	47° 39′ 42′′ N 122° 27′ 25′′ W	2.7 King	22	0	0	0	0
Tacoma_Sea	Departure	Т	N	L10	PS_D_10	47° 39′ 42′′ N 122° 27′ 25′′ W	PS_D_11	47° 41′ 54′′ N 122° 26′ 47′′ W	2.3 King	SS	0	0	0	0
Tacoma_Sea	Departure	Т	N	L11	PS_D_11	47° 41′ 54′′ N 122° 26′ 47′′ W	PS_D_12	47° 45′ 52′′ N 122° 25′ 49′′ W	4.0 Kitsap	SS	0	0	0	0
Tacoma_Sea	Departure	Т	N	L12	PS_D_12	47° 45′ 52′′ N 122° 25′ 49′′ W	PS_D_13	47° 46′ 40′′ N 122° 26′ 04′′ W	0.8 King	SS	0	0	0	0
Tacoma_Sea	Departure	Т	N	L13	PS_D_13	47° 46′ 40′′ N 122° 26′ 04′′ W	PS_D_14	47° 48′ 06′′ N 122° 26′ 29′′ W	1.5 Snohomish	SS	0	0	0	0
Tacoma_Sea	Departure	Т	N	L14	PS_D_14	47° 48′ 06′′ N 122° 26′ 29′′ W	PS_D_15	47° 52′ 36′′ N 122° 28′ 08′′ W	4.6 Kitsap	SS	0	0	0	0
Tacoma_Sea	Departure	Τ	N	L15	PS_D_15	47° 52′ 36′′ N 122° 28′ 08′′ W	PS_D_16	47° 55′ 34′′ N 122° 29′ 11′′ W	3.1 Island	SS	0	0	0	0
Tacoma_Sea	Departure	Т	N	L16	PS_D_16	47° 55′ 34′′ N 122° 29′ 11′′ W	PS_D_17	47° 57′ 01′′ N 122° 32′ 03′′ W	2.4 Island	SS	0	0	0	0
Tacoma_Sea	Departure	Τ	N	L17	PS_D_17	47° 57′ 01′′ N 122° 32′ 03′′ W	PS_D_18	47° 58′ 07′′ N 122° 34′ 19′′ W	1.9 Island	SS	0	0	0	0
Tacoma_Sea	Departure	Т	N	L18	PS_D_18	47° 58′ 07′′ N 122° 34′ 19′′ W	PS_D_19	48° 02′ 01′′ N 122° 37′ 40′′ W	4.5 Island	SS	0	0	0	0
Tacoma_Sea	Departure	Τ	N	L19	PS_D_19	48° 02′ 01′′ N 122° 37′ 40′′ W	PS_D_20	48° 04′ 48′′ N 122° 38′ 31′′ W	2.8 Island	SS	0	0	0	0
Tacoma_Sea	Departure	Т	N	L20	PS_D_20	48° 04′ 48′′ N 122° 38′ 31′′ W	PS_D_21	48° 06′ 58′′ N 122° 39′ 13′′ W	2.2 Jefferson	SS	0	0	0	0
Tacoma_Sea	Departure	Т	N	L21	PS_D_21	48° 06′ 58′′ N 122° 39′ 13′′ W	PS_D_22	48° 07′ 51′′ N 122° 40′ 43′′ W	1.3 Jefferson	SS	0	0	0	0
Tacoma_Sea	Departure	Т	N	L22	PS_D_22	48° 07′ 51′′ N 122° 40′ 43′′ W	PS_D_23	48° 11′ 20′′ N 122° 46′ 47′′ W	5.3 Island	SS	0	0	0	0
Tacoma_Sea	Departure	Т	N	L23	PS_D_23	48° 11′ 20′′ N 122° 46′ 47′′ W	PS_D_24	48° 11′ 44′′ N 122° 48′ 45′′ W	1.4 Island	SS	0	0	0	0
Tacoma_Sea	Departure	T	N	L24	PS_D_24	48° 11′ 44′′ N 122° 48′ 45′′ W	PS_D_25	48° 11′ 57′′ N 122° 52′ 19′′ W	2.4 Jefferson	SS	0	0	0	0
Tacoma_Sea	Departure	Т	N	L25	PS_D_25	48° 11′ 57′′ N 122° 52′ 19′′ W	PS_D_26	48° 12′ 45′′ N 123° 06′ 35′′ W	9.5 Calallam	SS	0	0	0	0
Tacoma_Sea	Departure	X	N	L26	PS_D_26	48° 12′ 45′′ N 123° 06′ 35′′ W	PS_D_27	48° 10′ 33′′ N 123° 23′ 03′′ W	11.2 Calallam	18	0	0	0	0
Tacoma_Sea	Departure	M	N	L27	PS_D_27	48° 10′ 33′′ N 123° 23′ 03′′ W	PS_D_28	48° 11′ 21′′ N 123° 23′ 02′′ W	0.8 Calallam	10	0	0	0	0
Tacoma_Sea	Departure	X	N	L28a	PS_D_28	48° 11' 21'' N 123° 23' 02'' W	VP_D_1	48° 13′ 18′′ N 123° 26′ 59′′ W	3.2 Calallam	14	0	0	0	0
PortAngeles_Victori	a Departure	Т	N	L1	VP_D_1	48° 13′ 18′′ N 123° 26′ 59′′ W	VP_D_2	48° 14′ 41′′ N 123° 26′ 36′′ W	1.4 Calallam	16	0	0	0	0

Total Distance 91.1 nm Note: SS - Service Speed

Speed by Link (knots)

Bulkers

Very Slow

Fast Fast Medium Slow

Puget Sound Emissions Inventory OGV-Routing: VICTORIA (NB1) to EVERETT

Puget Sound	Emissio	ons In	vento			Spec	ed by Link	(knots)						
OGV-Routing: V	ICTORIA	(NB1)	to EV	ERETT						Fast	Fast	Medium	Slow	Very Slow
Lat/Long in WGS	84 Datum								•				Bulkers	
												Reefer	Tankers	
DRAFT											Containe	ı RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	Starting WP Lat/Lon	End WP	Ending Waypoint Lat/Lon	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
NB1_PortAngeles	Arrival	Т	N	L1	VP_A_1	48° 13′ 55′′ N 123° 30′ 34′′ W	VP_A_2	48° 12′ 05′′ N 123° 28′ 55′′ W	2.1 Calallam	18	0	0	0	0
NB1_PortAngeles	Arrival	X	N	L2a	VP_A_2	48° 12′ 05′′ N 123° 28′ 55′′ W	PS_A_5	48° 09′ 20′′ N 123° 23′ 28′′ W	4.5 Calallam	16	0	0	0	0
Sea_Tacoma	Arrival	M	N	L5	PS_A_5	48° 09′ 20′′ N 123° 23′ 28′′ W	PS_A_6	48° 09′ 58′′ N 123° 23′ 25′′ W	0.6 Calallam	8	0	0	0	0
Sea_Tacoma	Arrival	X	N	L6	PS_A_6	48° 09′ 58′′ N 123° 23′ 25′′ W	PS_A_7	48° 11′ 56′′ N 123° 06′ 35′′ W	11.4 Calallam	19	0	0	0	0
Sea_Tacoma	Arrival	Т	N	L7	PS_A_7	48° 11′ 56′′ N 123° 06′ 35′′ W	PS_A_8	48° 11′ 11′′ N 122° 52′ 23′′ W	9.5 Calallam	SS	0	0	0	0
Sea_Tacoma	Arrival	T	N	L8	PS_A_8	48° 11′ 11′′ N 122° 52′ 23′′ W	PS_A_9	48° 10′ 57′′ N 122° 48′ 01′′ W	2.9 Jefferson	SS	0	0	0	0
Sea_Tacoma	Arrival	T	N	L9	PS_A_9	48° 10′ 57′′ N 122° 48′ 01′′ W	PS_A_10	48° 06′ 35′′ N 122° 40′ 10′′ W	6.8 Jefferson	SS	0	0	0	0
Sea_Tacoma	Arrival	T	N	L10	PS_A_10	48° 06′ 35′′ N 122° 40′ 10′′ W	PS_A_11	48° 01′ 08′′ N 122° 38′ 08′′ W	5.6 Jefferson	SS	0	0	0	0
Sea_Tacoma	Arrival	T	N	L11	PS_A_11	48° 01′ 08′′ N 122° 38′ 08′′ W	PS_A_12	47° 57′ 41′′ N 122° 35′ 10′′ W	4.0 Island	SS	0	0	0	0
Sea_Tacoma	Arrival	T	N	L12	PS_A_12	47° 57′ 41′′ N 122° 35′ 10′′ W	PS_A_13	47° 56′ 38′′ N 122° 32′ 57′′ W	1.8 Island	SS	0	0	0	0
Sea_Tacoma	Arrival	T	N	L13	PS_A_13	47° 56′ 38′′ N 122° 32′ 57′′ W	PS_A_14	47° 55′ 17′′ N 122° 30′ 06′′ W	2.3 Kitsap	SS	0	0	0	0
PS_Everett	Arrival	X	N	L1a	PS_A_14	47° 55′ 17′′ N 122° 30′ 06′′ W	EV_A_2	47° 53′ 08′′ N 122° 29′ 06′′ W	2.3 Kitsap	18	0	0	0	0
PS_Everett	Arrival	X	N	L2	EV_A_2	47° 53′ 08′′ N 122° 29′ 06′′ W	EV_A_3	47° 51′ 05′′ N 122° 26′ 26′′ W	2.7 Kitsap	17	0	0	0	0
PS_Everett	Arrival	X	N	L3	EV_A_3	47° 51′ 05′′ N 122° 26′ 26′′ W	EV_A_4	47° 51′ 50′′ N 122° 23′ 43′′ W	2.0 Island	16	0	0	0	0
PS_Everett	Arrival	T	N	L4	EV_A_4	47° 51′ 50′′ N 122° 23′ 43′′ W	EV_A_5	47° 52′ 03′′ N 122° 22′ 51′′ W	0.6 Snohomis	15	0	0	0	0
PS_Everett	Arrival	T	Y	L5	EV_A_5	47° 52′ 03′′ N 122° 22′ 51′′ W	EV_A_6	47° 54′ 06′′ N 122° 20′ 54′′ W	2.4 Snohomis	15	0	0	0	0
PS_Everett	Arrival	T	Y	L6	EV_A_6	47° 54′ 06′′ N 122° 20′ 54′′ W	EV_A_7	47° 56′ 25′′ N 122° 19′ 35′′ W	2.5 Snohomis	15	0	0	0	0
PS_Everett	Arrival	X	Y	L7	EV_A_7	47° 56′ 25′′ N 122° 19′ 35′′ W	EV_A_8	47° 57′ 28′′ N 122° 19′ 10′′ W	1.1 Snohomis	14	0	0	0	0
PS_Everett	Arrival	M	Y	L8	EV_A_8	47° 57′ 28′′ N 122° 19′ 10′′ W	EV_A_9	47° 58′ 31′′ N 122° 16′ 42′′ W	2.0 Snohomis	10	0	0	0	0
PS_Everett	Arrival	M	Y	L9	EV_A_9	47° 58′ 31′′ N 122° 16′ 42′′ W	EV_A_10	47° 58′ 40′′ N 122° 14′ 15′′ W	1.3 Snohomis	7	0	0	0	0

Total Distance 68.5 nm Note: SS - Service Speed

Puget Sound Emissions Inventory OGV-Routing: VICTORIA (NB1) to PORT ANGELES

Puget Sound	Emissio	ns Inv		Spe	ed by Link	(knots)								
OGV-Routing: V	ICTORIA	(NB1)	to PO	RT ANGI	ELES					Fast	Fast	Medium	Slow	Very Slow
Lat/Long in WGS8	ut/Long in WGS84 Datum													
												Reefer	Tankers	
DRAFT											Containe	r RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	Starting WP Lat/Lon	End WP	Ending Waypoint Lat/Lon	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
NB1_PortAngeles	Arrival	Т	N	L1	VP_A_1	48° 13′ 55′′ N 123° 30′ 34′′ W	VP_A_2	48° 12′ 05′′ N 123° 28′ 55′′ W	2.1 Calallam	18	0	0	0	0
NB1_PortAngeles	Arrival	X	Y	L2a	VP_A_2	48° 12′ 05′′ N 123° 28′ 55′′ W	PS_A_5	48° 09′ 20′′ N 123° 23′ 28′′ W	4.5 Calallam	16	0	0	0	0
Sea_PortAngeles	Arrival	M	Y	L1a	PS_A_5	48° 09′ 20′′ N 123° 23′ 28′′ W	PA_A_2	48° 09′ 45′′ N 123° 23′ 25′′ W	0.4 Calallam	10	0	0	0	0
Sea_PortAngeles	Arrival	M	Y	L1	PA_A_2	48° 09′ 45′′ N 123° 23′ 25′′ W	PA_A_3	48° 08′ 21′′ N 123° 22′ 25′′ W	1.6 Calallam	8	0	0	0	0
Sea_PortAngeles	Arrival	M	Y	L2	PA_A_3	48° 08′ 21′′ N 123° 22′ 25′′ W	PA_A_4	48° 08′ 00′′ N 123° 23′ 48′′ W	1.0 Calallam	6	0	0	0	0

Total Distance 9.6 nm Note: SS - Service Speed

Puget Sound Emissions Inventory

Speed by Link (knots)

OGV-Routing: SEA to SEATTLE Lat/Long in WGS84 Datum

Fast Fast Medium Slow Very Slow Bulkers

												Reefer	Tankers		CR-1	CR-1	CR-1	CR-1	CR-2	CR-2	CR-2	CR-2
DRAFT											Containe	r RO/RO	Log		Speed	PL	SL	BL	Speed	PL	SL	BL
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	WP I	End WP aypoir	Dist.	County	Cruise	Auto	Fishing	Fishing	Fishing	knots	(MW)	(MW)	(MW)	knots	(MW)	(MW)	(MW)
Sea_Tacoma	Arrival	Т	N	L1	PS_A_1	48° 2	PS_A_2 48° 2	10.	7 Calallam	SS	SS	SS	SS	SS	22.0	27.3	7.0	0.0	22.7	31.4	10.1	0.0
Sea_Tacoma	Arrival	T	N	L2	PS_A_2	48° 2	PS_A_3 48° 1	35.9	9 Calallam	SS	SS	SS	SS	SS	22.0	27.3	7.0	0.0	22.7	31.4	10.1	0.0
Sea_Tacoma	Arrival	T	N	L3	PS_A_3	48° 1	PS_A_4 48° 1	15.4	4 Calallam	20	SS	SS	SS	SS	22.0	27.3	7.0	0.0	22.7	31.4	10.1	0.0
Sea_Tacoma	Arrival	X	N	L4	PS_A_4	48° 1	PS_A_5 48° 0'	6.9	9 Calallam	16	15	12	SS	SS	22.0	27.3	7.0	0.0	22.7	31.4	10.1	0.0
Sea_Tacoma	Arrival	M	N	L5	PS_A_5	48° 0	PS_A_6 48° 0'	0.0	6 Calallam	8	8	8	8	8	10.0	6.0	6.9	0.0	10.0	8.0	10.1	0.0
Sea_Tacoma	Arrival	X	N	L6	PS_A_6	48° 0	PS_A_7 48° 1	11.4	4 Calallam	16	18	16	12	SS	17.0	15.0	6.9	0.0	18.0	14.0	10.1	0.0
Sea_Tacoma	Arrival	T	N	L7	PS_A_7	48° 1	PS_A_8 48° 1	9.5	5 Calallam	SS	SS	SS	SS	SS	19.0	18.4	6.9	0.0	19.8	15.2	10.1	0.0
Sea_Tacoma	Arrival	T	N	L8	PS_A_8	48° 1	PS_A_9 48° 1	2.9	Jefferson	SS	SS	SS	SS	SS	19.0	18.4	6.9	0.0	19.8	15.2	10.1	0.0
Sea_Tacoma	Arrival	T	N	L9	PS_A_9	48° 1	PS_A_10 48° 0	6.8	8 Jefferson	SS	SS	SS	SS	SS	19.0	18.4	6.9	0.0	19.8	15.2	10.1	0.0
Sea_Tacoma	Arrival	T	N	L10	PS_A_10	48° 0	PS_A_11 48° 0	5.0	5 Jefferson	SS	SS	SS	SS	SS	18.0	16.1	6.9	0.0	19.8	15.2	10.1	0.0
Sea_Tacoma	Arrival	T	N	L11	PS_A_11	48° 0	PS_A_12 47° 5	4.0) Island	SS	SS	SS	SS	SS	18.0	16.1	6.9	0.0	16.8	15.2	10.1	0.0
Sea_Tacoma	Arrival	T	N	L12	PS_A_12	47° 5	PS_A_13 47° 5	1.8	8 Island	SS	SS	SS	SS	SS	18.0	16.1	6.9	0.0	16.8	15.2	10.1	0.0
Sea_Tacoma	Arrival	T	N	L13	PS_A_13	47° 5	PS_A_14 47° 5.	2.3	3 Kitsap	20	20	SS	SS	SS	18.0	16.1	6.9	0.0	16.8	15.2	10.1	0.0
Sea_Tacoma	Arrival	T	N	L14	PS_A_14	47° 5	PS_A_15 47° 4.	9.	7 Kitsap	17	16	SS	SS	SS	16.5	16.1	6.9	0.0	16.6	15.2	10.1	0.0
Sea_Tacoma	Arrival	T	Y	L15	PS_A_15	47° 4	PS_A_16 47° 3	6.3	3 Kitsap	16	16	13	SS	SS	16.5	16.1	6.9	0.0	16.6	15.2	10.1	0.0
PS_ElliottB	Arrival	X	Y	L1a	PS_A_16	47° 3	EB_A_2 47° 3	0.4	4 Kitsap	16	15	13	9	8	16.0	7.2	6.9	0.0	16.0	12.0	10.1	0.0
PS_ElliottB	Arrival	X	Y	L2	EB_A_2	47° 3	EB_A_3 47° 3	1.5	5 King	15	14	12	8	7	15.5	7.2	6.9	0.0	15.5	12.0	10.1	0.0
PS_ElliottB	Arrival	M	Y	L3	EB_A_3	47° 3	EB_A_4 47° 3	2.0	6 King	15	12	11	6	6	15.0	7.2	6.9	0.0	15.0	12.0	10.1	0.0

Total Distance 134.3 nm Note: SS - Service Speed

Puget Sound Emissions Inventory OGV-Routing: SEATTLE HARBOR Lat/Long in WGS84 Datum DRAFT

Speed by Link (knots)

Bulkers

Fast Medium Slow Very Slow

	DRAFT											Reefer	Tankers		CR-1	
										C	Contain	RO/RO	Log		Speed	
_	Route	To_Port	To_Pier	Arr/Dep nk l	Start WP	XР	End WP	Ending Waypoint Lat/Lon	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing	knots	
	PS_ElliottB	SEATTLE		Arrival	EB_A_4	47	Mode:	M	King							
	ElliottB_PS	SEATTLE		Departure	EB_D_1	47	NPE:	Y	King							

CR-2 CR-1 CR-1 CR-1 CR-2 CR-2 CR-2 PLSLBLSpeed PLSLBL(MW) (MW) (MW) knots (MW) (MW) (MW)

_	B SEATTLE		Arrival	EB_A_4	47		M	King													
	S SEATTLE		Departure	EB_D_1	47	NPE:	Y	King													
ALL ROU	JTES IN ANI	OUT GO	THROUGH EE	3_A_4 and E	B_D_	1 EXCEPT															
SALMON	I BAY	NORTH	ILAKE UNION																		
FOSS SH	IPYARD	SHILSH	OLE																		
Route	To_Port	To Pier	Arr/Dep nk l	Start WP	XР	End WP	Ending Waypoint Lat/I	on Dist. County		Containe	RO/RO	Log		Speed	PL	SL	BL	Speed	PL	SL	BL
	B SEATTLE		Arrival	EB A 4	47	EB WC 1	47° 35′ 52′′ N 122° 21′ 3′		0	6	6	6	6	0	0	0	0.0	0	0.0	0.0	0.0
_	B SEATTLE		Arrival	EB WC 1			47° 35′ 28′′ N 122° 21′ 0		0	4	4	4	4	0	0	0	0.0	0	0.0	0.0	0.0
	B SEATTLE		Arrival				47° 35′ 28′′ N 122° 21′ 0	0	0	2	2	2	2	0	0	0	0.0	0	0.0	0.0	0.0
1 3_Emoto	D SEATTLE	1 /	Allivai	EB_1D_4	4/	ED_D_1 17	47 33 28 IN 122 21 U	0 w 0.11 King	U					0	U	U	0.0	- 0	0.0	0.0	0.0
ElliottB D	S SEATTLE	17	Departure	EB B P17	47	ER TD 4	47° 35′ 28′′ N 122° 21′ 0	2" W. 0.11 King	0	2	2	2	2	0	0	0	0.0	0	0.0	0.0	0.0
	S SEATTLE		Departure	EB_B_III			47° 35′ 52′′ N 122° 21′ 3′	U	0	4	4	4	4	0	0	0	0.0	0	0.0	0.0	0.0
			1	EB_TD_4 EB_WC_1					0	7	7	7	7	0	0	0	0.0	0	0.0	0.0	0.0
Elliottb_P	S SEATTLE	1 /	Departure	ED_WC_I	4/	ED_D_I	47° 36′ 52′′ N 122° 23′ 2	1 W 1.54 King	U	/	/	/	/	U	U	U	0.0	U	0.0	0.0	0.0
DC EW	D CEATTE	4.5	4 . 1	ED 4 4	47	ED W/C 4	450 05/ 50// NT 4000 04/ 0	7// W 4 5 4 17.	0	,				0	0	0	0.0		0.0	0.0	0.0
	B SEATTLE		Arrival	EB_A_4		EB_WC_1	47° 35′ 52′′ N 122° 21′ 3′		0	6	6	6	6	0	0	0	0.0	0	0.0	0.0	0.0
_	B SEATTLE		Arrival	EB_WC_1			47° 35′ 23′′ N 122° 21′ 1	0	0	4	4	4	4	0	0	0	0.0	0	0.0	0.0	0.0
PS_Elliottl	B SEATTLE	15	Arrival	EB_TD_2	47	EB_B_P15	47° 35′ 17′′ N 122° 21′ 1	2′′ W 0.10 King	0	2	2	2	2	0	0	0	0.0	0	0.0	0.0	0.0
	S SEATTLE		Departure	EB_B_P15		EB_TD_2	47° 35′ 23′′ N 122° 21′ 1		0	2	2	2	2	0	0	0	0.0	0	0.0	0.0	0.0
	S SEATTLE		Departure			EB_WC_1			0	4	4	4	4	0	0	0	0.0	0	0.0	0.0	0.0
ElliottB_P	S SEATTLE	15	Departure	EB_WC_1	47	EB_D_1	47° 36′ 52′′ N 122° 23′ 2	1′′ W 1.54 King	0	7	7	7	7	0	0	0	0.0	0	0.0	0.0	0.0
PS_Elliottl	B SEATTLE	SHELL	Arrival	EB_A_4		EB_WC_1	47° 35′ 52′′ N 122° 21′ 3′	7′′ W 1.54 King	0	0	0	6	0	0	0	0	0.0	0	0.0	0.0	0.0
PS_Elliottl	B SEATTLE	SHELL	Arrival	EB_WC_1	47	EB_TD_2	47° 35′ 23′′ N 122° 21′ 1	2′′ W 0.56 King	0	0	0	4	0	0	0	0	0.0	0	0.0	0.0	0.0
PS_Elliottl	B SEATTLE	SHELL	Arrival	EB_TD_2	47	EB_SH_1	47° 35′ 20′′ N 122° 21′ 10	0′′ W 0.05 King	0	0	0	2	0	0	0	0	0.0	0	0.0	0.0	0.0
PS_Elliottl	B SEATTLE	SHELL	Arrival	EB_SH_1	47	EB_B_SH	47° 35′ 17′′ N 122° 21′ 10	0′′ W 0.06 King	0	0	0	1	0	0	0	0	0.0	0	0.0	0.0	0.0
ElliottB P	S SEATTLE	SHELL	Departure	EB B SH	47	EB SH 1	47° 35′ 20′′ N 122° 21′ 1	0′′ W 0.06 King	0	0	0	1	0	0	0	0	0.0	0	0.0	0.0	0.0
ElliottB P	S SEATTLE	SHELL	Departure	EB SH 1	47	EB TD 2	47° 35′ 23′′ N 122° 21′ 1		0	0	0	2	0	0	0	0	0.0	0	0.0	0.0	0.0
	S SEATTLE						47° 35′ 52′′ N 122° 21′ 3′	0	0	0	0	4	0	0	0	0	0.0	0	0.0	0.0	0.0
	S SEATTLE		Departure	EB_WC_1		EB_D_1	47° 36′ 52′′ N 122° 23′ 2		0	0	0	7	0	0	0	0	0.0	0	0.0	0.0	0.0
Limotti _1	0 00001111111	01111111	Departure	LD_	• • • • • • • • • • • • • • • • • • • •		17 30 32 11 122 23 2	. ,,,	-			'			•		0.0	•	0.0	0.0	0.0
PS Elliottl	B SEATTLE	RP	Arrival	EB A 4	47	EB WC 1	47° 35′ 52′′ N 122° 21′ 3′	7′′ W. 1.54 King	0	6	6	6	6	0	0	0	0.0	0	0.0	0.0	0.0
_	B SEATTLE		Arrival				47° 35′ 02′′ N 122° 21′ 3	O O	0	4	4	4	4	0	0	0	0.0	0	0.0	0.0	0.0
_	B SEATTLE		Arrival	EB_WC_1 EB_WC_2		EB_WC_2 EB B BP	47° 34′ 57′′ N 122° 21′ 3		0	2	2	2	2	0	0	0	0.0	0	0.0	0.0	0.0
1 3_Emoto	D SEMITE	DI	Allivai	ED_WC_2	4/	ED_D_DI	4/ 34 3/ 10 122 21 3	i w 0.11 King	U	2	2		2	U	U	U	0.0	U	0.0	0.0	0.0
Elli-ssD D	S SEATTLE	DD	Departure	EB B BP	47	EB WC 2	47° 35′ 02′′ N 122° 21′ 3	/'' W 0.11 IZ:	0	2	2	2	2	0	0	0	0.0	0	0.0	0.0	0.0
	S SEATTLE		Departure	EB_B_BF EB WC 2		EB_WC_2 EB_WC_1			0	4	4	4	4	0	0	0	0.0	0	0.0	0.0	0.0
_			1			EB_WC_1 EB_D_1			0	7	7	7	7	0	0	0	0.0	0	0.0	0.0	0.0
ElliottB_P	S SEATTLE	BP	Departure	EB_WC_I	4/	EB_D_I	47° 36′ 52′′ N 122° 23′ 2	I W 1.54 King	0	/	/	/	/	0	0	0	0.0	U	0.0	0.0	0.0
DC EU	D CDAMME	ENIODES	F1 A 1 1	ED 4 4		ED WC 4	4E0 0E7 E077 N. 4000 C17 N	7// W 4 5 4 72	0	,	,	,	,	^	0	0	0.0		0.0	0.0	0.0
_	B SEATTLE			EB_A_4			47° 35′ 52′′ N 122° 21′ 3′	O O	0	6	6	6	6	0	0	0	0.0	0	0.0	0.0	0.0
	B SEATTLE			EB_WC_1			47° 35′ 02′′ N 122° 21′ 30		0	4	4	4	4	0	0	0	0.0	0	0.0	0.0	0.0
PS_Elliottl	B SEATTLE	5-NORT	H Arrival	EB_WC_2	47	EB_B_T5N	47° 34′ 49′′ N 122° 21′ 4	0 W 0.22 King	0	2	2	2	2	0	0	0	0.0	0	0.0	0.0	0.0
THE TO T	O OF ACTIVE	ENTOR	UD	ED D Mer -		ED WIG 4	AEO OF / OO// 27 1000 5 : : :	(// W 0 00 TT	_		_	_					0.0		0.0	0.0	0.0
_	S SEATTLE		1				47° 35′ 02′′ N 122° 21′ 3		0	2	2	2	2	0	0	0	0.0	0	0.0	0.0	0.0
	S SEATTLE					EB_WC_1	47° 35′ 52′′ N 122° 21′ 3′		0	4	4	4	4	0	0	0	0.0	0	0.0	0.0	0.0
ElliottB_P	S SEATTLE	5-NORT	H Departure	EB_WC_1	47	EB_D_1	47° 36′ 52′′ N 122° 23′ 2	1′′ W 1.54 King	0	7	7	7	7	0	0	0	0.0	0	0.0	0.0	0.0
	B SEATTLE			EB_A_4	47	EB_WC_1	47° 35′ 52′′ N 122° 21′ 3′		0	6	6	6	6	0	0	0	0.0	0	0.0	0.0	0.0
	B SEATTLE			EB_WC_1		EB_WC_2	47° 35′ 02′′ N 122° 21′ 30		0	4	4	4	4	0	0	0	0.0	0	0.0	0.0	0.0
PS_Elliottl	B SEATTLE	5-CENTI	E Arrival	EB_WC_2	47	EB_B_T5C	47° 34′ 42′′ N 122° 21′ 4	1'' W 0.35 King	0	2	2	2	2	0	0	0	0.0	0	0.0	0.0	0.0
ElliottB_P	S SEATTLE	5-CENTI	E Departure	EB_B_T5C	47	EB_WC_2	47° 35′ 02′′ N 122° 21′ 3	6′′ W 0.35 King	0	2	2	2	2	0	0	0	0.0	0	0.0	0.0	0.0
	S SEATTLE					EB_WC_1	47° 35′ 52′′ N 122° 21′ 3′		0	4	4	4	4	0	0	0	0.0	0	0.0	0.0	0.0
ElliottR D	C CEATTE	5 CENTTI	Donoetireo	ER WC 1	17	ER D 1	47° 36′ 52′′ NT 122° 23′ 2	1" W 1 54 King	0	7	7	7	7	0	0	0	0.0	Λ	0.0	0.0	0.0
								R-28													

Puget Sound Emissions Inventory OGV-Routing: SEATTLE HARBOR Lat/Long in WGS84 Datum

DC ElliottR CEATTLE 20.2

Speed by Link (knots)

Fast Fast Medium Slow Very Slow Bulkers

DRAFT	n WGS84 Dat	um										Tankers		CR-1	CR-1	CR-1	CR-1	CR-2	CR-2	CR-2	CR-2
Route	To_Port	To_Pier	Arr/Dep nk l	Start WP	WP	End WP	Ending Waypoint Lat/Lon	Dist. County			RO/RO Fishing	_	Fishing	Speed knots	PL (MW)	SL (MW)	BL (MW)	Speed knots	PL (MW)	SL (MW)	BL (MW)
PS_ElliottE	SEATTLE	5-SOUTH	H Arrival	EB_A_4	47	EB_WC_1	47° 35′ 52′′ N 122° 21′ 37′′	0	0	6	6	6	6	0	0	0	0.0	0	0.0	0.0	0.0
_	SEATTLE SEATTLE	5-SOUTH		EB_WC_1 EB WC 2		EB_WC_2 EB_B_T5S	47° 35′ 02′′ N 122° 21′ 36′′′ 47° 34′ 32′′ N 122° 21′ 41′′′		0	4 2	4 2	4 2	4 2	0	0	0	0.0	0	0.0	0.0	0.0
13_13110((1.	0 315/111115	3-30011	1 Milivai	EB_WC_2	47	ED_D_133	47 34 32 IN 122 21 41	w 0.30 King	U	2	2		2	U	0	0	0.0	U	0.0	0.0	0.0
	SEATTLE SEATTLE					EB_WC_2 EB_WC_1	47° 35′ 02′′ N 122° 21′ 36′′′ 47° 35′ 52′′ N 122° 21′ 37′′′		0	2 4	2 4	2 4	2 4	0	0	0	0.0	0	0.0	0.0	0.0
	SEATTLE SEATTLE						47° 36′ 52′′ N 122° 23′ 21′′′ 47° 36′ 52′′ N 122° 23′ 21′′′	0	0	7	7	7	7	0	0	0	0.0	0	0.0	0.0	0.0
			•																		
PS_ElliottE	SEATTLE	KINDER	Arrival	EB_A_4	47	EB_EC_1	47° 35′ 48′′ N 122° 20′ 41′′	W 2.08 King	0	6	6	6	6	0	0	0	0.0	0	0.0	0.0	0.0
PS_ElliottE	SEATTLE	KINDER	Arrival	EB_EC_1	47	EB_B_KM	47° 35′ 23′′ N 122° 20′ 45′′′	W 0.42 King	0	2	2	2	2	0	0	0	0.0	0	0.0	0.0	0.0
ElliottB_PS	SEATTLE	KINDER	Departure	EB_B_KM	47	EB_EC_1	47° 35′ 48′′ N 122° 20′ 41′′	W 0.42 King	0	3	3	3	3	0	0	0	0.0	0	0.0	0.0	0.0
ElliottB_PS	SEATTLE	KINDER	Departure	EB_EC_1	47	EB_D_1	47° 36′ 52′′ N 122° 23′ 21′′′	W 2.08 King	0	7	7	7	7	0	0	0	0.0	0	0.0	0.0	0.0
_	SEATTLE	18-1	Arrival	EB_A_4	47	EB_EC_1	47° 35′ 48′′ N 122° 20′ 41′′′	0	0	6	6	6	6	0	0	0	0.0	0	0.0	0.0	0.0
PS_Elliotte	SEATTLE	18-1	Arrival	EB_EC_1	4/	EB_B_T181	47° 35′ 18′′ N 122° 20′ 45′′′	W U.51 King	0	3	3	3	3	0	0	0	0.0	0	0.0	0.0	0.0
	SEATTLE	18-1	Departure	EB_B_T181		EB_EC_1	47° 35′ 48′′ N 122° 20′ 41′′′		0	3	3	3 7	3 7	0	0	0	0.0	0	0.0	0.0	0.0
ElhottB_PS	SEATTLE	18-1	Departure	EB_EC_1	47	EB_D_1	47° 36′ 52′′ N 122° 23′ 21′′′	W 2.08 King	0	/	/	/	/	0	0	0	0.0	0	0.0	0.0	0.0
Do Fill	CEATHER.	10.0		ED 4 4	477	ED EC 4	450 057 4077 N. 4000 007 4477	A 000 IE.			,			0	0	0	0.0		0.0	0.0	0.0
_	SEATTLE SEATTLE	18-2 18-2	Arrival Arrival	EB_A_4 EB_EC_1		EB_EC_1 EB_B_T182	47° 35′ 48′′ N 122° 20′ 41′′′ 47° 35′ 06′′ N 122° 20′ 45′′′		0	6 3	6 3	6 3	6	0	0	0	0.0	0 0	0.0	0.0	0.0
				ED D ELOS																	
	SEATTLE SEATTLE	18-2 18-2	Departure Departure	EB_B_T182 EB_EC_1	47 47	EB_EC_1 EB_D_1	47° 35′ 48″ N 122° 20′ 41″′ 47° 36′ 52″ N 122° 23′ 21″′	0	0	3 7	3 7	3 7	3 7	0	0	0	0.0	0	0.0	0.0	0.0
			*																		
PS ElliottE	SEATTLE	18-3	Arrival	EB_A_4	47	EB_EC_1	47° 35′ 48″ N 122° 20′ 41″	W 2.08 King	0	6	6	6	6	0	0	0	0.0	0	0.0	0.0	0.0
_	SEATTLE	18-3	Arrival	EB_EC_1			47° 34′ 55′′ N 122° 20′ 45′′′		0	3	3	3	3	0	0	0	0.0	0	0.0	0.0	0.0
ElliottB PS	SEATTLE	18-3	Departure	EB_B_T183	47	EB EC 1	47° 35′ 48″ N 122° 20′ 41″	W 0.89 King	0	3	3	3	3	0	0	0	0.0	0	0.0	0.0	0.0
	SEATTLE		Departure	EB_EC_1			47° 36′ 52′′ N 122° 23′ 21′′′		0	7	7	7	7	0	0	0	0.0	0	0.0	0.0	0.0
_	SEATTLE	18-4	Arrival	EB_A_4	47	EB_EC_1	47° 35′ 48′′ N 122° 20′ 41′′		0	6	6	6	6	0	0	0	0.0	0	0.0	0.0	0.0
PS_ElliottE	SEATTLE	18-4	Arrival	EB_EC_1	47	EB_B_T184	47° 34′ 44′′ N 122° 20′ 45′′′	W 1.08 King	0	3	3	3	3	0	0	0	0.0	0	0.0	0.0	0.0
	SEATTLE	18-4	Departure	EB_B_T184			47° 35′ 48′′ N 122° 20′ 41′′′		0	3	3	3	3	0	0	0	0.0	0	0.0	0.0	0.0
ElliottB_PS	S SEATTLE	18-4	Departure	EB_EC_1	47	EB_D_1	47° 36′ 52′′ N 122° 23′ 21′′′	W 2.08 King	0	7	7	7	7	0	0	0	0.0	0	0.0	0.0	0.0
Do FIE D	or Arriver of	10.5		T.D. I. (.=	ED DO 4	150 051 101/37 1000 001 1111	W													
_	SEATTLE SEATTLE	18-5 18-5	Arrival Arrival	EB_A_4 EB_EC_1	47 47	EB_EC_1 EB B T185	47° 35′ 48′′ N 122° 20′ 41′′′ 47° 34′ 34′′ N 122° 20′ 45′′′		0	6	6	6	6	0	0	0	0.0	0	0.0	0.0	0.0
_	S SEATTLE S SEATTLE	18-5 18-5	Departure Departure	EB_B_T185 EB_EC_1	47 47	EB_EC_1 EB_D_1	47° 35′ 48″ N 122° 20′ 41″′ 47° 36′ 52″ N 122° 23′ 21″′	0	0	3 7	3 7	3 7	3 7	0	0	0	0.0	0	0.0	0.0	0.0
			T																		
PS ElliottF	SEATTLE	20-1	Arrival	EB A 4	47	EB EC 1	47° 35′ 48′′ N 122° 20′ 41′′′	W 2.08 King	0	6	6	6	6	0	0	0	0.0	0	0.0	0.0	0.0
_	SEATTLE		Arrival	EB_EC_1			47° 34′ 55′′ N 122° 20′ 45′′′		0	3	3	3	3	0	0	ů	0.0	0	0.0	0.0	0.0
ElliottB PS	SEATTLE	20-1	Departure	EB B T201	47	EB EC 1	47° 35′ 48′′ N 122° 20′ 41′′′	W 0.89 King	0	3	3	3	3	0	0	0	0.0	0	0.0	0.0	0.0
_	SEATTLE		Departure	EB_EC_1		EB_D_1	47° 36′ 52′′ N 122° 23′ 21′′′		0	7	7	7	7	0	0	Ů	0.0	0	0.0	0.0	0.0

ER A A A7 ER EC 1 A70 35' A8" NI 1000 00' A1" W 2 08 Vinc

Speed by Link (knots)

ast Fast Medium Slow Very Slow

Bulkers

DRAFT Reefer Tankers CR-1 CR-1 CR-1 CR-1 CR-2 CR-2 CR-2 CR-2 Contain RO/RO SL Log Speed PLSL BLSpeed PLBLTo_Port To_Pier Arr/Dep nk l Start WP WP End WP Ending Waypoint Lat/Lon Dist. County Cruise Auto Fishing Fishing Fishing (MW) (MW) (MW) (MW) (MW) (MW) Route knots knots ElliottB PS SEATTLE Departure EB B T202 47 EB EC 1 47° 35′ 48′′ N 122° 20′ 41′′ W 0.89 King 0 0.0 0 0.0 0.0 0.0 ElliottB_PS SEATTLE 20-2 47° 36′ 52′′ N 122° 23′ 21′′ W 2.08 King 0.0 Departure EB_EC_1 47 EB_D_1 0.0 0 0.0 0.0 0 47° 35′ 48″ N 122° 20′ 41″ W 2.08 King PS ElliottB SEATTLE 25-NORT Arrival EB A 4 EB EC 1 0.0 0.0 0.0 0.0 25-NORT Arrival 47 EB EC 2 47° 34′ 46′′ N 122° 20′ 39′′ W 1.04 King 0.0 PS ElliottB SEATTLE EB EC 1 0 0 0 0 0.0 0.0 0.0 EB_EC_2 47 EB_B_T25N 47° 34′ 37″ N 122° 20′ 35″ W 0.15 King PS_ElliottB SEATTLE 25-NORT Arrival 0 0 0 0.0 0 0.0 0.0 0.0 ElliottB_PS SEATTLE 25-NORT Departure EB_B_T25N 47 EB_EC_2 47° 34′ 46′′ N 122° 20′ 39′′ W 0.15 King 0 0.0 0 0.0 0.0 0.0 0 0 ElliottB_PS SEATTLE 25-NORT Departure EB EC 2 47 EB_EC_1 47° 35′ 48′′ N 122° 20′ 41′′ W 1.04 King 0 0 0.0 0.0 0.0 0.0 ElliottB_PS SEATTLE 25-NORT Departure EB_EC_1 47 EB_D_1 47° 36′ 52′′ N 122° 23′ 21′′ W 2.08 King 0 0.0 0 0.0 0 0 0.0 0.0 PS ElliottB SEATTLE 25-SOUTI Arrival EB EC 1 47° 35′ 48′′ N 122° 20′ 41′′ W 2.08 King EB A 4 0.0 0 0.0 0.0 0.0 PS ElliottB SEATTLE 25-SOUTI Arrival EB EC 1 47 EB EC 2 47° 34′ 46′′ N 122° 20′ 39′′ W 1.04 King 0 0 0.0 0 0.0 0.0 0.0 PS ElliottB SEATTLE 25-SOUTI Arrival EB EC 2 47 EB B T25S 47° 34′ 31′′ N 122° 20′ 35′′ W 0.25 King 0 0 0 0.0 0 0.0 0.0 0.0 ElliottB_PS SEATTLE 25-SOUTI Departure EB B T25S 47 EB EC 2 47° 34′ 46′′ N 122° 20′ 39′′ W 0.25 King 0.0 0.0 0.0 0.0 ElliottB PS SEATTLE 25-SOUTI Departure EB EC 2 47 EB EC 1 47° 35′ 48′′ N 122° 20′ 41′′ W 1.04 King 0 0 0 0.0 0 0.0 0.0 0.0 ElliottB PS SEATTLE 25-SOUTI Departure EB EC 1 EB D 1 47° 36′ 52′′ N 122° 23′ 21′′ W 2.08 King 0.0 0.0 0.0 0.0 PS_ElliottB SEATTLE 30-NORT Arrival 47 EB_EC_1 47° 35′ 48′′ N 122° 20′ 41′′ W 2.08 King 0.0 2.6 10.5 0.0 6 6 PS ElliottB SEATTLE 30-NORT Arrival EB EC 1 47 EB EC 3 47° 35′ 12′′ N 122° 20′ 39′′ W 0.61 King 4 3 0.0 3 0.5 10.5 4 0.0 PS_ElliottB SEATTLE 30-NORT Arrival EB_EC_3 47 EB_B_T30N 47° 35′ 07" N 122° 20′ 35" W 0.09 King 0.0 0.4 10.5 0.0 ElliottB_PS SEATTLE 30-NORT Departure EB B T30N 47 EB EC 3 47° 35′ 12′′ N 122° 20′ 39′′ W 0.09 King 0.0 3 10.1 6.0 0.0 5 5 ElliottB_PS SEATTLE 30-NORT Departure EB_EC_3 47 EB_EC_1 47° 35′ 48″ N 122° 20′ 41″ W 0.61 King 4 4 5 0.0 10.1 4 6.0 0.0 ElliottB_PS SEATTLE 30-NORT Departure EB_EC_1 47 EB_D_1 47° 36′ 52′′ N 122° 23′ 21′′ W 2.08 King 10 0.0 12.1 10.1 0.0 PS ElliottB SEATTLE 30-SOUTI Arrival EB A 4 47 EB EC 1 47° 35′ 48′′ N 122° 20′ 41′′ W 2.08 King 10.5 4 2.6 0.0 PS ElliottB SEATTLE 30-SOUTI Arrival EB EC 1 47 EB EC 3 47° 35′ 12′′ N 122° 20′ 39′′ W 0.61 King 0.0 3 0.5 10.5 0.0 PS_ElliottB SEATTLE 30-SOUTI Arrival EB EC 3 47 EB B T30S 47° 34′ 57′′ N 122° 20′ 35′′ W 0.25 King 0.0 0.4 10.5 0.0 30-SOUTI Departure EB_B_T30S 47 EB_EC_3 47° 35′ 12′′ N 122° 20′ 39′′ W 0.25 King ElliottB_PS SEATTLE 0.0 3 6.0 10.1 0.0 ElliottB_PS SEATTLE 30-SOUTI Departure EB_EC_3 47 EB_EC_1 47° 35′ 48′′ N 122° 20′ 41′′ W 0.61 King 5 0.0 5 6.0 10.1 0.0 30-SOUTI Departure EB_EC_1 47 EB_D_1 47° 36′ 52′′ N 122° 23′ 21′′ W 2.08 King 10 12.1 ElliottB_PS SEATTLE 0.0 10.1 0.0 PS_ElliottB SEATTLE EB A 4 47 EB_FS_1 47° 36′ 25′′ N 122° 21′ 14′′ W 1.5 King 0.0 0 0.0 0.0 0.0 Arrival 5 47° 35′ 43′′ N 122° 20′ 32′′ W 0.84 King 0 0.0 0 0.0 PS ElliottB SEATTLE 37 Arrival EB ES 1 47 EB FS 2 0 3 3 0 0 0.0 0.0 PS_ElliottB SEATTLE 37 Arrival EB_FS_2 47 EB_B_T37 47° 35′ 35′′ N 122° 20′ 33′′ W 0.13 King 0 0 0 0.0 0 0.0 0.0 0.0 ElliottB_PS SEATTLE 37 Departure 47 EB FS 2 47° 35′ 43′′ N 122° 20′ 32′′ W 0.13 King 0.0 0 0.0 0.0 0.0 ElliottB_PS SEATTLE 37 Departure 47 EB FS 1 47° 36′ 25′′ N 122° 21′ 14′′ W 0.84 King 0 0.0 0 0.0 0.0 0.0 ElliottB_PS SEATTLE 37 Departure EB ES 1 EB_D_1 47° 36′ 52′′ N 122° 23′ 21′′ W 1.5 King 0.0 0 0.0 0.0 0.0 PS_ElliottB SEATTLE 46 Arrival EB_FS_1 47° 36′ 25′′ N 122° 21′ 14′′ W 1.5 King 0 5 5 5 0 0 0.0 0 0.0 0.0 0.0 47° 35′ 56′′ N 122° 20′ 30′′ W 0.7 King PS_ElliottB SEATTLE 46 EB_FS_1 47 EB_FN_1 0 0 0 0.0 0 0.0 0.0 Arrival 0 0.0 PS_ElliottB SEATTLE EB_FN_1 47 EB_B_T46 47° 35′ 50′′ N 122° 20′ 27′′ W 0.11 King 0 0 0.0 0.0 0.0 Arrival 0 0 0 0.0 ElliottB_PS SEATTLE Departure EB FN 1 47° 35′ 56′′ N 122° 20′ 30′′ W 0.11 King 0.0 0.0 0.0 0.0 ElliottB_PS SEATTLE Departure EB_FN_1 47 EB_FS_1 47° 36′ 25′′ N 122° 21′ 14′′ W 0.7 King 0 0 0 0 0.0 0 0.0 0.0 0.0 EB D 1 47° 36′ 52′′ N 122° 23′ 21′′ W 1.5 King ElliottB_PS SEATTLE Departure EB FS 1 47 0 0.0 0 0.0 0.0 0.0

Speed by Link (knots)

Fast Mediur

m	Slow	Very Slow	
	Bulkers		

DRAFT Reefer Tankers CR-1 CR-1 CR-1 CR-1 CR-2 CR-2 CR-2 CR-2 Contain RO/RO SL Log Speed PLSL BLSpeed PLBLTo_Pier Arr/Dep nk l Start WP WP End WP Ending Waypoint Lat/Lon Dist. County Cruise Auto Fishing Fishing Fishing (MW) (MW) (MW) (MW) (MW) (MW) Route To Port knots knots 47° 36′ 39″ N 122° 21′ 00″ W 0.13 King PS_ElliottB SEATTLE Arrival 47 EB B T661 0.0 0.0 0.0 0.0 ElliottB_PS SEATTLE 66-1 EB_B_T661 47 EB_CT_1 47° 36′ 31′′ N 122° 20′ 57′′ W 0.13 King 0.0 Departure 0.0 0 0.0 0.0 0 47° 36′ 52′′ N 122° 23′ 21′′ W 1.66 King ElliottB_PS SEATTLE 66-1 Departure EB_CT_1 47 EB_D_1 0.0 0.0 0.0 0.0 PS ElliottB SEATTLE EB CT 1 47° 36′ 31′′ N 122° 20′ 57′′ W 1.66 King 0.0 0.0 PS_ElliottB SEATTLE Arrival 47 EB_B_T662 47° 36′ 37′′ N 122° 20′ 57′′ W 0.1 King 0 0.0 0 0.0 0.0 0.0 ElliottB_PS SEATTLE 66-2 Departure EB B T662 47 EB_CT_1 47° 36′ 31′′ N 122° 20′ 57′′ W 0.1 King 2 0 0 0.0 0 0.0 0.0 0.0 0.0 ElliottB_PS SEATTLE Departure EB_D_1 47° 36′ 52′′ N 122° 23′ 21′′ W 1.66 King 0 0.0 0.0 0.0 PS_ElliottB SEATTLE 47 EB CT 1 47° 36′ 31′′ N 122° 20′ 57′′ W 1.66 King 0.0 0 0.0 0.0 47 EB B T663 47° 36′ 36′′ N 122° 20′ 54′′ W 0.08 King PS ElliottB SEATTLE Arrival 0.0 0.0 0.0 0.0 ElliottB PS SEATTLE 66-3 Departure EB CT 1 47° 36′ 31′′ N 122° 20′ 57′′ W 0.08 King 0.0 0.0 0.0 0.0 ElliottB_PS SEATTLE EB CT 1 EB_D_1 47° 36′ 52′′ N 122° 23′ 21′′ W 1.66 King 0.0 Departure 0 0.0 0 0.0 0.0 PS_ElliottB SEATTLE 66-4 47 EB CT 1 47° 36′ 31′′ N 122° 20′ 57′′ W 1.66 King 0.0 Arrival EB A 4 0.0 0.0 0.0 EB CT 1 47 EB B T664 47° 36′ 34′′ N 122° 20′ 52′′ W 0.07 King PS_ElliottB SEATTLE Arrival 0.0 0 0.0 0.0 0.0 ElliottB_PS SEATTLE EB_CT_1 47° 36′ 31′′ N 122° 20′ 57′′ W 0.07 King 0.0 0.0 Departure 0 0.0 0.0 ElliottB_PS SEATTLE EB CT 1 EB D 1 47° 36′ 52′′ N 122° 23′ 21′′ W 1.66 King 0.0 0.0 0.0 0.0 Departure PS_ElliottB SEATTLE 66-N EB A 4 47 EB CT 1 47° 36′ 31′′ N 122° 20′ 57′′ W 1.66 King 0 0.0 0.0 0.0 Arrival 6 4 0 0.0 PS_ElliottB SEATTLE EB_CT_1 47 EB_B_T66N 47° 36′ 41′′ N 122° 21′ 03′′ W 0.17 King Arrival 0.00 0.0 0.0 0.0 ElliottB_PS SEATTLE Departure EB_B_T66N 47 EB_CT_1 47° 36′ 31′′ N 122° 20′ 57′′ W 0.17 King 0.0 0 0.0 0.0 0.0 ElliottB_PS SEATTLE 66-N Departure EB CT 1 47 EB D 1 47° 36′ 52′′ N 122° 23′ 21′′ W 1.66 King 0.0 0.0 0.0 0.0 YACHTS ONLY Yachts only 47° 36′ 31′′ N 122° 20′ 57′′ W 1.66 King PS ElliottB SEATTLE EB MARI Arrival 47 EB CT 1 0.0 0.0 0.0 47° 36′ 33′′ N 122° 20′ 44′′ W 0.14 King 0 0 0 0 0 0.0 0 0.0 PS_ElliottB SEATTLE EB MARI Arrival EB CT 1 47 EB_EM_1 0 0 0.0 0.0 47° 36′ 36″ N 122° 20′ 50″ W 0.09 King PS_ElliottB SEATTLE EB MARI Arrival EB_EM_1 47 EB_B_EM 0.0 0.0 0.0 0.0 ElliottB_PS SEATTLE EB MARII Departure EB_B_EM 47 EB_EM_1 47° 36′ 33′′ N 122° 20′ 44′′ W 0.09 King 0.0 0.0 0.0 0.0 EB CT 1 0 0.0 ElliottB PS SEATTLE EB MARI Departure EB EM 1 47 47° 36′ 31′′ N 122° 20′ 57′′ W 0.14 King 0 0 0 0 0.0 0.0 0.0 ElliottB_PS SEATTLE 0.0 EB MARI Departure EB_D_1 47° 36′ 52′′ N 122° 23′ 21′′ W 1.66 King 0.0 0.0 0.0 PS ElliottB SEATTLE 86 EB A 4 47 EB GE 1 47° 37′ 22′′ N 122° 22′ 14′′ W 0.9 King 0.0 0 0.0 Arrival 0 0 0 0.0 PS_ElliottB SEATTLE 86 EB_GE_1 47 EB_B_T86 47° 37′ 25′′ N 122° 22′ 14′′ W 0.04 King 0 0 0 0 0 0.0 0 0.0 0.0 0.0 Arrival ElliottB PS SEATTLE 86 Departure EB B T86 47 EB GE 1 47° 37′ 22′′ N 122° 22′ 14′′ W 0.04 King 0 0 2 0 0 0 0.0 0 0.0 0.0 0.0 ElliottB_PS SEATTLE 86 Departure 47 EB_D_1 47° 36′ 52′′ N 122° 23′ 21′′ W 0.9 King 0.0 0.0 0.0 0.0 PS ElliottB SEATTLE 90-3 Arrival 47 EB FE 1 47° 37′ 26′′ N 122° 22′ 45′′ W 0.69 King 0.0 0.0 0.0 0.0 EB A 4 PS_ElliottB SEATTLE Arrival EB_FE_1 47 EB_B_T903 47° 37′ 47′′ N 122° 22′ 46′′ W 0.35 King 0 0.0 0 0.0 0.0 0.0 ElliottB_PS SEATTLE 90-3 EB_B_T903 47 EB_FE_1 47° 37′ 26′′ N 122° 22′ 45′′ W 0.04 King 0.0 Departure 0.0 0 0.0 0.0 47° 36′ 52′′ N 122° 23′ 21′′ W 0.9 King ElliottB_PS SEATTLE 90-3 Departure EB FE 1 47 EB D 1 0.0 0 0.0 0.0 0.0 PS ElliottB SEATTLE 47° 37′ 26′′ N 122° 22′ 45′′ W 0.69 King 0 90-3&7 Arrival 47 EB FE 1 0 0.0 0.0 0.0 0.0 PS_ElliottB SEATTLE Arrival EB FE 1 47 EB_B_T9037 47° 37′ 39′′ N 122° 22′ 45′′ W 0.21 King 0.0 0.0 0.0 0.0

Puget Sound Emissions Inventory OGV-Routing: SEATTLE HARBOR Lat/Long in WGS84 Datum

Speed by Link (knots)

Bulkers

CR-1 CR-1 CR-1 CR-2 CR-2 CR-2 CR-2

DRAFT

Fast Medium Slow Very Slow Reefer Tankers

Route	To_Port	To Pier	Arr/Dep nk l	Start WP	XР	End WP	Ending Wayr	oint Lat/Lon	Dist. County			RO/RO	_	Fishing	Speed knots	PL (MW)	SL (MW)	BL (MW)	Speed knots	PL (MW)	SL (MW)	BL (MW)
	SEATTLE	90-3&7	Departure	EB_FE_1	47		47° 36′ 52′′ N			0	0	5	5	5	0	0	0	0.0	0	0.0	0.0	0.0
	SEATTLE SEATTLE		Arrival Arrival	EB_A_4 EB_FM_1			47° 37′ 25′′ N 47° 37′ 47′′ N			0	0	4 2	4 2	4 2	0	0 0	0 0	0.0 0.0	0 0	0.0 0.0	0.0 0.0	0.0 0.0
_	SEATTLE		Departure	EB_B_T905		EB_FM_1	47° 37′ 25′′ N			0	0	2	2	2	0	0	0	0.0	0	0.0	0.0	0.0
ElliottB_PS	SEATTLE	90-5	Departure	EB_FM_1	47	EB_D_1	47° 36′ 52′′ N	122° 23′ 21′′ V	W 0.63 King	0	0	5	5	5	0	0	0	0.0	0	0.0	0.0	0.0
_	SEATTLE SEATTLE	90-5&7	Arrival Arrival	EB_A_4 EB FM 1			47° 37′ 25′′ N 47° 37′ 48′′ N		0	0	0	4 2	4 2	4 2	0	0	0	0.0	0	0.0	0.0	0.0
	SEATTLE SEATTLE						47° 37′ 25′′ N			0	0	2	2	2	0	0	0	0.0	0	0.0	0.0	0.0
	SEATTLE	90-5&7	Departure	EB_FM_1	47		47° 36′ 52′′ N			0	0	5	5	5	0	0	0	0.0	0	0.0	0.0	0.0
PS_ElliottB	SEATTLE	91-H&I	Arrival	EB_A_4			47° 37′ 25′′ N			0	0	4	4	4	0	0	0	0.0	0	0.0	0.0	0.0
	SEATTLE	91-H&I	Arrival	EB_FM_1			47° 37′ 48′′ N			0	0	2	2	2	0	0	0	0.0	0	0.0	0.0	0.0
_	S SEATTLE S SEATTLE		Departure Departure	EB_B_T91HI EB_FM_1			47° 37′ 25′′ N 47° 36′ 52′′ N		0	0	0	2 5	2 5	2 5	0	0	0	0.0	0	0.0	0.0	0.0
DC Elli-saD	SEATTLE	01 19 1/	Arrival	EB A 4	47	ED EM 1	47° 37′ 25′′ N	1229 227 5277 V	V 0.62 Vin-	0	0	4	4	4	0	0	0	0.0	0	0.0	0.0	0.0
_	SEATTLE SEATTLE	-	Arrival	EB_FM_1			47° 37′ 40′′ N			0	0	2	4 2	2	0	0	0	0.0	0	0.0	0.0	0.0
_	S SEATTLE S SEATTLE	91-J&K 91-J&K	Departure Departure	EB_B_T91JK EB FM 1	47		47° 37′ 25′′ N 47° 36′ 52′′ N		0	0	0	2 5	2 5	2 5	0	0	0	0.0	0	0.0	0.0	0.0
		,	- oparous				,, 00 02 0.															
	SEATTLE SEATTLE		Arrival Arrival	EB_A_4 EB_FW_1			47° 37′ 27′′ N 47° 37′ 42′′ N			0	0	4 2	4 2	4 2	0	0	0	0.0 0.0	0	0.0 0.0	0.0	0.0 0.0
_	SEATTLE		1	EB_B_T91EF			47° 37′ 25′′ N		0	0	0	2	2	2	0	0	0	0.0	0	0.0	0.0	0.0
ElliottB_PS	SEATTLE	91-E&F	Departure	EB_FM_1	47	EB_D_1	47° 36′ 52′′ N	122° 23′ 21′′ V	W 0.63 King	0	0	5	5	5	0	0	0	0.0	0	0.0	0.0	0.0
PS_ElliottB	SEATTLE	ANCHO	R Arrival	EB_A_4	47	EB_AN_SCE	47° 37′ 09′′ N	122° 22′ 18′′ V	W 0.75 King	4	4	4	4	4	0	0	0	0.0	0	0.0	0.0	0.0
ElliottB_PS	SEATTLE	ANCHO	R Departure	EB_AN_SCE	47	EB_D_1	47° 36′ 52′′ N	122° 23′ 21′′ V	W 0.75 King	4	4	4	4	4	0	0	0	0.0	0	0.0	0.0	0.0
PS_ElliottB	SEATTLE	ANCHO	R Arrival	EB_A_4	47	EB_AN_SCW	47° 37′ 34′′ N	122° 24′ 07′′ V	W 0.87 King	4	4	4	4	4	0	0	0	0.0	0	0.0	0.0	0.0
ElliottB_PS	SEATTLE	ANCHO	R Departure	EB_AN_SCW	7 47	EB_D_1	47° 36′ 52′′ N	122° 23′ 21′′ V	W 0.87 King	4	4	4	4	4	0	0	0	0.0	0	0.0	0.0	0.0
DC Ellion D	SEATTLE	ANCHO	P. Amirrol	EB A 4	47	ER AN EDE	47° 35′ 35″ N	1220 22/ 14// 1	V 140 Vina	4	1	4	4	4	0	0	0	0.0	0	0.0	0.0	0.0
	S SEATTLE			EB_A_4 EB_AN_EBE			47° 36′ 52′′ N			5	5	5	5	5	0	0	0	0.0	0	0.0	0.0	0.0
	, JAMITAL	THI VOTION	eparture		. 1/	<u></u>	77 30 32 1	.22 27 21	/ Ixiig									0.0		0.0	0.0	0.0
PS_ElliottB	SEATTLE	ANCHO	R Arrival	EB_A_4	47	EB_AN_EBW	47° 35′ 42′′ N	122° 21′ 09′′ V	V 1.88 King	4.5	4.5	4.5	4.5	4.5	0	0	0	0.0	0	0.0	0.0	0.0
ElliottB_PS	SEATTLE	ANCHO	R Departure	EB_AN_EBW	47	EB_D_1	47° 36′ 52′′ N	122° 23′ 21′′ V	X 1.88 King	6	6	6	6	6	0	0	0	0.0	0	0.0	0.0	0.0

DC Ellistic CEATTLE TODD 4 Assist ER 4 4 47 ER W/C 1 479 25' 52'' N 1229 21' 27'' W 1 54 Vion

Speed by Link (knots)

Fast Medium Slow Very Slow

Bulkers

DRAFT Reefer Tankers CR-1 CR-1 CR-1 CR-1 CR-2 CR-2 CR-2 CR-2 Contain RO/RO SL Log Speed PLSL BLSpeed PLBL(MW) Ending Waypoint Lat/Lon Dist. County Cruise Auto Fishing Fishing Fishing To_Pier Arr/Dep nk l Start WP WP End WP (MW) (MW) (MW) (MW) (MW) Route To Port knots knots 47° 35′ 17′′ N 122° 21′ 24′′ W 0.15 King PS_ElliottB SEATTLE TODD-4 Arrival EB TD 3 47 EB B TD4 0.0 0.0 0.0 0.0 ElliottB_PS SEATTLE TODD-4 Departure EB_B_TD4 47 EB_TD_3 47° 35′ 26″ N 122° 21′ 23″ W 0.15 King 0.0 0.0 0 0.0 0.0 0 0 ElliottB_PS SEATTLE TODD-4 Departure EB_TD_3 47 EB_WC_1 47° 35′ 52′′ N 122° 21′ 37′′ W 0.47 King 0 0 0.0 0 0.0 0.0 0.0 ElliottB PS SEATTLE TODD-4 Departure EB WC 1 47 EB D 1 47° 36′ 52′′ N 122° 23′ 21′′ W 1.54 King 0.0 0.0 0.0 0.0 PS_ElliottB SEATTLE TODD-5 47° 35′ 52′′ N 122° 21′ 37′′ W 1.54 King EB A 4 47 EB WC 1 0.00.0 0.0 0.0 EB_WC_1 47 EB_TD_3 PS_ElliottB SEATTLE TODD-5 Arrival 47° 35′ 26′′ N 122° 21′ 23′′ W 0.47 King 3 3 3 0 0 0 0.0 0 0.0 0.0 0.0 EB_TD_3 47 EB_B_TD5 47° 35′ 17″ N 122° 21′ 24″ W 0.15 King PS_ElliottB SEATTLE TODD-5 Arrival 0 0 0.0 0 0.0 0.0 0.0 47° 35′ 26′′ N 122° 21′ 23′′ W 0.15 King ElliottB_PS SEATTLE TODD-5 Departure EB_B_TD5 47 EB_TD_3 0 0.0 0 0.0 0.0 0.0 ElliottB_PS SEATTLE TODD-5 Departure EB_TD_3 47 EB_WC_1 47° 35′ 52′′ N 122° 21′ 37′′ W 0.47 King 0 0 0.0 0 0.0 0.0 0.0 ElliottB_PS SEATTLE TODD-5 Departure EB WC 1 47 EB D 1 47° 36′ 52′′ N 122° 23′ 21′′ W 1.54 King 0 0.0 0 0.0 0.0 0.0 PS ElliottB SEATTLE TODD-Dl Arrival 47 EB WC 1 47° 35′ 52′′ N 122° 21′ 37′′ W 1.54 King 0.0 0.0 0.0 0.0 TODD-D Arrival 47° 35′ 26′′ N 122° 21′ 23′′ W 0.47 King PS ElliottB SEATTLE EB WC 1 47 EB TD 3 3 3 3 3 0 0 0 0.0 0 0.0 0.0 0.0 PS_ElliottB SEATTLE TODD-D Arrival EB_TD_3 47 EB_B_TDD3 47° 35′ 17′′ N 122° 21′ 24′′ W 0.15 King 0 0 0 0.0 0 0.0 0.0 0.0 47° 35′ 26′′ N 122° 21′ 23′′ W 0.15 King ElliottB_PS SEATTLE TODD-D|Departure EB B TDD3 47 EB TD 3 0.0 0.0 0.0 0.0 ElliottB_PS SEATTLE TODD-D Departure EB_TD_3 47 EB_WC_1 47° 35′ 52′′ N 122° 21′ 37′′ W 0.47 King 0 0 0.0 0 0.0 0.0 0.0 ElliottB_PS SEATTLE TODD-DIDeparture EB_WC_1 47 EB_D_1 47° 36′ 52′′ N 122° 23′ 21′′ W 1.54 King 0.0 0.0 0.0 0.0 PS ElliottB SEATTLE TODD-E Arrival EB_A_4 47 EB_WC_1 47° 35′ 52′′ N 122° 21′ 37′′ W 1.54 King 0.0 0 0.0 6 6 6 0 0 0 0.00.0 PS_ElliottB SEATTLE TODD-E Arrival EB_WC_1 47 EB_TD_3 47° 35′ 26″ N 122° 21′ 23″ W 0.47 King 3 3 3 3 3 0 0 0 0.0 0 0.0 0.0 0.0 PS_ElliottB SEATTLE TODD-E Arrival EB_TD_3 47 EB_B_TDE 47° 35′ 17′′ N 122° 21′ 24′′ W 0.15 King 0 0 0.0 0 0.0 0.0 0.0 ElliottB_PS SEATTLE TODD-E Departure EB_B_TDE 47 EB_TD_3 47° 35′ 26′′ N 122° 21′ 23′′ W 0.15 King 0.0 0 0.0 0.0 ElliottB_PS SEATTLE TODD-E Departure EB_TD_3 47 EB_WC_1 47° 35′ 52′′ N 122° 21′ 37′′ W 0.47 King 3 0 0 0.0 0.0 0.0 0.0 ElliottB_PS SEATTLE TODD-E Departure EB WC 1 47 EB D 1 47° 36′ 52′′ N 122° 23′ 21′′ W 1.54 King 0.0 0.0 0.0 0.0 PS ElliottB SEATTLE TODD-F Arrival 47 EB WC 1 47° 35′ 52′′ N 122° 21′ 37′′ W 1.54 King 0.0 0.0 0.0 PS_ElliottB SEATTLE TODD-F Arrival 47° 35′ 26′′ N 122° 21′ 23′′ W 0.47 King 3 0 0 0.0 0 0.0 EB_WC_1 47 EB_TD_3 0 0.0 0.0 EB_TD_3 47 EB_B_TDF 47° 35′ 17′′ N 122° 21′ 24′′ W 0.15 King PS_ElliottB SEATTLE TODD-F Arrival 0.0 0 0.0 0.0 0.0 ElliottB_PS SEATTLE TODD-F Departure EB_B_TDF 47 EB_TD_3 47° 35′ 26′′ N 122° 21′ 23′′ W 0.15 King 0.0 0.0 EB TD 3 47 EB WC 1 47° 35′ 52′′ N 122° 21′ 37′′ W 0.47 King 0 0.0 0 ElliottB PS SEATTLE TODD-F Departure 0.0 0.0 0.0 0.0 ElliottB_PS SEATTLE TODD-F Departure EB_D_1 47° 36′ 52′′ N 122° 23′ 21′′ W 1.54 King 0.0 0.0 0.0 PS ElliottB SEATTLE TODD-H Arrival EB A 4 47 EB WC 1 47° 35′ 52′′ N 122° 21′ 37′′ W 1.54 King 0 6 0 0.0 0.0 0.0 0.0 PS_ElliottB SEATTLE TODD-H Arrival EB_WC_1 47 EB_TD_3 47° 35′ 26′′ N 122° 21′ 23′′ W 0.47 King 3 3 3 0 0 0 3 0 0.0 0.0 0.0 0.0 PS ElliottB SEATTLE TODD-H Arrival EB TD 3 47 EB B TDH 47° 35′ 17′′ N 122° 21′ 24′′ W 0.15 King 0 0 0.0 n 0.0 0.0 0 0.0 ElliottB_PS SEATTLE TODD-H Departure EB_B_TDH 47 EB_TD_3 47° 35′ 26′′ N 122° 21′ 23′′ W 0.15 King 0 0.0 ElliottB_PS SEATTLE TODD-H Departure EB_TD_3 47 EB_WC_1 47° 35′ 52′′ N 122° 21′ 37′′ W 0.47 King 0 0.0 0.00.0 0.0 47° 36′ 52′′ N 122° 23′ 21′′ W 1.54 King ElliottB PS SEATTLE TODD-H Departure EB WC 1 47 EB D 1 7 7 0 0.0 0.0 0.0 0.0 47° 35′ 52′′ N 122° 21′ 37′′ W 1.54 King PS_ElliottB SEATTLE LAFARGI Arrival EB_A_4 47 EB_WC_1 0.0 0.0 0.00.0 47° 35′ 02′′ N 122° 21′ 36′′ W 0.84 King PS_ElliottB SEATTLE LAFARGI Arrival EB_WC_1 47 EB_WC_2 0 0 0.0 0 0.0 0.0 -0.0PS ElliottB SEATTLE LAFARGI Arrival EB WC 2 47 EB WC 3 47° 34′ 33′′ N 122° 21′ 35′′ W 0.49 King 0 0 0 0.0 0 0.0 0.0 0.0 PS_ElliottB SEATTLE LAFARGI Arrival EB_WC_3 47 EB_DU_1 47° 34′ 06′′ N 122° 20′ 59′′ W 0.61 King 0 0 0.0 0 0.0 0.0 0.0 47° 33′ 52′′ N 122° 20′ 50′′ W 0.26 King PS_ElliottB SEATTLE LAFARGI Arrival EB_DU_1 47 EB_DU_2 0 3 0 0.0 0 0.0 0.0 0.0 3 PS ElliottB SEATTLE LAFARGI Arrival EB DU 2 47 EB DU 3 47° 33′ 26′′ N 122° 20′ 38′′ W 0.44 King 0 3 3 0 0.0 0 0.0 0.0 0.0 PS ElliottB SEATTLE LAFARGI Arrival EB DU 3 47 EB DU 4 47° 33′ 18″ N 122° 20′ 34″ W 0.14 King 0 2 0 0.0 0 0.0 0.0 0.0 DS ElliottB SEATTLE LAEADCL Arrivol ED DIL 4 47 ED D LE 479 22/14//NI 1229 20/ 24// W 0.07 I/: 0.0 0.0

ElliottB_PS SEATTLE LAFARGI Departure

ElliottB_PS SEATTLE LAFARGI Departure

ElliottB_PS SEATTLE LAFARGIDeparture

ElliottB PS SEATTLE LAFARGI Departure

ElliottB_PS SEATTLE LAFARGIDeparture

PS_ElliottB SEATTLE GLACIER Arrival

PS ElliottB SEATTLE GLACIER Arrival

PS ElliottB SEATTLE GLACIER Arrival

PS_ElliottB SEATTLE GLACIER Arrival

ElliottB PS SEATTLE GLACIER Departure

ElliottB_PS SEATTLE GLACIERDeparture

ElliottB_PS SEATTLE GLACIERDeparture

ElliottB_PS SEATTLE GLACIERDeparture

ElliottB_PS SEATTLE GLACIER Departure

BPB

To Port

ElliottB_PS SEATTLE

ElliottB PS SEATTLE

ElliottB PS SEATTLE

PS_ElliottB SEATTLE

PS_ElliottB SEATTLE

PS ElliottB SEATTLE

PS ElliottB SEATTLE

PS_ElliottB SEATTLE

ElliottB_PS SEATTLE

ElliottB_PS SEATTLE

ElliottB_PS SEATTLE

ElliottB_PS SEATTLE

PS ElliottB SEATTLE

PS ElliottB SEATTLE

PS_ElliottB SEATTLE

PS ElliottB SEATTLE

PS_ElliottB SEATTLE

PS_ElliottB SEATTLE

PS_ElliottB SEATTLE

PS_ElliottB SEATTLE

PS ElliottB SEATTLE

PS ElliottB SEATTLE

PS_ElliottB SEATTLE

ElliottB_PS SEATTLE

ElliottB_PS SEATTLE

ElliottB PS SEATTLE

ElliottB PS SEATTLE

ElliottB_PS SEATTLE

ElliottB_PS SEATTLE

ElliottB PS SEATTLE

ElliottB PS SEATTLE

ElliottB_PS SEATTLE

ElliottB_PS SEATTLE

ElliottB_PS SEATTLE

To_Pier Arr/Dep nk l Start WP WP

LAFARGI Departure

LAFARGI Departure

LAFARGI Departure

GLACIER Arrival

GLACIER Arrival

GLACIER Arrival

GLACIER Arrival

GLACIER Arrival

GLACIER Departure

GLACIER Departure

GLACIER Departure

GLACIER Departure

Arrival

Departure

EB B LF

EB DU 4

EB_DU_3

EB_DU_2

EB DU 1

EB WC 3

EB WC 2

EB_A_4

EB_WC_1

EB_WC_2

EB WC 3

EB DU 2

EB DU 5

EB A 4

EB WC 1

EB WC 2

EB WC 3

EB DU 1

EB_DU_2

EB_DU_3

EB_DU_4

EB DU 5

EB DU 6 47

EB_DU_7 47

EB DU 6 47

EB DU 2 47

EB DU 1 47

EB_WC_2 47

EB_WC_1

EB_DU_4 47

EB_DU_3 47

EB DU 2 47

EB DU 1 47

EB WC 1 47

End WP

EB DU 4

EB DU 3

EB_DU_2

EB_DU_1

EB WC 3

EB WC 2

EB_WC_1

 EB_D_1

EB WC 1

EB_WC_2

EB DU 2

EB DU 3

EB DU 5

EB DU 4

EB_DU_3

EB_DU_2

EB DU 1

EB WC 1

EB WC 2

EB_WC_3

EB DU 1

EB_DU_2

EB_DU_3

EB_DU_4

EB_DU_5

EB DU 6

EB_DU_7

EB_DU_6

EB DU 5

EB DU 1

EB WC 3

EB_WC_1

EB_D_1

47 EB_WC_3

47 EB DU 1

47° 33′ 18′′ N 122° 20′ 34′′ W 0.07 King

47° 33′ 26′′ N 122° 20′ 38′′ W 0.14 King

47° 33′ 52′′ N 122° 20′ 50′′ W 0.44 King

47° 34′ 06′′ N 122° 20′ 59′′ W 0.26 King

47° 34′ 33′′ N 122° 21′ 35′′ W 0.61 King

47° 35′ 02′′ N 122° 21′ 36′′ W 0.49 King

47° 35′ 52′′ N 122° 21′ 37′′ W 0.84 King

47° 36′ 52′′ N 122° 23′ 21′′ W 1.54 King

47° 35′ 52′′ N 122° 21′ 37′′ W 1.54 King

47° 35′ 02′′ N 122° 21′ 36′′ W 0.84 King

47° 34′ 33′′ N 122° 21′ 35′′ W 0.49 King

47° 34′ 06′′ N 122° 20′ 59′′ W 0.61 King

47° 33′ 52′′ N 122° 20′ 50′′ W 0.26 King

47° 33′ 26′′ N 122° 20′ 38′′ W 0.44 King

47° 33′ 18′′ N 122° 20′ 34′′ W 0.14 King

47° 33′ 14′′ N 122° 20′ 31′′ W 0.07 King

47° 33′ 12′′ N 122° 20′ 27′′ W 0.06 King

47° 33′ 14′′ N 122° 20′ 31′′ W 0.06 King

47° 33′ 18′′ N 122° 20′ 34′′ W 0.07 King

47° 33′ 26′′ N 122° 20′ 38′′ W 0.14 King

47° 33′ 52′′ N 122° 20′ 50′′ W 0.44 King

47° 34′ 06′′ N 122° 20′ 59′′ W 0.26 King

47° 34′ 33″ N 122° 21′ 35″ W 0.61 King

47° 35′ 52′′ N 122° 21′ 37′′ W 0.84 King

47° 36′ 52′′ N 122° 23′ 21′′ W 1.54 King

47° 35′ 52′′ N 122° 21′ 37′′ W 1.54 King

47° 35′ 02′′ N 122° 21′ 36′′ W 0.84 King

47° 34′ 33′′ N 122° 21′ 35′′ W 0.49 King

47° 34′ 06′′ N 122° 20′ 59′′ W 0.61 King

47° 33′ 52′′ N 122° 20′ 50′′ W 0.26 King

47° 33′ 26′′ N 122° 20′ 38′′ W 0.44 King

47° 33′ 18′′ N 122° 20′ 34′′ W 0.14 King

47° 33′ 14′′ N 122° 20′ 31′′ W 0.07 King

47° 33′ 03′′ N 122° 20′ 25′′ W 0.2 King

47° 32′ 54′′ N 122° 20′ 21′′ W 0.15 King

47° 33′ 14′′ N 122° 20′ 31′′ W 0.11 King

47° 33′ 03′′ N 122° 20′ 25′′ W 0.15 King

47° 33′ 14′′ N 122° 20′ 31′′ W 0.2 King

47° 33′ 18′′ N 122° 20′ 34′′ W 0.07 King

47° 33′ 26′′ N 122° 20′ 38′′ W 0.14 King

47° 33′ 52′′ N 122° 20′ 50′′ W 0.44 King

47° 34′ 06′′ N 122° 20′ 59′′ W 0.26 King

47° 34′ 33′′ N 122° 21′ 35′′ W 0.61 King

47° 35′ 02′′ N 122° 21′ 36′′ W 0.49 King

47° 35′ 52′′ N 122° 21′ 37′′ W 0.84 King

47° 36′ 52′′ N 122° 23′ 21′′ W 1.54 King

47° 32′ 49′′ N 122° 20′ 15′′ W 0.11 King

47° 35′ 02′′ N 122° 21′ 36′′ W 0.49 King

47

47

47

47

47

47

47

47

47

47

EB DU 3 47 EB DU 4

EB_DU_4 47 EB_DU_5

EB_DU_5 47 EB_B_GL

47

47

EB_DU_1 47 EB_WC_3

EB_WC_3 47 EB_WC_2

EB_WC_2 47 EB_WC_1

EB_WC_1 47 EB_D_1

47

47

47

47

47

47

47

47

EB_DU_7 47 EB_B_BPB

EB B BPB 47 EB DU 5

EB DU 5 47 EB DU 4

EB DU 4 47 EB DU 3

EB DU_3 47 EB_DU_2

EB_WC_3 47 EB_WC_2

47

DRAFT

Route

Speed by Link (knots) Fast Medium Slow Very Slow Bulkers Reefer Tankers CR-1 CR-1 CR-1 CR-1 CR-2 CR-2 CR-2 CR-2 Contain RO/RO PL SL BLPLSL Log Speed Speed BLEnding Waypoint Lat/Lon Dist. County Cruise Auto Fishing Fishing Fishing (MW) (MW) (MW) (MW) (MW) (MW) knots knots -0.00 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0 0 0 0.0 0 0.0 0.0 0 0 0 0.0 0 0.0 0.0 0.0 0 0 0.0 0 0.0 0.0 0.0 0 0.0 0 0.0 0.0 0.0 0 4 0.0 0.0 0 4 4 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0 0.0 0.0 0.0 0 0 0 0.0 0 0.0 0.0 0.0 0 0 4 0 0 0.0 0 0.0 0.0 0.0 0 3 3 0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0 2 2 0.0 0.0 0.0 0.0 0.0 0 0.00.0 0.0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0.0 0 0.0 0.0 0.0 0 0 0.0 0 0.0 0.0 0.0 0.0 0 0 0 0.0 0.0 0.0 0 0 0.0 0 0.0 0.0 0.0 0 0 0.0 0 0.0 0.0 0.0 0 0 0.0 0 0.0 0.0 0.0 0 0.0 0 0.0 0.0 0.0 0 0 0 0 0.0 0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0 0 0.0 0 0.0 0.0 0.0 0 3 3 3 0 0 0.0 0 0.0 0.0 0.0 0 0 3 3 0 0.0 0 0.0 0.0 0.0 3 0.0 0.0 0.0 0 0 0 0.0 0 0 0.0 0 0.0 0.0 0.0 0 0 3 0.0 0 0.0 0.0 0.0 0 0 3 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0.0 0 0.0 0 0.0 0.0 0.0 0 0.0 0 0.0 0.0 0.0 0 0.0 0.0 0.0 0 0 0.0 0.0 0.0 0.0 0 0 0 0.0 Λ 0.0 0.0 0.0 0 0.0 0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0 0.0 0.0 0.0

Engines off during departure due to constricted waterway: Duamish River

0

0

0

0.0

0.0

0.0

0.0

0

0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0

0

0

Puget Sound Emissions Inventory OGV-Routing: SEATTLE to SEA

Speed by Link (knots) Fast Medium Slow Very Slow

Lat/Long in WGS84 Datum

Bulkers CR-1 CR-1 CR-2 CR-2 CR-2 Reefer Tankers CR-1 CR-1 CR-2 DRAFT Container RO/RO Log PLSLBLSpeed PLSLBLSpeed Fishing Route Arr/Dep Mode NPE Link ID Start WP & WP L End WP Vaypoint Dist. County Cruise Auto Fishing Fishing knots (MW) (MW) (MW) knots (MW) (MW) (MW) ElliottB PS Departure EB D 1 47° 36 EB D 2 47° 38 13.5 2.6 King 14 12 13.5 13.2 0.0 ElliottB_PS Departure X L2a EB_D_2 47° 38 PS_D_10 47° 39′ 1.5 King 18 16 SS SS 17.5 19.2 7.0 0.016.5 16.1 9.0 0.0 Tacoma_Sea Departure T Y SS SS SS SS SS 19.5 21.2 7.0 0.0 19.8 22.2 10.1 0.0 L10 PS_D_10 47° 39 PS_D_11 47° 41′ 2.3 King 22.2 Tacoma_Sea Departure T Y L11 PS_D_11 47° 41 PS_D_12 47° 45′ 4.0 Kitsap SS SS SS SS SS 19.5 21.2 7.0 0.0 19.8 10.1 0.0 Tacoma_Sea Departure T SS SS SS SS 19.5 21.2 7.0 19.8 22.2 10.1 0.0 N L12 PS_D_12 47° 45 PS_D_13 47° 46′ 0.8 King SS 0.0 Tacoma_Sea Departure T N L13 PS_D_13 47° 46 PS_D_14 47° 48′ (1.5 Snohomish SS SS SS SS SS 19.5 21.2 7.0 0.0 19.8 22.2 10.1 0.0 Tacoma Sea Departure N SS SS SS SS SS 19.5 21.2 7.0 19.8 22.2 10.1 L14 PS D 14 47° 48 PS D 15 47° 52′ 4.6 Kitsap 0.0 0.0 22.2 Tacoma_Sea Departure T N L15 PS_D_15 47° 52 PS_D_16 47° 55′ 3.1 Island SS SS SS SS SS 19.5 21.2 7.0 0.0 19.8 10.1 0.0 Tacoma Sea Departure T N L16 PS_D_16 47° 55 PS_D_17 47° 57′ 2.4 Island SS SS SS SS SS 19.5 21.2 7.0 0.0 19.8 22.2 10.1 0.0 L17 Tacoma_Sea Departure T N PS_D_17 47° 57 PS_D_18 47° 58′ 1.9 Island SS SS SS SS SS 19.5 21.2 7.0 0.0 19.8 22.2 10.1 0.0 Tacoma_Sea Departure T 19.5 22.2 N L18 PS_D_18 47° 58 PS_D_19 48° 02′ (4.5 Island SS SS SS SS SS 21.2 7.0 0.0 19.8 10.1 0.0 22.2 Tacoma_Sea Departure T Ν L19 PS_D_19 48° 02 PS_D_20 48° 04′ 2.8 Island SS SS SS SS SS 19.5 21.2 7.0 0.0 19.8 10.1 0.0 7.0 Tacoma_Sea Departure PS_D_20 48° 04 PS_D_21 48° 06′ 2.2 Jefferson SS SS SS SS SS 19.5 19.8 22.2 10.1 0.0 N L20 21.2 0.0 PS_D_21 48° 06 PS_D_22 48° 07′ 7.0 22.2 Tacoma_Sea Departure Ν L21 1.3 Jefferson SS SS SS SS SS 19.5 21.2 0.0 19.8 10.1 0.0 Tacoma_Sea Departure T N L22 PS_D_22 48° 07 PS_D_23 48° 11′: 5.3 Island SS SS SS SS SS 19.5 21.2 7.0 0.0 19.8 22.2 10.1 0.0 Tacoma Sea Departure T N L23 PS D 23 48° 11 PS D 24 48° 11' 1.4 Island SS SS SS SS SS 19.5 21.2 7.0 0.0 19.8 22.2 10.1 0.0 Tacoma_Sea Departure T L24 PS_D_24 48° 11 PS_D_25 48° 11 SS SS SS SS SS 19.5 21.2 7.0 0.019.8 22.2 10.1 0.0N 2.4 Jefferson Tacoma_Sea Departure T 19.5 22.2 N L25 PS D 25 48° 11 PS D 26 48° 12′ 9.5 Calallam SS SS SS SS SS 21.2 7.0 0.0 19.8 10.1 0.0 17 Tacoma_Sea Departure X Ν L26 PS_D_26 48° 12PS_D_27 48° 10′ 11.2 Calallam 17 16 12 SS 18.0 19.0 7.0 18.0 19.5 10.1 0.0 0.0 Tacoma_Sea Departure M N L27 PS_D_27 48° 10 PS_D_28 48° 11′ 0.8 Calallam 8 8 8 8 8 10.0 7.0 10.0 10.1 0.0 12.0 0.0 11.0 Tacoma_Sea Departure X Ν L28 PS_D_28 48° 11 PS_D_29 48° 14′ 4.9 Calallam 15 14 12 SS SS 21.0 27.3 7.0 0.0 22.0 29.3 10.1 0.0 Tacoma_Sea Departure T N L29 PS D 29 48° 14 PS D 30 48° 15′ 3 3.1 Calallam 19 SS SS SS SS 22.0 27.3 7.0 0.0 22.7 31.4 10.1 0.0 Tacoma_Sea Departure T N L30 PS_D_30 48° 15 PS_D_31 48° 17′ : 15.4 Calallam SS SS SS SS SS 22.0 27.3 7.0 0.0 22.7 31.4 10.1 0.0 SS SS SS Tacoma Sea Departure T N L31 PS D 31 48° 17 PS D 32 48° 30′ 34.1 Calallam SS SS 22.0 27.3 7.0 0.0 22.7 31.4 10.1 0.0 Tacoma_Sea Departure T L32 PS_D_32 48° 30 PS_D_33 48° 30′ -10.9 Calallam SS SS SS SS SS 22.0 27.3 7.0 0.0 22.7 31.4 10.1 0.0

Fast

Total Distance 134.4 nm Note: SS - Service Speed

OGV-Routing:	SEATTLE	E to EV	ERET	T						_	Fast	Fast	Medium	Slow	Very Slow
Lat/Long in WG	S84 Datum	ı								_				Bulkers	
													Reefer	Tankers	
DRAFT												Container	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP V	VP	End WP	aypoin	Dist.	County	Cruise	Auto	Fishing	Fishing	Fishing
ElliottB_PS	Departure	M	Y	L1	EB_D_1	47°	EB_D_2	47° 38	2.6	King	0	12	9	8	6
ElliottB_PS	Departure	X	Y	L2a	EB_D_2	47°	PS_D_10	47° 39	1.5	King	0	16	SS	SS	7
Tacoma_Sea	Departure	Τ	Y	L10	PS_D_10	47°	PS_D_11	47° 41	2.3	King	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	Y	L11	PS_D_11	47°	PS_D_12	47° 45	4.0	Kitsap	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L12a	PS_D_12	47°	ET_A_1	47° 40	0.8	King	0	SS	SS	SS	SS
Tacoma_Everett	Departure	Т	N	L1	ET_A_1	47°	ET_A_2	47° 48	1.6	Snohomish	0	SS	SS	SS	SS
Tacoma_Everett	Departure	Т	N	L2a	ET_A_2	47°	EV_A_5	47° 52	4.1	Snohomish	0	SS	SS	SS	SS
PS_Everett	Arrival	Т	N	L5	EV_A_5	47°	EV_A_6	47° 54	2.4	Snohomish	0	SS	SS	SS	SS
PS_Everett	Arrival	X	Y	L6	EV_A_6	47°	EV_A_7	47° 50	2.5	Snohomish	0	SS	SS	SS	SS
PS_Everett	Arrival	X	Y	L7	EV_A_7	47°	EV_A_8	47° 57	1.1	Snohomish	0	14	12	SS	SS
PS_Everett	Arrival	M	Y	L8	EV_A_8	47°	EV_A_9	47° 58	2.0	Snohomish	0	10	10	10	8
PS_Everett	Arrival	M	Y	L9	EV_A_9	47°	EV_A_10	47° 58	1.3	Snohomish	0	7	6	6	5

Note: SS - Service Speed Total Distance 26.1 nm

Puget Sound Emissions Inventory OCV Position EVEDETT - SEATTLE

Puget Soun	d Emissi	ons Ir	nvent	ory							Spee	d by Link	(knots)	
OGV-Routing:	EVERET	T to SE	EATTL	E						Fast	Fast	Medium	Slow	Very Slow
Lat/Long in WO	GS84 Datum	ı							-				Bulkers	
												Reefer	Tankers	
DRAFT											Containe	r RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	Starting WP Lat/Lon	End WP	Ending Waypoint Lat/Lon	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
Everett_PS	Departure	M	Y	L1	EV_D_1	47° 58′ 40′′ N 122° 14′ 15′′ W	EV_D_2	47° 58′ 51′′ N 122° 16′ 44′′ W	1.7 Snohomish	0	4	4	4	3
Everett_PS	Departure	M	Y	L2	EV_D_2	47° 58′ 51′′ N 122° 16′ 44′′ W	EV_D_3	47° 57′ 44′′ N 122° 19′ 42′′ W	2.3 Snohomish	0	10	10	10	5
Everett_PS	Departure	X	Y	L3	EV_D_3	47° 57′ 44′′ N 122° 19′ 42′′ W	EV_D_4	47° 54′ 11′′ N 122° 21′ 32′′ W	3.8 Island	0	14	SS	SS	6
Everett_PS	Departure	X	Y	L4	EV_D_4	47° 54′ 11′′ N 122° 21′ 32′′ W	EV_D_5	47° 52′ 10′′ N 122° 23′ 30′′ W	2.4 Island	0	17	SS	SS	SS
Everett_PS	Departure	Τ	N	L5a	EV_D_5	47° 52′ 10′′ N 122° 23′ 30′′ W	ET_D_1	47° 51′ 53′′ N 122° 23′ 38′′ W	0.3 Island	0	19	SS	SS	SS
Everett_Tacoma	a Departure	T	N	L1	ET_D_1	47° 51′ 53′′ N 122° 23′ 38′′ W	ET_D_2	47° 46′ 44′′ N 122° 26′ 20′′ W	5.5 Snohomish	0	SS	SS	SS	SS
Everett_Tacoma	a Departure	T	N	L2a	ET_D_2	47° 46′ 44′′ N 122° 26′ 20′′ W	PS_A_15	47° 45′ 54′′ N 122° 26′ 45′′ W	0.9 Kitsap	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Т	Y	L15	PS_A_15	47° 45′ 54′′ N 122° 26′ 45′′ W	PS_A_16	47° 39′ 42′′ N 122° 28′ 24′′ W	6.3 Kitsap	0	SS	SS	SS	SS
PS_ElliottB	Arrival	X	Y	L1a	PS_A_16	47° 39′ 42′′ N 122° 28′ 24′′ W	EB_A_2	47° 39′ 21′′ N 122° 28′ 02′′ W	0.4 Kitsap	0	15	13	9	8
PS_ElliottB	Arrival	X	Y	L2	EB_A_2	47° 39′ 21′′ N 122° 28′ 02′′ W	EB_A_3	47° 38′ 16′′ N 122° 26′ 36′′ W	1.5 King	0	14	12	8	7
PS_ElliottB	Arrival	M	Y	L3	EB_A_3	47° 38′ 16′′ N 122° 26′ 36′′ W	EB_A_4	47° 36′ 52′′ N 122° 23′ 21′′ W	2.6 King	0	12	11	6	6

Note: SS - Service Speed Total Distance 27.6 nm

OGV-Routing: SEATTLE to VANCOUVER (NB2)

Lat/Long in WGS84 Datum

Speed by Link (knots)
Fast Medium Slow

Bulkers

Very Slow

Fast

_													Reefer	Tankers	
DRAFT													r RO/RO	Log	
Route	Arr/Dep M	Iode		Link ID	Start WP	g WP L	End WP	Vaypoint		County	Cruise	Auto	Fishing	Fishing	Fishing
	Departure	M	Y	L1			EB_D_2			King	14	12	9	8	6
ElliottB_PS	Departure	X	Y	L2a	EB_D_2	47° 38′	PS_D_10	47° 39′	1.5	King	18	16	SS	SS	7
Tacoma_Sea	-	Τ	Y	L10	PS_D_10	47° 39′	PS_D_11	47° 41′		King	SS	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	Y	L11	PS_D_11	47° 41′	PS_D_12	47° 45′	4.0	Kitsap	SS	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L12	PS_D_12	47° 45′	PS_D_13	47° 46′		King	SS	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L13			PS_D_14			Snohomish	SS	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L14	PS_D_14	47° 48′	PS_D_15	47° 52′	4.6	Kitsap	SS	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L15	PS_D_15	47° 52′	PS_D_16	47° 55′	3.1	Island	SS	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L16	PS_D_16	47° 55′	PS_D_17	47° 57′	2.4	Island	SS	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L17	PS_D_17	47° 57′	PS_D_18	47° 58′	1.9	Island	SS	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L18	PS_D_18	47° 58′	PS_D_19	48° 02′	4.5	Island	SS	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L19	PS_D_19	48° 02′	PS_D_20	48° 04′	2.8	Island	SS	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L20	PS_D_20	48° 04′	PS_D_21	48° 06′	2.2	Jefferson	SS	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L21	PS_D_21	48° 06′	PS_D_22	48° 07′	1.3	Jefferson	SS	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L22	PS_D_22	48° 07′	PS_D_23	48° 11′	5.3	Island	SS	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L23	PS_D_23	48° 11′	PS_D_24	48° 11′	1.4	Island	SS	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L24	PS_D_24	48° 11′	PS_D_25	48° 11′	2.4	Jefferson	SS	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L25	PS_D_25	48° 11′	PS_D_26	48° 12′	9.5	Calallam	SS	SS	SS	SS	SS
Tacoma_Sea	Departure	X	N	L26	PS_D_26	48° 12′	PS_D_27	48° 10′	11.2	Calallam	17	17	16	12	SS
Tacoma_Sea	Departure	M	N	L27a	PS_D_27	48° 10′	PS_A_6	48° 09′	0.8	Calallam	8	8	8	8	8
Sea_Tacoma	Arrival	X	N	L6	PS_A_6	48° 09′	PS_A_7	48° 11′	11.4	Calallam	18	18	12	SS	SS
Sea_Tacoma	Arrival	Τ	N	L7	PS_A_7	48° 11′	PS_A_8	48° 11′	9.5	Calallam	SS	SS	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L8a	PS_A_8	48° 11′	PS_D_24	48° 11′	2.5	Jefferson	SS	SS	SS	SS	SS
AI_NB2	Departure	Τ	N	L1a	PS_D_24	48° 11′	AD_D_2	48° 13′	2.1	San Juan	18	18	17	16	SS
	Departure	Τ	N	L2	AD_D_2	48° 13′	AD_D_3	48° 19′	8.1	San Juan	16	16	15	15	SS
AI_NB2	Departure	Τ	N	L3	AD_D_3	48° 19′	AD_D_4	48° 24′	5.1	San Juan	15	15	15	15	SS
AI_NB2	Departure	Τ	N	L4	AD_D_4	48° 24′	AD_D_5	48° 29′	7.3	San Juan	15	15	15	15	SS
AI_NB2	Departure	Τ	N	L5	AD_D_5	48° 29′	AD_D_6	48° 34′	5.8	San Juan	15	15	15	15	SS
AI_NB2	Departure	T	N	L6	AD_D_6	48° 34′	AD_D_7	48° 40′	5.4	San Juan	15	15	15	15	SS

Total Distance 123.2 nm Note: SS - Service Speed

OGV-Routing: VANCOUVER (NB2) to SEATTLE

Lat/Long in	_		(_,								Reefer	Bulkers Tankers	very oran
DRAFT											Container		Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	g WP L	a End WP	Vaypoint I	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
NB2_AI	Arrival	Т	N	L1	AD_A_1	48° 40′	(AD_A_2	48° 34′ !	5.2 San Juan	15	16	SS	SS	SS
NB2_AI	Arrival	T	N	L2	AD_A_2	48° 34′	AD_A_3	48° 29′ 2	5.9 San Juan	15	SS	SS	SS	SS
NB2_AI	Arrival	T	N	L3	AD_A_3	48° 29′	:AD_A_4	48° 27′ 2	2.4 San Juan	15	SS	SS	SS	SS
NB2_AI	Arrival	T	N	L4	AD_A_4	48° 27′	:AD_A_5	48° 25′ (3.6 San Juan	15	SS	SS	SS	SS
NB2_AI	Arrival	T	N	L5	AD_A_5	48° 25′	(AD_A_6	48° 22′ 3	3.3 San Juan	15	SS	SS	SS	SS
NB2_AI	Arrival	T	N	L6	AD_A_6	48° 22′	AD_A_7	48° 20′ (2.9 San Juan	15	SS	SS	SS	SS
NB2_AI	Arrival	Τ	N	L7	AD_A_7	48° 20′	AD_A_8	48° 12′ 4	8.8 San Juan	15	SS	SS	SS	SS
NB2_AI	Arrival	T	N	L8a	AD_A_8	48° 12′	PS_D_25	48° 11′ 5	0.9 Jefferson	15	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L25	PS_D_25	48° 11′	PS_D_26	48° 12′ 4	9.5 Calallam	18	SS	SS	SS	SS
Tacoma_Sea	Departure	X	N	L26	PS_D_26	48° 12′	·PS_D_27	48° 10′ 3	11.2 Calallam	16	16	12	SS	SS
Tacoma_Sea	Departure	M	N	L27a	PS_D_27	48° 10′	PS_A_6	48° 09′ 5	0.8 Calallam	8	8	8	8	8
Sea_Tacoma	Arrival	X	N	L6	PS_A_6	48° 09′	PS_A_7	48° 11′ 5	11.4 Calallam	18	18	16	12	SS
Sea_Tacoma	Arrival	T	N	L7	PS_A_7	48° 11′	PS_A_8	48° 11′ 1	9.5 Calallam	SS	SS	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L8	PS_A_8	48° 11′	PS_A_9	48° 10′ 5	2.9 Jefferson	SS	SS	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L9	PS_A_9	48° 10′	PS_A_10	48° 06′ 3	6.8 Jefferson	SS	SS	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L10	PS_A_10	48° 06′	PS_A_11	48° 01′ (5.6 Jefferson	SS	SS	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L11	PS_A_11	48° 01′	PS_A_12	47° 57′ 4	4.0 Island	SS	SS	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L12	PS_A_12	47° 57′	· PS_A_13	47° 56′ 3	1.8 Island	SS	SS	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L13	PS_A_13	47° 56′	PS_A_14	47° 55′ 1	2.3 Kitsap	SS	SS	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L14	PS_A_14	47° 55′	PS_A_15	47° 45′ 5	9.7 Kitsap	SS	SS	SS	SS	SS
Sea_Tacoma	Arrival	T	Y	L15	PS_A_15	47° 45′	PS_A_16	47° 39′ 4	6.3 Kitsap	SS	SS	SS	SS	SS
PS_ElliottB	Arrival	X	Y	L1a	PS_A_16	47° 39′	EB_A_2	47° 39′ 2	0.4 Kitsap	18	16	SS	SS	8
PS_ElliottB	Arrival	X	Y	L2	EB_A_2	47° 39′	EB_A_3	47° 38′ 1	1.5 King	14	12	10	9	7
PS_ElliottB	Arrival	M	Y	L3	EB_A_3	47° 38′	EB_A_4	47° 36′ !	2.6 King	12	10	6	6	6

Total Distance 119.3 nm Note: SS - Service Speed

Speed by Link (knots)

Fast Medium Slow

Very Slow

OGV-Routing: SEATTLE to NANIAMO (NB2)

Lat/Long in	WGS84 Da	ıtum											Bulkers	
												Reefer	Tankers	
DRAFT											Containe	r RO/RO	Log	
Route	Arr/Dep	\mathbf{Mode}	NPE	Link ID	Start WP	ıg WP La	End WP	g Waypoint La	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
ElliottB_PS	Departure	M	Y	L1	EB_D_1	47° 36′ 5	EB_D_2	47° 38′ 22′′ 1	2.6 King	14	12	9	8	6
ElliottB_PS	Departure	\mathbf{X}	Y	L2a	EB_D_2	47° 38′ 2	PS_D_10	47° 39′ 42′′ 1	1.5 King	18	16	SS	SS	7
Tacoma_Sea	Departure	T	Y	L10	PS_D_10	47° 39′ 4	PS_D_11	47° 41′ 54′′ 1	2.3 King	SS	SS	SS	SS	SS
Tacoma_Sea	Departure	T	Y	L11	PS_D_11	47° 41′ 5	PS_D_12	47° 45′ 52′′ 1	4.0 Kitsap	SS	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L12	PS_D_12	47° 45′ 5	PS_D_13	47° 46′ 40′′ 1	0.8 King	SS	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L13	PS_D_13	47° 46′ 4	PS_D_14	47° 48′ 06′′ 1	1.5 Snohomish	SS	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L14	PS_D_14	47° 48′ (PS_D_15	47° 52′ 36′′ 1	4.6 Kitsap	SS	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L15	PS_D_15	47° 52′ 3	PS_D_16	47° 55′ 34′′ 1	3.1 Island	SS	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L16	PS_D_16	47° 55′ 3	PS_D_17	47° 57′ 01′′ 1	2.4 Island	SS	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L17	PS_D_17	47° 57′ (PS_D_18	47° 58′ 07′′ 1	1.9 Island	SS	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L18	PS_D_18	47° 58′ (PS_D_19	48° 02′ 01′′ 1	4.5 Island	SS	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L19	PS_D_19	48° 02′ (PS_D_20	48° 04′ 48′′ 1	2.8 Island	SS	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L20	PS_D_20	48° 04′ 4	PS_D_21	48° 06′ 58′′ 1	2.2 Jefferson	SS	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L21	PS_D_21	48° 06′ 5	PS_D_22	48° 07′ 51′′ 1	1.3 Jefferson	SS	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L22	PS_D_22	48° 07′ 5	PS_D_23	48° 11′ 20′′ 1	5.3 Island	SS	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L23	PS_D_23	48° 11′ 2	PS_D_24	48° 11′ 44′′ 1	1.4 Island	SS	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L24	PS_D_24	48° 11′ 4	PS_D_25	48° 11′ 57′′ 1	2.4 Jefferson	SS	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L25	PS_D_25	48° 11′ 5	PS_D_26	48° 12′ 45′′ 1	9.5 Calallam	SS	SS	SS	SS	SS
Tacoma_Sea	Departure	X	N	L26	PS_D_26	48° 12′ 4	PS_D_27	48° 10′ 33′′ 1	11.2 Calallam	17	17	16	12	SS
Tacoma_Sea	Departure	M	N	L27a	PS_D_27	48° 10′ 3	PS_A_6	48° 09′ 58′′ 1	0.8 Calallam	8	8	8	8	8
Sea_Tacoma	Arrival	X	N	L6	PS_A_6	48° 09′ 5	PS_A_7	48° 11′ 56′′ 1	11.4 Calallam	21	18	15	SS	SS
Sea_Tacoma	Arrival	Τ	N	L7	PS_A_7	48° 11′ 5	PS_A_8	48° 11′ 11′′ 1	9.5 Calallam	SS	SS	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L8a	PS_A_8	48° 11′ 1	PS_D_24	48° 11′ 44′′ 1	2.5 Jefferson	SS	SS	SS	SS	SS
AI_NB2	Departure	Т	N	L1a	PS_D_24	48° 11′ 4	AD_D_2	48° 13′ 19′′ 1	2.1 San Juan	18	18	17	16	SS
AI_NB2	Departure	T	N	L2	AD_D_2	48° 13′ 1	AD_D_3	48° 19′ 51′′ 1	8.1 San Juan	16	16	15	15	SS
AI_NB2	Departure	Τ	N	L3	AD_D_3	48° 19′ 5	AD_D_4	48° 24′ 17′′ 1	5.1 San Juan	15	15	15	15	SS
AI_NB2	Departure	T	N	L4	AD_D_4	48° 24′ 1	AD_D_5	48° 29′ 18′′ 1	7.3 San Juan	15	15	15	15	SS
AI_NB2	Departure	T	N	L5	AD_D_5	48° 29′ 1	AD_D_6	48° 34′ 47′′ 1	5.8 San Juan	15	15	15	15	SS
AI_NB2	Departure	Т	N	L6	AD_D_6	48° 34′ 4	AD_D_7	48° 40′ 00′′ 1	5.4 San Juan	15	15	15	15	SS

Total Distance 123.2 nm Note: SS - Service Speed

Speed by Link (knots)

Very Slow

Fast Medium Slow

Puget Sound Emissions Inventory OGV-Routing: SEATTLE to PORT ANGELES

Lat/Long in WG	S84 Datum													Bulkers	_
													Reefer	Tankers	
DRAFT											(Containe	r RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	g WP La	End WP	aypoint	Dist.	County	Cruise	Auto	Fishing	Fishing	Fishing
ElliottB_PS	Departure	M	Y	L1	EB_D_1	47° 36′	EB_D_2	47° 38′	2.6	King	0	12	9	8	6
ElliottB_PS	Departure	X	Y	L2a	EB_D_2	47° 38′	PS_D_10	47° 39′	1.5	King	0	16	SS	SS	7
Tacoma_Sea	Departure	Т	Y	L10	PS_D_10	47° 39′	PS_D_11	47° 41′	2.3	King	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	Y	L11	PS_D_11	47° 41′	PS_D_12	47° 45′	4.0	Kitsap	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L12	PS_D_12	47° 45′	PS_D_13	47° 46′	0.8	King	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L13	PS_D_13	47° 46′	PS_D_14	47° 48′	1.5	Snohomish	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L14	PS_D_14	47° 48′	PS_D_15	47° 52′	4.6	Kitsap	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L15	PS_D_15	47° 52′	PS_D_16	47° 55′	3.1	Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L16	PS_D_16	47° 55′	PS_D_17	47° 57′	2.4	Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L17	PS_D_17	47° 57′	PS_D_18	47° 58′	1.9	Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L18	PS_D_18	47° 58′	PS_D_19	48° 02′	4.5	Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L19	PS_D_19	48° 02′	PS_D_20	48° 04′	2.8	Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L20	PS_D_20	48° 04′	PS_D_21	48° 06′	2.2	Jefferson	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L21	PS_D_21	48° 06′	PS_D_22	48° 07′	1.3	Jefferson	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L22	PS_D_22	48° 07′	PS_D_23	48° 11′	5.3	Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L23	PS_D_23	48° 11′	PS_D_24	48° 11′	1.4	Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L24	PS_D_24	48° 11′	PS_D_25	48° 11′	2.4	Jefferson	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L25	PS_D_25	48° 11′	PS_D_26	48° 12′	9.5	Calallam	0	SS	SS	SS	SS
Tacoma_Sea	Departure	X	Y	L26	PS_D_26	48° 12′	PS_D_27	48° 10′	11.2	Calallam	0	17	16	12	SS
Tacoma_Sea	Departure	M	Y	L27a	PS_D_27	48° 10′	PA_A_2	48° 09′	0.6	Calallam	0	8	8	8	8
Sea_PortAngeles	Arrival	M	Y	L1	PA_A_2	48° 09′	PA_A_3	48° 08′	1.6	Calallam	0	8	8	8	7
Sea_PortAngeles	Arrival	M	Y	L2	PA_A_3	48° 08′	PA_A_4	48° 08′	1.0	Calallam	0	6	6	6	6

Total Distance 68.5 nm Note: SS - Service Speed

Speed by Link (knots)

Slow

Very Slow

Fast Medium

OGV-Routin	g: SEA to	EVEF	RETT	•						_	Fast	Fast	Medium	Slow	Very Slow
Lat/Long in V	WGS84 Da	tum								•				Bulkers	
													Reefer	Tankers	
DRAFT												Container		Log	
Route	Arr/Dep			Link ID	Start WP	_		• •		County	Cruise	Auto	Fishing	Fishing	Fishing
Sea_Tacoma	Arrival	Т	N	L1	PS_A_1		PS_A_2		10.72	Calallam	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L2	PS_A_2	48° 28	PS_A_3	48° 13′	35.85	Calallam	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L3	PS_A_3	48° 13	PS_A_4	48° 13′	15.36	Calallam	0	20	SS	SS	SS
Sea_Tacoma	Arrival	X	N	L4	PS_A_4		PS_A_5	48° 09′	6.94	Calallam	0	16	15	12	SS
Sea_Tacoma	Arrival	M	N	L5	PS_A_5	48° 09	PS_A_6	48° 09′	0.6	Calallam	0	8	8	8	8
Sea_Tacoma	Arrival	X	N	L6	PS_A_6	48° 09	PS_A_7	48° 11′	11.4	Calallam	0	18	16	12	SS
Sea_Tacoma	Arrival	Τ	N	L7	PS_A_7	48° 11	PS_A_8	48° 11′	9.49	Calallam	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L8	PS_A_8	48° 11	PS_A_9	48° 10′	2.92	Jefferson	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L9	PS_A_9	48° 10	PS_A_10	48° 06′	6.82	Jefferson	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L10	PS_A_10	48° 06	PS_A_11	48° 01′	5.62	Jefferson	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L11	PS_A_11	48° 01	PS_A_12	47° 57′	3.97	Island	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L12	PS_A_12	47° 57	PS_A_13	47° 56′	1.82	Island	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L13	PS_A_13	47° 56	PS_A_14	47° 55′	2.33	Kitsap	0	SS	SS	SS	SS
PS_Everett	Arrival	Τ	N	L1a	PS_A_14	47° 55	EV_A_2	47° 53′	2.26	Kitsap	0	SS	SS	SS	SS
PS_Everett	Arrival	T	N	L2	EV_A_2	47° 53]	EV_A_3	47° 51′	2.72	Kitsap	0	SS	SS	SS	SS
PS_Everett	Arrival	Τ	N	L3	EV_A_3	47° 51 1	EV_A_4	47° 51′	1.97	Island	0	SS	SS	SS	SS
PS_Everett	Arrival	Τ	N	L4	EV_A_4	47° 51 1	EV_A_5	47° 52′	0.62	Snohomish	0	SS	SS	SS	SS
PS_Everett	Arrival	Τ	N	L5	EV_A_5	47° 52 1	EV_A_6	47° 54′	2.42	Snohomish	0	20	SS	SS	SS
PS_Everett	Arrival	X	Y	L6	EV_A_6	47° 54 1	EV_A_7	47° 56′	2.49	Snohomish	0	18	SS	SS	SS
PS_Everett	Arrival	X	Y	L7	EV_A_7	47° 56 1	EV_A_8	47° 57′	1.07	Snohomish	0	14	14	12	SS
PS_Everett	Arrival	\mathbf{M}	Y	L8	EV_A_8	47° 57]	EV_A_9	47° 58′	1.95	Snohomish	0	10	10	10	9
PS_Everett	Arrival	M	Y	L9	EV_A_9	47° 58 1	EV_A_10	47° 58′	1.32	Snohomish	0	7	7	6	6

Note: SS - Service Speed Total Distance 130.68 nm

Puget Sound Emissions Inventory OGV-Routing: EVERETT HARBOR Lat/Long in WGS84 Datum

Note To_Port EVERITT Arrival 1.9 EV_A_1 47* 58* 40" N 1.22* 14" 15" W EV_B_1 47* 58* 40" N 1.22* 14" 15" W EV_B_1 47* 58* 40" N 1.22* 14" 15" W EV_B_1 47* 58* 40" N 1.22* 14" 15" W EV_B_1 47* 58* 40" N 1.22* 14" 15" W EV_B_1 47* 58* 40" N 1.22* 14" 15" W EV_B_1 47* 58* 40" N 1.22* 14" 15" W EV_B_1 47* 58* 40" N 1.22* 14" 15" W EV_B_1 47* 58* 40" N 1.22* 14" 15" W EV_B_1 47* 58* 40" N 1.22* 14" 15" W EV_B_1 47* 58* 40" N 1.22* 14" 15" W EV_B_1 47* 58* 40" N 1.22* 13" 30" W EV_B_1 47* 58* 40" N 1.22* 13" 30" W EV_B_1 47* 58* 40" N 1.22* 13" 30" W EV_B_1 47* 58* 40" N 1.22* 13" 30" W EV_B_1 47* 58* 40" N 1.22* 13" 30" W EV_B_1 47* 58* 50" N	erett t_PS :: All ARRIVAL :: All DEPARTU t_1-North	EVERETT EVERETT harbor transits brane			Link ID							Containe	r RO/RO	Log	
Everett_INS	t_PS E: All ARRIVAL E: All DEPARTU t_1-North	EVERETT harbor transits brane			חווא וווי	Start WP	Starting WP Lat/Lon			County	Cruise	Auto	Fishing	Fishing	Fishing
NOTE: All DEPARTURE Large transits parch from EV_A_10 NOTE: All DEPARTURE Large transits pote EV_D_1 Route To_Port To_Per Arr/Dep Link ID Start WP Starting WP Lat/Lon End WP Ending Waypoint Lat/Lon Dist. County Route To_Port To_Per	E: All ARRIVAL E: All DEPARTU t_1-North	harbor transits bran		Arrival	L9	EV_A_10	47° 58′ 40′′ N 122° 14′ 15′′ W			Snohomish					
NOTE: All DEPARTURE harbor transits goto EV_D_1 Route To_Pier Arr/Dep Link ID Start WP Starting WP Latr/Lon End WP Ending Waypoint Lat/Lon Dist. County	E: All DEPARTU t_1-North			Departure	L1	EV_D_1	47° 58′ 40′′ N 122° 14′ 15′′ W			Snohomish					
Route To_Port To_Pier Arr/De_Link ID_Start WP_Starting WP_Lat/Lone End WP_Ending Wappoint Lat/Lon_Dist. County	t_1-North	JRE harbor transits g	ch from EV_A_10												
EVERETT	t_1-North		goto EV_D_1												
EVERETT 1-NORTH Arrival 1.2 EV_H_1 47° 58′ 44″ N 122° 13′ 39″ W EV_H_2 47° 58′ 52″ N 122° 13′ 26″ W 0.13 Snohomish 0 2		To_Port	To_Pier	Arr/Dep	Link ID	Start WP	Starting WP Lat/Lon	End WP	Ending Waypoint Lat/Lon	Dist. County					
EVERETT 1-NORTH		EVERETT	1-NORTH	Arrival	L1a	EV_A_10	47° 58′ 40′′ N 122° 14′ 15′′ W	EV_H_1	47° 58′ 44′′ N 122° 13′ 39′′ W	0.40 Snohomish	0	4	4	4	4
Total Distance 0.74 mm -North_Everett EVERETT 1-NORTH Departure 1.3 EV_B_1 47° 58′ 52′ N 122° 13′ 26′ W EV_H_2 47° 58′ 54′ N 122° 13′ 26′ W EV_H_1 47° 58′ 54′ N 122° 13′ 26′ W EV_H_1 47° 58′ 44′ N 122° 13′ 39′ W 0.23 Snohomish 0 1 -North_Everett EVERETT 1-NORTH Departure 1.2 EV_H_2 47° 58′ 54′ N 122° 13′ 26′ W EV_H_1 47° 58′ 44′ N 122° 13′ 39′ W 0.23 Snohomish 0 2	t_1-North	EVERETT	1-NORTH	Arrival	L2	EV_H_1	47° 58′ 44′′ N 122° 13′ 39′′ W	EV_H_2	47° 58′ 54′′ N 122° 13′ 26′′ W	0.23 Snohomish	0	2	2	2	2
EVERETT	t_1-North	EVERETT	1-NORTH	Arrival	L3	EV_H_2	47° 58′ 54′′ N 122° 13′ 26′′ W	EV_B_1	47° 58′ 52′′ N 122° 13′ 17′′ W	0.11 Snohomish	0	1	1	1	1
1-North_Everett EVERETT 1-NORTH Departure L2 EV_H_2 47° 58′ 54′ N 122° 13′ 26′ W EV_H_1 47° 58′ 44′ N 122° 13′ 39′ W 0.23 Snohomish 0 2 -North_Everett EVERETT 1-NORTH Departure L1a EV_H_1 47° 58′ 44′ N 122° 13′ 39′ W EV_D_1 47° 58′ 44′ N 122° 13′ 39′ W 0.40 Snohomish 0 5									Total Distance	0.74 nm					
1-North_Everett EVERETT 1-NORTH Departure L1a EV_H_1 47° 58′ 44″ N 122° 13′ 39″ W EV_D_1 47° 58′ 40″ N 122° 14′ 15″ W 0.40 Snohomish 0 5	h_Everett	EVERETT	1-NORTH	Departure	L3	EV_B_1	47° 58′ 52′′ N 122° 13′ 17′′ W	EV_H_2	47° 58′ 54′′ N 122° 13′ 26′′ W	0.11 Snohomish	0	1	1	1	1
Total Distance 0.74 nm Everett_3-South	h_Everett	EVERETT	1-NORTH	Departure	L2	EV_H_2	47° 58′ 54′′ N 122° 13′ 26′′ W	EV_H_1	47° 58′ 44′′ N 122° 13′ 39′′ W	0.23 Snohomish	0	2	2	2	2
Everett_3-South	h_Everett	EVERETT	1-NORTH	Departure	L1a	EV_H_1	47° 58′ 44′′ N 122° 13′ 39′′ W	EV_D_1	47° 58′ 40′′ N 122° 14′ 15′′ W	0.40 Snohomish	0	5	5	5	5
Everett_3-South				•					Total Distance	0.74 nm					
EVERETT 3-SOUTH Arrival L3 EV_H_3 47° 58′ 52′′ N 122° 13′ 30′′ W EV_B_2 47° 58′ 50′′ N 122° 13′ 17′′ W 0.14 Snohomish 0 1 Total Distance 0.71 nm 3-South_Everett EVERETT 3-SOUTH Departure L3 EV_B_2 47° 58′ 50′′ N 122° 13′ 17′′ W EV_H_3 47° 58′ 52′′ N 122° 13′ 30′′ W 0.14 Snohomish 0 1 3-South_Everett EVERETT 3-SOUTH Departure L2 EV_H_3 47° 58′ 52′′ N 122° 13′ 30′′ W EV_H_1 47° 58′ 44′′ N 122° 13′ 30′′ W 0.17 Snohomish 0 2 3-South_Everett EVERETT 3-SOUTH Departure L1 EV_H_1 47° 58′ 44′′ N 122° 13′ 30′′ W EV_D_1 47° 58′ 44′′ N 122° 13′ 30′′ W 0.40 Snohomish 0 5 Total Distance 0.71 nm Everett_Hewitt EVERETT HEWTTT Arrival L1 EV_H_1 47° 58′ 44′′ N 122° 13′ 39′′ W EV_H_1 47° 58′ 44′′ N 122° 13′ 39′′ W 0.40 Snohomish 0 2 Everett_Hewitt EVERETT HEWTTT Arrival L2 EV_H_1 47° 58′ 44′′ N 122° 13′ 39′′ W EV_H_4 47° 58′ 50′′ N 122° 13′ 32′′ W 0.13 Snohomish 0 2 Everett_Hewitt EVERETT HEWTTT Arrival L3 EV_H_1 47° 58′ 44′′ N 122° 13′ 32′′ W 0.13 Snohomish 0 1 Total Distance 0.66 nm Hewitt_Everett EVERETT HEWTTT Departure L3 EV_B_3 47° 58′ 45′′ N 122° 13′ 32′′ W EV_H_4 47° 58′ 50′′ N 122° 13′ 32′′ W 0.13 Snohomish 0 1 Hewitt_Everett EVERETT HEWTTT Departure L2 EV_H_4 47° 58′ 50′′ N 122° 13′ 32′′ W EV_H_4 47° 58′ 50′′ N 122° 13′ 32′′ W 0.13 Snohomish 0 2 EVERETT HEWTTT Departure L2 EV_H_4 47° 58′ 50′′ N 122° 13′ 32′′ W EV_H_4 47° 58′ 50′′ N 122° 13′ 32′′ W 0.13 Snohomish 0 1 Hewitt_Everett EVERETT HEWTTT Departure L2 EV_H_4 47° 58′ 50′′ N 122° 13′ 32′′ W EV_H_4 47° 58′ 50′′ N 122° 13′ 32′′ W 0.13 Snohomish 0 2	t_3-South	EVERETT	3-SOUTH	Arrival	L1a	EV_A_10	47° 58′ 40′′ N 122° 14′ 15′′ W	EV_H_1	47° 58′ 44′′ N 122° 13′ 39′′ W	0.40 Snohomish	0	4	4	4	4
Total Distance 0.71 nm	t_3-South	EVERETT	3-SOUTH	Arrival	L2	EV_H_1	47° 58′ 44′′ N 122° 13′ 39′′ W	EV_H_3	47° 58′ 52′′ N 122° 13′ 30′′ W	0.17 Snohomish	0	2	2	2	2
3-South_Everett EVERETT 3-SOUTH Departure L3 EV_B_2 47° 58′ 50″ N 122° 13′ 17″ W EV_H_3 47° 58′ 52″ N 122° 13′ 30″ W 0.14 Snohomish 0 1 3-South_Everett EVERETT 3-SOUTH Departure L2 EV_H_3 47° 58′ 52″ N 122° 13′ 30″ W EV_H_1 47° 58′ 44″ N 122° 13′ 39″ W 0.17 Snohomish 0 2 3-South_Everett EVERETT 3-SOUTH Departure L1a EV_H_1 47° 58′ 44″ N 122° 13′ 39″ W EV_D_1 47° 58′ 40″ N 122° 14′ 15″ W 0.40 Snohomish 0 5 Total Distance 0.71 nm Everett_Hewitt EVERETT HEWTIT Arrival L2 EV_H_1 47° 58′ 44″ N 122° 13′ 39″ W EV_H_1 47° 58′ 44″ N 122° 13′ 39″ W 0.40 Snohomish 0 4 Everett_Hewitt EVERETT HEWTIT Arrival L2 EV_H_1 47° 58′ 44″ N 122° 13′ 39″ W EV_H_2 47° 58′ 50″ N 122° 13′ 32″ W 0.13 Snohomish 0 2 Everett_Hewitt EVERETT HEWTIT Arrival L3 EV_H_4 47° 58′ 50″ N 122° 13′ 32″ W EV_B_3 47° 58′ 45″ N 122° 13′ 32″ W 0.13 Snohomish 0 1 Hewitt_Everett EVERETT HEWTIT Departure L3 EV_B_3 47° 58′ 45″ N 122° 13′ 32″ W EV_H_4 47° 58′ 50″ N 122° 13′ 32″ W 0.13 Snohomish 0 1 Hewitt_Everett EVERETT HEWTIT Departure L2 EV_H_4 47° 58′ 50″ N 122° 13′ 32″ W EV_H_1 47° 58′ 44″ N 122° 13′ 32″ W 0.13 Snohomish 0 2	t_3-South	EVERETT	3-SOUTH	Arrival	L3	EV_H_3	47° 58′ 52′′ N 122° 13′ 30′′ W	EV_B_2	47° 58′ 50′′ N 122° 13′ 17′′ W	0.14 Snohomish	0	1	1	1	1
3-South_Everett									Total Distance	0.71 nm					
3-South_Everett EVERETT 3-SOUTH Departure L1a EV_H_1 47° 58′ 44″ N 122° 13′ 39″ W EV_D_1 47° 58′ 40″ N 122° 14′ 15″ W 0.40 Snohomish 0 5 Total Distance 0.71 nm Everett_Hewitt EVERETT HEWITT Arrival L1a EV_A_10 47° 58′ 40″ N 122° 14′ 15″ W EV_H_1 47° 58′ 44″ N 122° 13′ 39″ W 0.40 Snohomish 0 4 Everett_Hewitt EVERETT HEWITT Arrival L2 EV_H_1 47° 58′ 44″ N 122° 13′ 39″ W EV_H_4 47° 58′ 50″ N 122° 13′ 32″ W 0.13 Snohomish 0 2 Everett_Hewitt EVERETT HEWITT Arrival L3 EV_H_4 47° 58′ 50″ N 122° 13′ 32″ W EV_B_3 47° 58′ 45″ N 122° 13′ 32″ W 0.13 Snohomish 0 1 Hewitt_Everett EVERETT HEWITT Departure L3 EV_B_3 47° 58′ 45″ N 122° 13′ 32″ W EV_H_4 47° 58′ 50″ N 122° 13′ 32″ W 0.13 Snohomish 0 1 Hewitt_Everett EVERETT HEWITT Departure L3 EV_B_3 47° 58′ 45″ N 122° 13′ 32″ W EV_H_4 47° 58′ 50″ N 122° 13′ 32″ W 0.13 Snohomish 0 1 Hewitt_Everett EVERETT HEWITT Departure L2 EV_H_4 47° 58′ 50″ N 122° 13′ 32″ W EV_H_1 47° 58′ 44″ N 122° 13′ 39″ W 0.13 Snohomish 0 2	h_Everett	EVERETT	3-SOUTH	Departure		EV_B_2	47° 58′ 50′′ N 122° 13′ 17′′ W	EV_H_3	47° 58′ 52′′ N 122° 13′ 30′′ W	0.14 Snohomish	0	1	1	1	1
Total Distance 0.71 nm Everett_Hewitt	_											_	2	2	2
Everett_Hewitt	h_Everett	EVERETT	3-SOUTH	Departure	L1a	EV_H_1	47° 58′ 44′′ N 122° 13′ 39′′ W	EV_D_1			0	5	5	5	5
Everett_Hewitt									Total Distance	0.71 nm					
Everett_Hewitt EVERETT HEWITT Arrival L3 EV_H_4 47° 58′ 50″ N 122° 13′ 32″ W EV_B_3 47° 58′ 45″ N 122° 13′ 22″ W 0.13 Snohomish 0 1 Total Distance 0.66 nm Hewitt_Everett EVERETT HEWITT Departure L3 EV_B_3 47° 58′ 45″ N 122° 13′ 22″ W EV_H_4 47° 58′ 50″ N 122° 13′ 32″ W 0.13 Snohomish 0 1 Hewitt_Everett EVERETT HEWITT Departure L2 EV_H_4 47° 58′ 50″ N 122° 13′ 32″ W EV_H_1 47° 58′ 44″ N 122° 13′ 39″ W 0.13 Snohomish 0 2	_											4	4	4	4
Total Distance 0.66 nm Hewitt_Everett EVERETT HEWITT Departure L3 EV_B_3 47° 58′ 45″ N 122° 13′ 22″ W EV_H_4 47° 58′ 50″ N 122° 13′ 32″ W 0.13 Snohomish 0 1 Hewitt_Everett EVERETT HEWITT Departure L2 EV_H_4 47° 58′ 50″ N 122° 13′ 32″ W EV_H_1 47° 58′ 44″ N 122° 13′ 39″ W 0.13 Snohomish 0 2	_											2	2	2	2
Hewitt_Everett EVERETT HEWITT Departure L3 EV_B_3 47° 58′ 45″ N 122° 13′ 22″ W EV_H_4 47° 58′ 50″ N 122° 13′ 32″ W 0.13 Snohomish 0 1 Hewitt_Everett EVERETT HEWITT Departure L2 EV_H_4 47° 58′ 50″ N 122° 13′ 32″ W EV_H_1 47° 58′ 44″ N 122° 13′ 39″ W 0.13 Snohomish 0 2	t_Hewitt	EVERETT	HEWITT	Arrival	L3	EV_H_4	47° 58′ 50′′ N 122° 13′ 32′′ W	EV_B_3			0	1	1	1	1
Hewitt_Everett EVERETT HEWITT Departure L2 EV_H_4 47° 58′ 50″ N 122° 13′ 32″ W EV_H_1 47° 58′ 44″ N 122° 13′ 39″ W 0.13 Snohomish 0 2									Total Distance	0.66 nm					
	_Everett	EVERETT	HEWITT	Departure	L3	EV_B_3	47° 58′ 45′′ N 122° 13′ 22′′ W	EV_H_4	47° 58′ 50′′ N 122° 13′ 32′′ W	0.13 Snohomish	0	1	1	1	1
Hewitt_Everett EVERETT HEWITT Departure L1a EV_H_1 47° 58′ 44″ N 122° 13′ 39″ W EV_D_1 47° 58′ 40″ N 122° 14′ 15″ W 0.40 Snohomish 0 5	_Everett	EVERETT	HEWITT	Departure	L2	EV_H_4	47° 58′ 50′′ N 122° 13′ 32′′ W	EV_H_1	47° 58′ 44′′ N 122° 13′ 39′′ W	0.13 Snohomish	0	2	2	2	2
	_Everett	EVERETT	HEWITT	Departure	L1a	EV_H_1	47° 58′ 44′′ N 122° 13′ 39′′ W	EV_D_1	47° 58′ 40′′ N 122° 14′ 15′′ W	0.40 Snohomish	0	5	5	5	5
Total Distance 0.66 nm									Total Distance	0.66 nm					
PortAngeles_Tesoro		EVERET'T	PACIFIC TERMINA	L Arrival	L1a	EV_A_10	47° 58′ 40′′ N 122° 14′ 15′′ W	EV_B_4	48° 58′ 40′′ N 122° 13′ 25′′ W	0.56 Snohomish	0	2	2	2	2
Tesoro_PortAngeles EVERETT PACIFIC TERMINAL Departure L1a EV_B_4 48° 58′ 40′′ N 122° 13′ 25′′ W EV_D_1 47° 58′ 40′′ N 122° 14′ 15′′ W 0.56 Snohomish 0 3	_PortAngeles	EVERETT	PACIFIC TERMINA	L Departure	L1a	EV_B_4	48° 58′ 40′′ N 122° 13′ 25′′ W	EV_D_1	47° 58′ 40′′ N 122° 14′ 15′′ W	0.56 Snohomish	0	3	3	3	3
PortAngeles_Tesoro EVERETT SOUTH TERMINAL Arrival L1a EV_A_10 47° 58′ 40′′ N 122° 14′ 15′′ W EV_B_5 47° 58′ 28′′ N 122° 13′ 45′′ W 0.39 Snohomish 0 2	ageles Tesoro	EVEPETT	SOUTH TERMINAL	A pristo1	I 1a	EV 4 10	47° 58′ 40′′ N 122° 14′ 15′′ W	EV R 5	47° 58′ 28′′ N 122° 12′ 45′′ W	0.30 Spohomish	0	2	2	2	2
Tesoro_PortAngeles	0 -												3	3	3
165010_1011/1118665 EVEREST 500 FIT TERMINAL Departure L1a EV_D_3 4/ 36 26 IN 122 13 43 W EV_D_1 4/ 36 40 IN 122 14 13 W 0.39 \$100000000 0 5	_1 OILAIIgeles	EVERETT	SOUTH TERMINAL	Departure	Lia	E V_D_3	7/ JO 20 IN 122 13 43 W	E V_D_1	+/ JO 40 IN 122 14 15 W	0.57 SHOHOIMSN	U	9		J	3
PortAngeles_Tesoro		EVERETT		Arrival									2	2	2
Tesoro_PortAngeles	ngeles_Tesoro			D .	T 4	EXT D (470 FO' FA'' NT 4000 44' 27'' W	TITE DO 4	450 507 4077 NT 4000 447 4577 NT		-		3	3	3

Speed by Link (knots)

Fast Medium Slow Very Slow

Puget Sound Emissions Inventory OGV-Routing: EVERETT to SEA

I uget oou	III LIIII	10110 1		itory							opec	a by Link	(1111010)	
OGV-Routin	g: EVERE	I'T to S	EA							Fast	Fast	Medium	Slow	Very Slow
Lat/Long in V	WGS84 Datur	m											Bulkers	
_												Reefer	Tankers	
DRAFT											Containe	RO/RO	Log	
Route	Arr/Dep	Mode 1	NPE	Link ID	Start WP	Starting WP Lat/Lon	End WP	Ending Waypoint Lat/Lon	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
Everett_PS	Departure	M	Y	L1	EV_D_1	47° 58′ 40′′ N 122° 14′ 15′′ W	EV_D_2	47° 58′ 51′′ N 122° 16′ 44′′ W	1.7 Snohomish	0	4	4	4	4
Everett_PS	Departure	M	Y	L2	EV_D_2	47° 58′ 51′′ N 122° 16′ 44′′ W	EV_D_3	47° 57′ 44′′ N 122° 19′ 42′′ W	2.3 Snohomish	0	10	10	10	9
Everett_PS	Departure	X	Y	L3	EV_D_3	47° 57′ 44′′ N 122° 19′ 42′′ W	EV_D_4	47° 54′ 11′′ N 122° 21′ 32′′ W	3.8 Island	0	16	14	SS	SS
Everett_PS	Departure	X	Y	L4	EV_D_4	47° 54′ 11′′ N 122° 21′ 32′′ W	EV_D_5	47° 52′ 10′′ N 122° 23′ 30′′ W	2.4 Island	0	20	17	SS	SS
Everett_PS	Departure	T	N	L5	EV_D_5	47° 52′ 10′′ N 122° 23′ 30′′ W	EV_D_6	47° 51′ 21′′ N 122° 26′ 29′′ W	2.2 Island	0	SS	SS	SS	SS
Everett_PS	Departure	T	N	L6a	EV_D_6	47° 51′ 21′′ N 122° 26′ 29′′ W	PS_D_16	47° 55′ 34′′ N 122° 29′ 11′′ W	4.6 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L16	PS_D_16	47° 55′ 34′′ N 122° 29′ 11′′ W	PS_D_17	47° 57′ 01′′ N 122° 32′ 03′′ W	2.4 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L17	PS_D_17	47° 57′ 01′′ N 122° 32′ 03′′ W	PS_D_18	47° 58′ 07′′ N 122° 34′ 19′′ W	1.9 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L18	PS_D_18	47° 58′ 07′′ N 122° 34′ 19′′ W	PS_D_19	48° 02′ 01′′ N 122° 37′ 40′′ W	4.5 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L19	PS_D_19	48° 02′ 01′′ N 122° 37′ 40′′ W	PS_D_20	48° 04′ 48′′ N 122° 38′ 31′′ W	2.8 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L20	PS_D_20	48° 04′ 48′′ N 122° 38′ 31′′ W	PS_D_21	48° 06′ 58′′ N 122° 39′ 13′′ W	2.2 Jefferson	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L21	PS_D_21	48° 06′ 58′′ N 122° 39′ 13′′ W	PS_D_22	48° 07′ 51′′ N 122° 40′ 43′′ W	1.3 Jefferson	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L22	PS_D_22	48° 07′ 51′′ N 122° 40′ 43′′ W	PS_D_23	48° 11′ 20′′ N 122° 46′ 47′′ W	5.3 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L23	PS_D_23	48° 11′ 20′′ N 122° 46′ 47′′ W	PS_D_24	48° 11′ 44′′ N 122° 48′ 45′′ W	1.4 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L24	PS_D_24	48° 11′ 44′′ N 122° 48′ 45′′ W	PS_D_25	48° 11′ 57′′ N 122° 52′ 19′′ W	2.4 Jefferson	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L25	PS_D_25	48° 11′ 57′′ N 122° 52′ 19′′ W	PS_D_26	48° 12′ 45′′ N 123° 06′ 35′′ W	9.5 Calallam	0	SS	SS	SS	SS
Tacoma_Sea	Departure	X	N	L26	PS_D_26	48° 12′ 45′′ N 123° 06′ 35′′ W	PS_D_27	48° 10′ 33′′ N 123° 23′ 03′′ W	11.2 Calallam	0	17	16	12	SS
Tacoma_Sea	Departure	M	N	L27	PS_D_27	48° 10′ 33′′ N 123° 23′ 03′′ W	PS_D_28	48° 11′ 21′′ N 123° 23′ 02′′ W	0.8 Calallam	0	8	8	8	8
Tacoma_Sea	Departure	X	N	L28	PS_D_28	48° 11′ 21′′ N 123° 23′ 02′′ W	PS_D_29	48° 14′ 13′′ N 123° 28′ 57′′ W	4.9 Calallam	0	15	14	12	SS
Tacoma_Sea	Departure	Τ	N	L29	PS_D_29	48° 14′ 13′′ N 123° 28′ 57′′ W	PS_D_30	48° 15′ 21′′ N 123° 33′ 17′′ W	3.1 Calallam	0	19	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L30	PS_D_30	48° 15′ 21′′ N 123° 33′ 17′′ W	PS_D_31	48° 17′ 36′′ N 123° 56′ 06′′ W	15.4 Calallam	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L31	PS_D_31	48° 17′ 36′′ N 123° 56′ 06′′ W	PS_D_32	48° 30′ 38′′ N 124° 43′ 36′′ W	34.1 Calallam	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L32	PS_D_32	48° 30′ 38′′ N 124° 43′ 36′′ W	PS_D_33	48° 30′ 43′′ N 125° 00′ 00′′ W	10.9 Calallam	0	SS	SS	SS	SS
	-							T . 1D' .	121.0		c · c			

Total Distance 131.0 nm Note: SS - Service Speed

OGV-Routing: EVERETT to VANCOUVER (NB2) Lat/Long in WGS84 Datum	Container l	Reefer	Slow Bulkers Tankers	Very Slow
		Reefer		
			Tankers	
		DO /DO		
DRAFT		KO/KO	Log	
Route Arr/Dep Mode NPE Link ID Start WP Starting WP Lat/Lon End WP Ending Waypoint Lat/Lon Dist. County Cruise	Auto	Fishing	Fishing	Fishing
Everett_PS Departure M Y L1 EV_D_1 47° 58′ 40′′ N 122° 14′ 15′′ W EV_D_2 47° 58′ 51′′ N 122° 16′ 44′′ W 1.7 Snohomish 0	4	4	4	4
Everett_PS Departure M Y L2 EV_D_2 47° 58′ 51′′ N 122° 16′ 44′′ W EV_D_3 47° 57′ 44′′ N 122° 19′ 42′′ W 2.3 Snohomish 0	10	10	10	9
Everett_PS Departure X Y L3 EV_D_3 47° 57′ 44′′ N 122° 19′ 42′′ W EV_D_4 47° 54′ 11′′ N 122° 21′ 32′′ W 3.8 Island 0	16	14	SS	SS
Everett_PS Departure X Y L4 EV_D_4 47° 54′ 11′′ N 122° 21′ 32′′ W EV_D_5 47° 52′ 10′′ N 122° 23′ 30′′ W 2.4 Island 0	20	17	SS	SS
Everett_PS Departure T N L5 EV_D_5 47° 52′ 10′′ N 122° 23′ 30′′ W EV_D_6 47° 51′ 21′′ N 122° 26′ 29′′ W 2.2 Island 0	SS	SS	SS	SS
Everett_PS Departure T N L6a EV_D_6 47° 51′ 21′′ N 122° 26′ 29′′ W PS_D_16 47° 55′ 34′′ N 122° 29′ 11′′ W 4.6 Island 0	SS	SS	SS	SS
Tacoma_Sea Departure T N L16 PS_D_16 47° 55′ 34′′ N 122° 29′ 11′′ W PS_D_17 47° 57′ 01′′ N 122° 32′ 03′′ W 2.4 Island 0	SS	SS	SS	SS
Tacoma_Sea Departure T N L17 PS_D_17 47° 57′ 01′′ N 122° 32′ 03′′ W PS_D_18 47° 58′ 07′′ N 122° 34′ 19′′ W 1.9 Island 0	SS	SS	SS	SS
Tacoma_Sea Departure T N L18 PS_D_18 47° 58′ 07′′ N 122° 34′ 19′′ W PS_D_19 48° 02′ 01′′ N 122° 37′ 40′′ W 4.5 Island 0	SS	SS	SS	SS
Tacoma_Sea Departure T N L19 PS_D_19 48° 02′ 01′′ N 122° 37′ 40′′ W PS_D_20 48° 04′ 48′′ N 122° 38′ 31′′ W 2.8 Island 0	SS	SS	SS	SS
Tacoma_Sea Departure T N L20 PS_D_20 48° 04′ 48′′ N 122° 38′ 31′′ W PS_D_21 48° 06′ 58′′ N 122° 39′ 13′′ W 2.2 Jefferson 0	SS	SS	SS	SS
Tacoma_Sea Departure T N L21 PS_D_21 48° 06′ 58′′ N 122° 39′ 13′′ W PS_D_22 48° 07′ 51′′ N 122° 40′ 43′′ W 1.3 Jefferson 0	SS	SS	SS	SS
Tacoma_Sea Departure T N L22 PS_D_22 48° 07′ 51′′ N 122° 40′ 43′′ W PS_D_23 48° 11′ 20′′ N 122° 46′ 47′′ W 5.3 Island 0	SS	SS	SS	SS
Tacoma_Sea Departure T N L23 PS_D_23 48° 11′ 20′′ N 122° 46′ 47′′ W PS_D_24 48° 11′ 44′′ N 122° 48′ 45′′ W 1.4 Island 0	SS	SS	SS	SS
Tacoma_Sea Departure T N L24 PS_D_24 48° 11′ 44′′ N 122° 48′ 45′′ W PS_D_25 48° 11′ 57′′ N 122° 52′ 19′′ W 2.4 Jefferson 0	SS	SS	SS	SS
Tacoma_Sea Departure T N L25 PS_D_25 48° 11′ 57′′ N 122° 52′ 19′′ W PS_D_26 48° 12′ 45′′ N 123° 06′ 35′′ W 9.5 Calallam 0	SS	SS	SS	SS
Tacoma_Sea Departure X N L26 PS_D_26 48° 12′ 45′′ N 123° 06′ 35′′ W PS_D_27 48° 10′ 33′′ N 123° 23′ 03′′ W 11.2 Calallam 0	17	16	12	SS
Tacoma_Sea Departure M N L27a PS_D_27 48° 10′ 33′′ N 123° 23′ 03′′ W PS_A_6 48° 09′ 58′′ N 123° 23′ 25′′ W 0.8 Calallam 0	8	8	8	8
Sea_Tacoma Arrival X N L6 PS_A_6 48° 09′ 58′′ N 123° 23′ 25′′ W PS_A_7 48° 11′ 56′′ N 123° 06′ 35′′ W 11.4 Calallam 0	18	15	SS	SS
Sea_Tacoma Arrival T N L7 PS_A_7 48° 11′ 56′′ N 123° 06′ 35′′ W PS_A_8 48° 11′ 11′′ N 122° 52′ 23′′ W 9.5 Calallam 0	SS	SS	SS	SS
Sea_Tacoma Arrival T N L8a PS_A_8 48° 11′ 11′′ N 122° 52′ 23′′ W PS_D_24 48° 11′ 44′′ N 122° 48′ 45′′ W 2.5 Jefferson 0	SS	SS	SS	SS
AI_NB2 Departure T N L1a PS_D_24 48° 11′ 44′′ N 122° 48′ 45′′ W AD_D_2 48° 13′ 19′′ N 122° 50′ 53′′ W 2.1 San Juan 0	SS	SS	SS	SS
AI_NB2 Departure T N L2 AD_D_2 48° 13′ 19′′ N 122° 50′ 53′′ W AD_D_3 48° 19′ 51′′ N 122° 58′ 00′′ W 8.1 San Juan 0	SS	SS	SS	SS
AI_NB2 Departure T N L3 AD_D_3 48° 19′ 51′′ N 122° 58′ 00′′ W AD_D_4 48° 24′ 17′′ N 123° 01′ 52′′ W 5.1 San Juan 0	SS	SS	SS	SS
AI_NB2 Departure T N L4 AD_D_4 48° 24′ 17′′ N 123° 01′ 52′′ W AD_D_5 48° 29′ 18′′ N 123° 09′ 56′′ W 7.3 San Juan 0	SS	SS	SS	SS
AI_NB2 Departure T N L5 AD_D_5 48° 29′ 18′′ N 123° 09′ 56′′ W AD_D_6 48° 34′ 47′′ N 123° 12′ 43′′ W 5.8 San Juan 0	SS	SS	SS	SS
AI_NB2 Departure T N L6 AD_D_6 48° 34′ 47′′ N 123° 12′ 43′′ W AD_D_7 48° 40′ 00′′ N 123° 14′ 28′′ W 5.4 San Juan 0	18	16	11	SS

Total Distance 119.8 nm

Speed by Link (knots)

OGV-Routing: VANCOUVER (NB2) to EVERETT

Lat/Long in	U		- (- 12-	,				-		2 000	Reefer	Bulkers Tankers	very elew
DRAFT										Container	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	ng WP La End WP	Waypoint 11	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
NBndry_AI	Arrival	Т	N	L1	AD_A_1	48° 40′ 0(AD_A_2	48° 34′ 56′	5.2 San Juan	0	18	16	SS	SS
NBndry_AI	Arrival	Τ	N	L2	AD_A_2	48° 34′ 5(AD_A_3	48° 29′ 20′	5.9 San Juan	0	SS	SS	SS	SS
NBndry_AI	Arrival	Τ	N	L3	AD_A_3	48° 29′ 2(AD_A_4	48° 27′ 27′	2.4 San Juan	0	SS	SS	SS	SS
NBndry_AI	Arrival	Τ	N	L4	AD_A_4	48° 27′ 27 AD_A_5	48° 25′ 07′	3.6 San Juan	0	SS	SS	SS	SS
NBndry_AI	Arrival	Τ	N	L5	AD_A_5	48° 25′ 07 AD_A_6	48° 22′ 36′	3.3 San Juan	0	SS	SS	SS	SS
NBndry_AI	Arrival	Τ	N	L6	AD_A_6	48° 22′ 3(AD_A_7	48° 20′ 00′	2.9 San Juan	0	SS	SS	SS	SS
NBndry_AI	Arrival	Τ	N	L7	AD_A_7	48° 20′ 0(AD_A_8	48° 12′ 48′	8.8 San Juan	0	SS	SS	SS	SS
NBndry_AI	Arrival	Τ	N	L8a	AD_A_8	48° 12′ 48 PS_D_25	48° 11′ 57°	0.9 Jefferson	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L25	PS_D_25	48° 11′ 57 PS_D_26	48° 12′ 45′	9.5 Calallam	0	SS	SS	SS	SS
Tacoma_Sea	Departure	X	N	L26	PS_D_26	48° 12′ 45 PS_D_27	48° 10′ 33′	11.2 Calallam	0	16	12	SS	SS
Tacoma_Sea	Departure	M	N	L27a	PS_D_27	48° 10′ 33 PS_A_6	48° 09′ 58′	0.8 Calallam	0	8	8	8	8
Sea_Tacoma	Arrival	X	N	L6	PS_A_6	48° 09′ 58 PS_A_7	48° 11′ 56′	11.4 Calallam	0	18	16	12	SS
Sea_Tacoma	Arrival	Τ	N	L7	PS_A_7	48° 11′ 50 PS_A_8	48° 11′ 11′	9.5 Calallam	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L8	PS_A_8	48° 11′ 11 PS_A_9	48° 10′ 57′	2.9 Jefferson	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L9	PS_A_9	48° 10′ 57 PS_A_10	48° 06′ 35′	6.8 Jefferson	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L10	PS_A_10	48° 06′ 35 PS_A_11	48° 01′ 08′	5.6 Jefferson	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L11	PS_A_11	48° 01′ 08 PS_A_12	47° 57′ 41′	4.0 Island	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L12	PS_A_12	47° 57′ 41 PS_A_13	47° 56′ 38′	1.8 Island	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L13	PS_A_13	47° 56′ 38 PS_A_14	47° 55′ 17′	2.3 Kitsap	0	SS	SS	SS	SS
PS_Everett	Arrival	Τ	N	L1a	PS_A_14	47° 55′ 17 EV_A_2	47° 53′ 08′	2.3 Kitsap	0	SS	SS	SS	SS
PS_Everett	Arrival	Τ	N	L2	EV_A_2	47° 53′ 0{ EV_A_3	47° 51′ 05′	2.7 Kitsap	0	SS	SS	SS	SS
PS_Everett	Arrival	Τ	N	L3	EV_A_3	47° 51′ 05 EV_A_4	47° 51′ 50′	2.0 Island	0	SS	SS	SS	SS
PS_Everett	Arrival	Τ	N	L4	EV_A_4	47° 51′ 5(EV_A_5	47° 52′ 03′	0.6 Snohomisl	0	SS	SS	SS	SS
PS_Everett	Arrival	Τ	N	L5	EV_A_5	47° 52′ 03 EV_A_6	47° 54′ 06′	2.4 Snohomisl	0	19	SS	SS	SS
PS_Everett	Arrival	X	Y	L6	EV_A_6	47° 54′ 0(EV_A_7	47° 56′ 25′	2.5 Snohomisl	0	18	SS	SS	SS
PS_Everett	Arrival	X	Y	L7	EV_A_7	47° 56′ 25 EV_A_8	47° 57′ 28′	1.1 Snohomisl	0	14	14	12	SS
PS_Everett	Arrival	\mathbf{M}	Y	L8	EV_A_8	47° 57′ 28 EV_A_9	47° 58′ 31′	2.0 Snohomisl	0	10	10	10	10
PS_Everett	Arrival	\mathbf{M}	Y	L9	EV_A_9	47° 58′ 31EV_A_10	47° 58′ 40′	1.3 Snohomisl	0	7	7	6	6

Total Distance 115.7 nm Note: SS - Service Speed

Speed by Link (knots)

Very Slow

Fast Medium Slow

OGV-Routing: SI	EATTLE to	o TAC	OMA								Fast	Fast	Medium	Slow	Very Slow
Lat/Long in WGS8	34 Datum													Bulkers	_
													Reefer	Tankers	
DRAFT												Containe	r RO/RO	Log	
Route	Arr/Dep	Mode	NPM	Link ID	Start WP	ing WP La	t, End WP	'aypoin l	Dist.	County	Cruise	Auto	Fishing	Fishing	Fishing
ElliottBay_Tacoma	Departure	X	Y	L1	E_D_1	47° 36′ 52	"EB_D_S	1 47° 36	1.7	King	0	14	12	10	9
ElliottBay_Tacoma	Departure	X	Y	L2	EB_D_S1	47° 36′ 19	´´EB_D_S	2 47° 35	1.5	King	0	18	16	SS	SS
ElliottBay_Tacoma	Departure	X	Y	L3a	EB_D_S2	47° 35′ 06	′′ PS_A_17	47° 34	0.7	Kitsap	0	20	SS	SS	SS
Sea_Tacoma	Arrival	Τ	Y	L17	PS_A_17	47° 34′ 32	′′ PS_A_18	47° 31	2.8	Kitsap	0	17	16	13	SS
Sea_Tacoma	Arrival	Τ	N	L18	PS_A_18	47° 31′ 51	′′ PS_A_19	47° 26	5.3	King	0	16	16	13	SS
Sea_Tacoma	Arrival	Τ	N	L19	PS_A_19	47° 26′ 44	`` PS_A_20	47° 23	4.1	King	0	17	17	13	SS
Sea_Tacoma	Arrival	X	Y	L20	PS_A_20	47° 23′ 09	′′ PS_A_21	47° 19	5.3	King	0	14	13	12	SS
Sea_Tacoma	Arrival	M	Y	L21	PS_A_21	47° 19′ 39	′′ PS_A_22	47° 19	0.5	King	0	10	10	10	9
Sea_Tacoma	Arrival	M	Y	L22	PS_A_22	47° 19′ 10	′′ PS_A_23	47° 18	1.1	Pierce	0	10	10	10	8
							Total	Distance	22.9 1	nm	Note: SS	- Service S	peed		

Puget Sound I	Emission	s Inv	entor	y							Spee	d by Link	(knots)	
OGV-Routing: TA	ACOMA to	SEAT'	TLE							Fast	Fast	Medium	Slow	Very Slow
Lat/Long in WGS8	4 Datum												Bulkers	
												Reefer	Tankers	
DRAFT											Containe	r RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	WP]	End WP	aypoir D	ist. County	Cruise	Auto	Fishing	Fishing	Fishing
Tacoma_Sea	Departure	X	Y	L2	PS_D_2	47°	PS_D_3	47° 1	1.3 Pierce	0	10	10	10	9
Tacoma_Sea	Departure	X	Y	L3	PS_D_3	47°	PS_D_4	47° 1	0.9 Pierce	0	12	12	12	SS
Tacoma_Sea	Departure	X	Y	L4	PS_D_4	47°	PS_D_5	47° 2	4.8 King	0	16	14	SS	SS
Tacoma_Sea	Departure	Τ	N	L5	PS_D_5	47°	PS_D_6	47° 2	4.4 King	0	17	16	SS	SS
Tacoma_Sea	Departure	Τ	N	L6	PS_D_6	47°	PS_D_7	47° 3	7.8 King	0	16	15	SS	SS
Tacoma_Sea	Departure	Τ	Y	L7a	PS_D_7	47°	EB_A_S1	47° 3	2.2 King	0	17	16	SS	SS
Tacoma_ElliottBay	Arrival	X	Y	L1	EB_A_S1	47°	EB_A_4	47° 3	1.3 King	0	15	13	10	9

Total Distance 22.6 nm

Note: SS - Service Speed

B-48

Puget Sound Emissions Inventory Speed by Link (knots) **OGV-Routing: TACOMA to PORT ANGELES** Fast Medium **Fast** Lat/Long in WGS84 Datum Reefer Tankers

											Reeler	Tallkers	
DRAFT										Containe	r RO/RO	\mathbf{Log}	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	WP 1 End WP	⁷ aypoin	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
Tacoma_Sea	Departure	X	Y	L2	PS_D_2	47° 1PS_D_3	47° 19′	1.3 Pierce	0	10	10	10	9
Tacoma_Sea	Departure	X	Y	L3	PS_D_3	47° 1PS_D_4	47° 19′	0.9 Pierce	0	12	12	12	SS
Tacoma_Sea	Departure	X	Y	L4	PS_D_4	47° 1PS_D_5	47° 23′	4.8 King	0	16	14	SS	SS
Tacoma_Sea	Departure	Τ	N	L5	PS_D_5	47° 2 PS_D_6	47° 26′	4.4 King	0	17	16	SS	SS
Tacoma_Sea	Departure	Т	N	L6	PS_D_6	47° 2 PS_D_7	47° 34′	7.8 King	0	16	15	SS	SS
Tacoma_Sea	Departure	Т	N	L7	PS_D_7	47° 3 PS_D_8	47° 35′	1.4 King	0	17	16	SS	SS
Tacoma_Sea	Departure	Т	N	L8	PS_D_8	47° 3 PS_D_9	47° 37′	1.1 Kitsap	0	20	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L9	PS_D_9	47° 3 PS_D_10	47° 39′	2.7 King	0	22	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L10	PS_D_10	47° 3 PS_D_11	47° 41′	2.3 King	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L11	PS_D_11	47° 4PS_D_12	47° 45′	4.0 Kitsap	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L12	PS_D_12	47° 4PS_D_13	47° 46′	0.8 King	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L13	PS_D_13	47° 4 PS_D_14	47° 48′	1.5 Snohomish	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L14	PS_D_14	47° 4 PS_D_15	47° 52′	4.6 Kitsap	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L15	PS_D_15	47° 5 PS_D_16	47° 55′	3.1 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L16	PS_D_16	47° 5 PS_D_17	47° 57′	2.4 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L17	PS_D_17	47° 5 PS_D_18	47° 58′	1.9 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L18	PS_D_18	47° 5 PS_D_19	48° 02′	4.5 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L19	PS_D_19	48° (PS_D_20	48° 04′	2.8 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L20	PS_D_20	48° (PS_D_21	48° 06′	2.2 Jefferson	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L21	PS_D_21	48° (PS_D_22	48° 07′	1.3 Jefferson	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L22	PS_D_22	48° (PS_D_23	48° 11′	5.3 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L23	PS_D_23	48° 1 PS_D_24	48° 11′	1.4 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L24	PS_D_24	48° 1 PS_D_25	48° 11′	2.4 Jefferson	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L25	PS_D_25	48° 1 PS_D_26	48° 12′	9.5 Calallam	0	SS	SS	SS	SS
Tacoma_Sea	Departure	X	Y	L26	PS_D_26	48° 1PS_D_27	48° 10′	11.2 Calallam	0	17	16	12	SS
Tacoma_Sea	Departure	M	Y	L27a	PS_D_27	48° 1 PA_A_2	48° 09′	0.6 Calallam	0	10	10	10	9
Sea_PortAngele		M	Y	L1	PA_A_2	48° (PA_A_3	48° 08′	1.6 Calallam	0	8	8	8	8
Sea_PortAngele	es Arrival	M	Y	L2	PA_A_3	48° (PA_A_4	48° 08′	1.0 Calallam	0	6	6	6	6

Total Distance 88.8 nm Note: SS - Service Speed Slow

Bulkers

Very Slow

Puget Sound Emissions Inventory OGV-Routing: PORT ANGELES to TACOMA

Lat/Long in '	WGS84 Datum	n											Bulkers	
DRAFT											Containe	Reefer r RO/RO	Tankers Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	ıg WP La	a End WP	Waypoint	Dist. County	Cruise	Auto	Fishing		Fishing
PortAngeles_	Sea Departure	M	Y	L1	PA_D_1	48° 08′ 0)PA_D_2	48° 08′ 18	1.2 Calallam	0	6	6	6	6
PortAngeles_	Sea Departure	M	Y	L2	PA_D_2	48° 08′ 1	1 PA_D_3	48° 09′ 36	1.5 Calallam	0	8	8	8	8
PortAngeles_	Sea Departure	M	Y	L3a	PA_D_3	48° 09′ 3	PS_A_6	48° 09′ 58	0.5 Calallam	0	10	10	10	9
Sea_Tacoma	Arrival	X	Y	L6	PS_A_6	48° 09′ 5	5 PS_A_7	48° 11′ 56	11.4 Calallam	0	18	16	12	SS
Sea_Tacoma	Arrival	Τ	N	L7	PS_A_7	48° 11′ 5	5 PS_A_8	48° 11′ 11	9.5 Calallam	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L8	PS_A_8	48° 11′ 1	1 PS_A_9	48° 10′ 57	2.9 Jefferson	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L9	PS_A_9	48° 10′ 5	5 PS_A_10	48° 06′ 35	6.8 Jefferson	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L10	PS_A_10	48° 06′ 3	3 PS_A_11	48° 01′ 08	5.6 Jefferson	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L11	PS_A_11	48° 01′ () PS_A_12	47° 57′ 41	4.0 Island	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L12	PS_A_12	47° 57′ 4	4 PS_A_13	47° 56′ 38	1.8 Island	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L13	PS_A_13	47° 56′ 3	3 PS_A_14	47° 55′ 17	2.3 Kitsap	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L14	PS_A_14	47° 55′ 1	1 PS_A_15	47° 45′ 54	9.7 Kitsap	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L15	PS_A_15	47° 45′ 5	5 PS_A_16	47° 39′ 42	6.3 Kitsap	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L16	PS_A_16	47° 39′ 4	4 PS_A_17	47° 34′ 32	5.2 Kitsap	0	18	16	13	SS
Sea_Tacoma	Arrival	Τ	N	L17	PS_A_17	47° 34′ 3	3 PS_A_18	47° 31′ 51	2.8 Kitsap	0	17	16	13	SS
Sea_Tacoma	Arrival	Τ	N	L18	PS_A_18	47° 31′ 5	5 PS_A_19	47° 26′ 44	5.3 King	0	16	16	13	SS
Sea_Tacoma	Arrival	X	N	L19	PS_A_19	47° 26′ 4	4 PS_A_20	47° 23′ 09	4.1 King	0	17	17	13	SS
Sea_Tacoma	Arrival	X	Y	L20	PS_A_20	47° 23′ () PS_A_21	47° 19′ 39	5.3 King	0	14	13	12	SS
Sea_Tacoma	Arrival	M	Y	L21	PS_A_21	47° 19′ 3	3 PS_A_22	47° 19′ 10	0.5 King	0	10	10	10	9
Sea_Tacoma	Arrival	M	Y	L22	PS_A_22	47° 19′ 1	1 PS_A_23	47° 18′ 07	1.1 Pierce	0	10	10	10	8

Total Distance 87.7 nm

Note: SS - Service Speed

Note: Red numbers - engines off

Speed by Link (knots)

Very Slow

Fast Medium Slow

				5								<i>j</i>	()	
OGV-Routing:	TACOMA	to EVI	ERET"	Γ						Fast	Fast	Medium	Slow	Very Slow
Lat/Long in WG	SS84 Datum								_				Bulkers	
												Reefer	Tankers	
DRAFT											Containe	r RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	WP]	End WP	'aypoin Di	ist. County	Cruise	Auto	Fishing	Fishing	Fishing
Tacoma_Sea	Departure	X	Y	L2	PS_D_2	47°	PS_D_3	47° 19	1.3 Pierce	0	10	10	10	9
Tacoma_Sea	Departure	X	Y	L3	PS_D_3	47°	PS_D_4	47° 19	0.9 Pierce	0	12	12	12	SS
Tacoma_Sea	Departure	X	Y	L4	PS_D_4	47°	PS_D_5	47° 23	4.8 King	0	16	14	SS	SS
Tacoma_Sea	Departure	Τ	N	L5	PS_D_5	47° 2	PS_D_6	47° 26	4.4 King	0	17	16	SS	SS
Tacoma_Sea	Departure	Τ	N	L6	PS_D_6	47° 2	PS_D_7	47° 34	7.8 King	0	16	15	SS	SS
Tacoma_Sea	Departure	Τ	N	L7	PS_D_7	47° :	PS_D_8	47° 35	1.4 King	0	17	16	SS	SS
Tacoma_Sea	Departure	Τ	N	L8	PS_D_8	47° :	PS_D_9	47° 37	1.1 Kitsap	0	20	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L9	PS_D_9	47° :	PS_D_10	47° 39	2.7 King	0	22	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L10	PS_D_10	47° :	PS_D_11	47° 41	2.3 King	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L11	PS_D_11	47° 4	PS_D_12	47° 45	4.0 Kitsap	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L12a	PS_D_12	47° 4	ET_A_1	47° 46	0.8 King	0	SS	SS	SS	SS
Tacoma_Everett	Departure	Т	N	L1	ET_A_1	47° 4	ET_A_2	47° 48	1.6 Snohomish	0	SS	SS	SS	SS
Tacoma_Everett	Departure	T	N	L2a	ET_A_2	47° 4	EV_A_5	47° 52	4.1 Snohomish	0	SS	SS	SS	SS
PS_Everett	Arrival	Т	N	L5	EV_A_5	47° .	EV_A_6	47° 54	2.4 Snohomish	0	19	SS	SS	SS
PS_Everett	Arrival	X	Y	L6	EV_A_6	47° .	EV_A_7	47° 56	2.5 Snohomish	0	18	SS	SS	SS
PS_Everett	Arrival	X	Y	L7	EV_A_7		EV_A_8	47° 57	1.1 Snohomish	0	14	14	12	SS
PS_Everett	Arrival	M	Y	L8	EV_A_8		EV_A_9	47° 58	2.0 Snohomish	0	10	10	10	9
PS_Everett	Arrival	M	Y	L9	EV_A_9	47° !	EV_A_10	47° 58	1.3 Snohomish	0	7	7	6	6

Total Distance 46.5 nm Note: SS - Service Speed

OGV-Routing	g: EVERET	T to T	ACOM	A					_	Fast	Fast	Medium	Slow	Very Slow
Lat/Long in W	GS84 Datun	n											Bulkers	
												Reefer	Tankers	
DRAFT											Containe	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	Starting WP Lat/Lon	End WP	Ending Waypoint Lat/Lon	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
Everett_PS	Departure	M	Y	L1	EV_D_1	47° 58′ 40′′ N 122° 14′ 15′′ W	EV_D_2	47° 58′ 51′′ N 122° 16′ 44′′ W	1.7 Snohomish	0	4	4	4	4
Everett_PS	Departure	M	Y	L2	EV_D_2	47° 58′ 51′′ N 122° 16′ 44′′ W	EV_D_3	47° 57′ 44′′ N 122° 19′ 42′′ W	2.3 Snohomish	0	10	10	10	9
Everett_PS	Departure	X	Y	L3	EV_D_3	47° 57′ 44′′ N 122° 19′ 42′′ W	EV_D_4	47° 54′ 11′′ N 122° 21′ 32′′ W	3.8 Island	0	16	14	SS	SS
Everett_PS	Departure	X	Y	L4	EV_D_4	47° 54′ 11′′ N 122° 21′ 32′′ W	EV_D_5	47° 52′ 10′′ N 122° 23′ 30′′ W	2.4 Island	0	20	17	SS	SS
Everett_PS	Departure	T	N	L5a	EV_D_5	47° 52′ 10′′ N 122° 23′ 30′′ W	ET_D_1	47° 51′ 53′′ N 122° 23′ 38′′ W	0.3 Island	0	SS	SS	SS	SS
Everett_Tacom	na Departure	Τ	N	L1	ET_D_1	47° 51′ 53′′ N 122° 23′ 38′′ W	ET_D_2	47° 46′ 44′′ N 122° 26′ 20′′ W	5.5 Snohomish	0	SS	SS	SS	SS
Everett_Tacom	na Departure	T	N	L2a	ET_D_2	47° 46′ 44′′ N 122° 26′ 20′′ W	PS_A_15	47° 45′ 54′′ N 122° 26′ 45′′ W	0.9 Kitsap	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L15	PS_A_15	47° 45′ 54′′ N 122° 26′ 45′′ W	PS_A_16	47° 39′ 42′′ N 122° 28′ 24′′ W	6.3 Kitsap	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L16	PS_A_16	47° 39′ 42′′ N 122° 28′ 24′′ W	PS_A_17	47° 34′ 32′′ N 122° 27′ 32′′ W	5.2 Kitsap	0	18	16	13	SS
Sea_Tacoma	Arrival	Τ	N	L17	PS_A_17	47° 34′ 32′′ N 122° 27′ 32′′ W	PS_A_18	47° 31′ 51′′ N 122° 26′ 34′′ W	2.8 Kitsap	0	17	16	13	SS
Sea_Tacoma	Arrival	Τ	N	L18	PS_A_18	47° 31′ 51′′ N 122° 26′ 34′′ W	PS_A_19	47° 26′ 44′′ N 122° 24′ 45′′ W	5.3 King	0	16	16	13	SS
Sea_Tacoma	Arrival	X	N	L19	PS_A_19	47° 26′ 44′′ N 122° 24′ 45′′ W	PS_A_20	47° 23′ 09′′ N 122° 21′ 56′′ W	4.1 King	0	17	17	13	SS
Sea_Tacoma	Arrival	X	Y	L20	PS_A_20	47° 23′ 09′′ N 122° 21′ 56′′ W	PS_A_21	47° 19′ 39′′ N 122° 27′ 52′′ W	5.3 King	0	14	13	12	SS
Sea_Tacoma	Arrival	M	Y	L21	PS_A_21	47° 19′ 39′′ N 122° 27′ 52′′ W	PS_A_22	47° 19′ 10′′ N 122° 28′ 05′′ W	0.5 King	0	10	10	10	9
Sea_Tacoma	Arrival	M	Y	L22	PS_A_22	47° 19′ 10′′ N 122° 28′ 05′′ W	PS_A_23	47° 18′ 07′′ N 122° 27′ 41′′ W	1.1 Pierce	0	10	10	10	8

Total Distance 47.3 nm

Note: SS - Service Speed

Puget Sound Emissions Inventory OGV-Routing: SEA to TACOMA

OGV-Routir	ng: SEA to	TACC)MA	J					Fast	Fast	Medium	Slow	Very Slow
Lat/Long in '	WGS84 Da	tum										Bulkers	
											Reefer	Tankers	
DRAFT										Containe	r RO/RO	Log	
Route	Arr/Dep	Mode	NPM	Link ID		ng WP La End WP		Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
Sea_Tacoma	Arrival	Т	N	L1	PS_A_1	48° 28′ 3 PS_A_2	48° 28	10.7 Calallam	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L2	PS_A_2	48° 28′ 3 PS_A_3	48° 13	35.9 Calallam	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L3	PS_A_3	48° 13′ 2 PS_A_4	48° 13	15.4 Calallam	0	20	SS	SS	SS
Sea_Tacoma	Arrival	X	N	L4	PS_A_4	48° 13′ 2 PS_A_5	48° 09'	6.9 Calallam	0	16	15	12	SS
Sea_Tacoma	Arrival	M	N	L5	PS_A_5	48° 09′ 2 PS_A_6	48° 09	0.6 Calallam	0	8	8	8	8
Sea_Tacoma	Arrival	X	N	L6	PS_A_6	48° 09′ 5 PS_A_7	48° 11	11.4 Calallam	0	18	16	12	SS
Sea_Tacoma	Arrival	T	N	L7	PS_A_7	48° 11′ 5 PS_A_8	48° 11	9.5 Calallam	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L8	PS_A_8	48° 11′ 1 PS_A_9	48° 10°	2.9 Jefferson	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L9	PS_A_9	48° 10′ 5 PS_A_10	48° 06	6.8 Jefferson	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L10	PS_A_10	48° 06′ 3 PS_A_11	48° 01	5.6 Jefferson	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L11	PS_A_11	48° 01′ 0 PS_A_12	47° 57	4.0 Island	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L12	PS_A_12	47° 57′ 4 PS_A_13	47° 56′	1.8 Island	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L13	PS_A_13	47° 56′ 3 PS_A_14	47° 55	2.3 Kitsap	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L14	PS_A_14	47° 55′ 1 PS_A_15	47° 45	9.7 Kitsap	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L15	PS_A_15	47° 45′ 5 PS_A_16	47° 39	6.3 Kitsap	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L16	PS_A_16	47° 39′ 4 PS_A_17	47° 34	5.2 Kitsap	0	18	16	13	SS
Sea_Tacoma	Arrival	T	N	L17	PS_A_17	47° 34′ 3 PS_A_18	47° 31	2.8 Kitsap	0	17	16	13	SS
Sea_Tacoma	Arrival	T	N	L18	PS_A_18	47° 31′ 5 PS_A_19	47° 26′	5.3 King	0	16	16	13	SS
Sea_Tacoma	Arrival	X	N	L19	PS_A_19	47° 26′ 4 PS_A_20	47° 23	4.1 King	0	17	17	13	SS
Sea_Tacoma	Arrival	X	Y	L20	PS_A_20	47° 23′ 0 PS_A_21	47° 19	5.3 King	0	14	13	12	SS
Sea_Tacoma	Arrival	M	Y	L21	PS_A_21	47° 19′ 3 PS_A_22	47° 19	0.5 King	0	10	10	10	9
Sea_Tacoma	Arrival	M	Y	L22	PS_A_22	47° 19′ 1 PS_A_23	47° 18	1.1 Pierce	0	10	10	10	8

Total Distance 154.0 nm Note: SS - Service Speed

DRAFT

Speed by Link (knots) Fast Medium Slow Very Slow Fast Bulkers

Reefer Tankers

Container RO/RO Log

									Container		Log	
Route	To_Port To_Pier	Arr/Dep nk	Start WP	ıg WP La	End WP	nding Waypoint Lat/L	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
Sea_Tacoma	SEATTLE	Arrival	PS_A_23	47° 18′ 0	Mode:	M	King					
Tacoma_Sea	SEATTLE	Departure	PS_D_2	47° 18′ 0	NPE:	Y	King					
_												
Route	To_Port To_Pier	Arr/Dep nk	Start WP	ng WP La	End WP	nding Waypoint Lat/L	Dist. County	_				
Sea_Tacoma	TACOMA 4-A	Arrival	PS_A_23	47° 18′ 0	TA_BW_1	47° 16′ 50′′ N 122° 24	2.24 Pierce	0	5	5	5	5
Sea_Tacoma	TACOMA 4-A	Arrival	TA_BW_1	47° 16′ 5	TA_BW_2	47° 16′ 40′′ N 122° 24	0.25 Pierce	0	3	3	3	3
Sea_Tacoma	TACOMA 4-A	Arrival	TA_BW_2	47 16 4	TA_B_4A	47° 16′ 23′′ N 122° 24	0.37 Pierce	0	2	2	2	2
Tacoma_Sea	TACOMA 4-A	Departure	TA_B_4A	47° 16′ 2	TA_BW_2	47° 16′ 40′′ N 122° 24	0.37 Pierce	0	2	2	2	2
Tacoma_Sea	TACOMA 4-A	Departure	TA_B_4A TA_BW_2	47° 16′ 4	TA_BW_2 TA_BW_1	47° 16′ 50′′ N 122° 24	0.25 Pierce	0	4	4	4	4
Tacoma_Sea	TACOMA 4-A	Departure	TA_BW_1	47° 16′ 5	PS_D_2	47° 18′ 07′′ N 122° 27	2.24 Pierce	0	9	9	6	6
1 acoma_sca	THOUMH +H	Берапше	171_DW_1	T/ 10 3	13_D_2	+/ 10 0/ 1 \ 122 2/	2.24 1 10100	0			0	0
Sea_Tacoma	TACOMA 4-A&B	Arrival	PS_A_23	47° 18′ 0	TA_BW_1	47° 16′ 50′′ N 122° 24	2.24 Pierce	0	5	5	5	5
Sea_Tacoma	TACOMA 4-A&B	Arrival	TA_BW_1		TA_BW_2	47° 16′ 40′′ N 122° 24	0.25 Pierce	0	3	3	3	3
Sea_Tacoma	TACOMA 4-A&B	Arrival	TA_BW_2		TA_B_4AB	47° 16′ 25′′ N 122° 24	0.29 Pierce	0	2	2	2	2
Tacoma_Sea	TACOMA 4-A&B	Departure	TA_B_4AB	47° 16′ 2	TA_BW_2	47° 16′ 40′′ N 122° 24	0.29 Pierce	0	2	2	2	2
Tacoma_Sea	TACOMA 4-A&B	Departure	TA_BW_2	47° 16′ 4	TA_BW_1	47° 16′ 50′′ N 122° 24	0.25 Pierce	0	4	4	4	4
Tacoma_Sea	TACOMA 4-A&B	Departure	TA_BW_1	47° 16′ 5	PS_D_2	47° 18′ 07′′ N 122° 27	2.24 Pierce	0	9	9	6	6
Sea_Tacoma	TACOMA 4-B	Arrival	PS_A_23	47° 18′ 0		47° 16′ 50′′ N 122° 24	2.24 Pierce	0	5	5	5	5
Sea_Tacoma	TACOMA 4-B	Arrival	TA_BW_1	47° 16′ 5	TA_BW_2	47° 16′ 40′′ N 122° 24	0.25 Pierce	0	3	3	3	3
Sea_Tacoma	TACOMA 4-B	Arrival	TA_BW_2	47° 16′ 4	TA_B_4B	47° 16′ 29′′ N 122° 24	0.20 Pierce	0	2	2	2	2
Tacoma_Sea	TACOMA 4-B	Departure	TA_B_4B	47° 16′ 2	TA BW 2	47° 16′ 40′′ N 122° 24	0.20 Pierce	0	2	2	2	2
		1	TA_B_4B TA_BW_2	47° 16′ 4	TA_BW_2 TA_BW_1	47° 16′ 50′′ N 122° 24 47° 16′ 50′′ N 122° 24		0	4	4	4	
Tacoma_Sea	TACOMA 4-B TACOMA 4-B	Departure	TA_BW_2 TA_BW_1	47° 16′ 5	PS_D_2	47° 18′ 07′′ N 122° 27	0.25 Pierce 2.24 Pierce	0	9	9	6	6
Tacoma_Sea	TACOMA 4-D	Departure	IA_BW_I	4/ 10 3	F3_D_2	4/ 10 U/ IN 122 2/	2.24 Fierce	U	9	9	0	0
Sea_Tacoma	TACOMA BLAIR-A	Arrival	PS_A_23	47° 18′ 0	TA_BW_1	47° 16′ 50′′ N 122° 24	2.24 Pierce	0	5	5	5	5
Sea_Tacoma	TACOMA BLAIR-A	Arrival	TA_BW_1	47° 16′ 5	TA_BW_2	47° 16′ 40′′ N 122° 24	0.25 Pierce	0	4	4	4	4
Sea_Tacoma	TACOMA BLAIR-A	Arrival	TA_BW_2	47° 16′ 4	TA_BW_3	47° 15′ 58′′ N 122° 23	1.03 Pierce	0	3	3	3	3
Sea_Tacoma	TACOMA BLAIR-A	Arrival	TA_BW_3	47° 15′ 5	TA_BW_4	47° 15′ 42′′ N 122° 23	0.40 Pierce	0	2	2	2	2
Sea_Tacoma	TACOMA BLAIR-A	Arrival	TA_BW_4	47° 15′ 4	TA_B_BLA	47° 15′ 34′′ N 122° 23	0.16 Pierce	0	1	1	1	1
Tacoma_Sea	TACOMA BLAIR-A	Departure	TA_B_BLA	47° 15′ 3	TA_BW_4	47° 15′ 42′′ N 122° 23	0.16 Pierce	0	1	1	1	1
Tacoma_Sea	TACOMA BLAIR-A	Departure	TA_BW_4	47° 15′ 4	TA_BW_3	47° 15′ 58′′ N 122° 23	0.40 Pierce	0	3	3	3	3
Tacoma_Sea	TACOMA BLAIR-A	Departure	TA_BW_3		TA_BW_2	47° 16′ 40′′ N 122° 24	1.03 Pierce	0	4	4	4	4
Tacoma_Sea	TACOMA BLAIR-A	Departure	TA_BW_2	47° 16′ 4	TA_BW_1	47° 16′ 50′′ N 122° 24	0.25 Pierce	0	4	4	4	4
Tacoma_Sea	TACOMA BLAIR-A	Departure	TA_BW_1	47° 16′ 5	PS_D_2	47° 18′ 07′′ N 122° 27	2.24 Pierce	0	9	9	6	6
Sea_Tacoma	TACOMA BLAIR-B	Arrival	PS_A_23	47° 18′ 0	TA_BW_1	47° 16′ 50′′ N 122° 24	2.24 Pierce	0	5	5	5	5
Sea_Tacoma Sea_Tacoma	TACOMA BLAIR-B	Arrival	TA_BW_1	47° 16′ 5	TA_BW_1 TA_BW_2	47° 16′ 40′′ N 122° 24	0.25 Pierce	0	5 4	5 4	4	4
Sea_Tacoma	TACOMA BLAIR-B	Arrival	TA_BW_1 TA_BW_2	47° 16′ 4	TA_BW_3	47° 15′ 58′′ N 122° 23	1.03 Pierce	0	3	3	3	3
Sea_Tacoma	TACOMA BLAIR-B	Arrival	TA_BW_3		TA_BW_4	47° 15′ 42′′ N 122° 23	0.40 Pierce	0	3	3	3	3
Sea_Tacoma	TACOMA BLAIR-B	Arrival	TA_BW_4		TA_BW_5	47° 15′ 30′′ N 122° 22	0.40 Pierce	0	2	2	2	2
Sea_Tacoma	TACOMA BLAIR-B	Arrival	TA_BW_5		TA_B_BLB	47° 15′ 20′′ N 122° 22	0.18 Pierce	0	1	1	1	1
	III DILLIE		-11_15 ,, _5	., 10 0		20 11 122 22			•	•	•	-
Tacoma_Sea	TACOMA BLAIR-B	Departure	TA_B_BLB	47° 15′ 2	TA_BW_5	47° 15′ 30′′ N 122° 22	0.18 Pierce	0	1	1	1	1
Tacoma_Sea	TACOMA BLAIR-B	Departure	TA_BW_5	47° 15′ 3	TA_BW_4	47° 15′ 42′′ N 122° 23	0.28 Pierce	0	2	2	2	2
Tacoma_Sea	TACOMA BLAIR-B	Departure	TA_BW_4	47° 15′ 4	TA_BW_3	47° 15′ 58′′ N 122° 23	0.40 Pierce	0	4	4	4	4
Tacoma_Sea	TACOMA BLAIR-B	Departure	TA_BW_3	47° 15′ 5	TA_BW_2	47° 16′ 40′′ N 122° 24	1.03 Pierce	0	4	4	4	4
Tacoma_Sea	TACOMA BLAIR-B	Departure	TA_BW_2		TA_BW_1	47° 16′ 50′′ N 122° 24	0.25 Pierce	0	4	4	4	4
Tacoma_Sea	TACOMA BLAIR-B	Departure	TA_BW_1	47° 16′ 5	PS_D_2	47° 18′ 07′′ N 122° 27	2.24 Pierce	0	9	9	6	6

Speed by Link (knots)
Fast Fast Medium Slow Very Slow

	TACOMA HARBOR							Fast	Fast	Medium		Very Slow
Lat/Long in Wo	GS84 Datum										Bulkers	
DRAFT											Tankers	
									Container		Log	
Route	To_Port To_Pier	Arr/Dep nk	Start WP	ıg WP La	End WP	nding Waypoint Lat/L	Dist. County	Cruise	Auto	Fishing		Fishing
Sea_Tacoma	TACOMA WA UNITED		PS_A_23	47° 18′ 0	TA_BW_1	47° 16′ 50′′ N 122° 24	2.24 Pierce	0	5	5	5	5
Sea_Tacoma	TACOMA WA UNITED		TA_BW_1	47° 16′ 5	TA_BW_2	47° 16′ 40′′ N 122° 24	0.25 Pierce	0	4	4	4	4
Sea_Tacoma	TACOMA WA UNITED	1 Arrival	TA_BW_2	47° 16′ 4	TA_BW_3	47° 15′ 58′′ N 122° 23	1.03 Pierce	0	3	3	3	3
Sea_Tacoma	TACOMA WA UNITED	1 Arrival	TA_BW_3	47° 15′ 5	TA_B_WU1	47° 15′ 41′′ N 122° 23	0.38 Pierce	0	1	1	1	1
Tacoma_Sea	TACOMA WA UNITED	1 Departure	TA_B_WU1	47° 15′ 4	TA_BW_3	47° 15′ 58′′ N 122° 23	0.38 Pierce	0	1	1	1	1
Tacoma_Sea	TACOMA WA UNITED	1 Departure	TA_BW_3	47° 15′ 5	TA_BW_2	47° 16′ 40′′ N 122° 24	1.03 Pierce	0	4	4	4	4
Tacoma_Sea	TACOMA WA UNITED	1 Departure	TA_BW_2	47° 16′ 4	TA_BW_1	47° 16′ 50′′ N 122° 24	0.25 Pierce	0	4	4	4	4
Tacoma_Sea	TACOMA WA UNITED	1 Departure	TA_BW_1	47° 16′ 5	PS_D_2	47° 18′ 07′′ N 122° 27	2.24 Pierce	0	9	9	6	6
Sea_Tacoma	TACOMA WA UNITED:	2 Arrival	PS_A_23	47° 18′ 0	TA_BW_1	47° 16′ 50′′ N 122° 24	2.24 Pierce	0	5	5	5	5
Sea_Tacoma	TACOMA WA UNITED :	2 Arrival	TA_BW_1	47° 16′ 5	TA_BW_2	47° 16′ 40′′ N 122° 24	0.25 Pierce	0	4	4	4	4
Sea_Tacoma	TACOMA WA UNITED :	2 Arrival	TA_BW_2	47° 16′ 4	TA_BW_3	47° 15′ 58′′ N 122° 23	1.03 Pierce	0	3	3	3	3
Sea_Tacoma	TACOMA WA UNITED :	2 Arrival	TA_BW_3	47° 15′ 5	TA B WU2	47° 15′ 49′′ N 122° 23	0.19 Pierce	0	1	1	1	1
Tacoma_Sea	TACOMA WA UNITED	2 Departure	TA B WU2	47° 15′ 4	TA BW 3	47° 15′ 58′′ N 122° 23	0.19 Pierce	0	1	1	1	1
Tacoma_Sea	TACOMA WA UNITED :	1	TA_BW_3	47° 15′ 5	TA_BW_2	47° 16′ 40′′ N 122° 24	1.03 Pierce	0	4	4	4	4
Tacoma_Sea	TACOMA WA UNITED		TA_BW_2		TA_BW_1	47° 16′ 50′′ N 122° 24	0.25 Pierce	0	4	4	4	4
Tacoma_Sea	TACOMA WA UNITED		TA_BW_1	47° 16′ 5	PS_D_2	47° 18′ 07′′ N 122° 27	2.24 Pierce	0	9	9	6	6
Tuconna_oca	IIIGGIAII WII GIVIIIB	Бериние	111_12 11_1	17 10 5	10_0_0	11 10 01 11 122 21	2.21 110100				V	
Sea_Tacoma	TACOMA PCT-A	Arrival	PS_A_23	47° 18′ 0	TA_BW_1	47° 16′ 50′′ N 122° 24	2.24 Pierce	0	5	5	5	5
Sea_Tacoma	TACOMA PCT-A	Arrival	TA_BW_1	47° 16′ 5	TA_BW_2	47° 16′ 40′′ N 122° 24	0.25 Pierce	0	4	4	4	4
Sea_Tacoma	TACOMA PCT-A	Arrival	TA_BW_2	47° 16′ 4	TA_BW_3	47° 15′ 58′′ N 122° 23	1.03 Pierce	0	3	3	3	3
Sea_Tacoma	TACOMA PCT-A	Arrival	TA_BW_3	47° 15′ 5	TA_BW_4	47° 15′ 42′′ N 122° 23	0.40 Pierce	0	3	3	3	3
Sea_Tacoma	TACOMA PCT-A	Arrival	TA_BW_4		TA_BW_5	47° 15′ 30′′ N 122° 22	0.40 Fierce	0	2	2	2	2
Sea_Tacoma	TACOMA PCT-A	Arrival	TA_BW_5			47° 15′ 17′′ N 122° 22	0.23 Pierce	0	1	1	1	1
Sea_Tacoma	THEOMIN TET-II	Milivai	111_DW_3	47 13 3	11/15_1 C1/1	1 4/ 15 1/ 18 122 22	0.23 1 16166	U	1	1	1	1
Tacoma_Sea	TACOMA PCT-A	Departure	TA_B_PCTA	47° 15′ 1	TA_BW_5	47° 15′ 30′′ N 122° 22	0.23 Pierce	0	1	1	1	1
Tacoma_Sea	TACOMA PCT-A	Departure	TA BW 5	47° 15′ 3	TA_BW_4	47° 15′ 42′′ N 122° 23	0.28 Pierce	0	2	2	2	2
Tacoma_Sea	TACOMA PCT-A		TA_BW_4	47° 15′ 4	TA_BW_4 TA_BW_3	47° 15′ 58′′ N 122° 23	0.40 Pierce	0	4	4	4	4
		Departure										
Tacoma_Sea	TACOMA PCT-A	Departure	TA_BW_3 TA_BW_2	47° 15′ 5	TA_BW_2	47° 16′ 40′′ N 122° 24	1.03 Pierce	0	4	4	4 4	4
Tacoma_Sea	TACOMA PCT-A	Departure			TA_BW_1	47° 16′ 50′′ N 122° 24	0.25 Pierce		4	9		4
Tacoma_Sea	TACOMA PCT-A	Departure	TA_BW_1	47° 16′ 5	PS_D_2	47° 18′ 07′′ N 122° 27	2.24 Pierce	0	9	9	6	6
c T	TACOMA DOT D	A : 1	DC 4 02	47° 18′ 0	T'A DW/ 4	470 477 FO77 NT 1000 04	2.24 D.	0	5	5	5	5
Sea_Tacoma	TACOMA PCT-B	Arrival	PS_A_23		TA_BW_1	47° 16′ 50′′ N 122° 24	2.24 Pierce					
Sea_Tacoma	TACOMA PCT-B	Arrival	TA_BW_1	47° 16′ 5	TA_BW_2	47° 16′ 40′′ N 122° 24	0.25 Pierce	0	4	4	4	4
Sea_Tacoma	TACOMA PCT-B	Arrival	TA_BW_2	47° 16′ 4	TA_BW_3	47° 15′ 58′′ N 122° 23	1.03 Pierce	0	3	3	3	3
Sea_Tacoma	TACOMA PCT-B	Arrival	TA_BW_3		TA_BW_4	47° 15′ 42′′ N 122° 23	0.40 Pierce	0	3	3	3	3
Sea_Tacoma	TACOMA PCT-B	Arrival	TA_BW_4		TA_BW_5	47° 15′ 30′′ N 122° 22	0.28 Pierce	0	2	2	2	2
Sea_Tacoma	TACOMA PCT-B	Arrival	TA_BW_5	47° 15′ 3	TA_B_PCTB	47° 15′ 23′′ N 122° 22	0.26 Pierce	0	1	1	1	1
m 0	Micold pomp	P	m. p. p.	100 100	m. pw	(=0.1=1.001/37.10=0	0.04.70					
Tacoma_Sea	TACOMA PCT-B	Departure	TA_B_PCTB		TA_BW_5	47° 15′ 30′′ N 122° 22	0.26 Pierce	0	1	1	1	1
Tacoma_Sea	TACOMA PCT-B	Departure	TA_BW_5	47° 15′ 3	TA_BW_4	47° 15′ 42′′ N 122° 23	0.28 Pierce	0	2	2	2	2
Tacoma_Sea	TACOMA PCT-B	Departure	TA_BW_4	47° 15′ 4	TA_BW_3	47° 15′ 58′′ N 122° 23	0.40 Pierce	0	4	4	4	4
Tacoma_Sea	TACOMA PCT-B	Departure	TA_BW_3	47° 15′ 5	TA_BW_2	47° 16′ 40′′ N 122° 24	1.03 Pierce	0	4	4	4	4
Tacoma_Sea	TACOMA PCT-B	Departure	TA_BW_2		TA_BW_1	47° 16′ 50′′ N 122° 24	0.25 Pierce	0	4	4	4	4
Tacoma_Sea	TACOMA PCT-B	Departure	TA_BW_1	47° 16′ 5	PS_D_2	47° 18′ 07′′ N 122° 27	2.24 Pierce	0	9	9	6	6
Sea_Tacoma	TACOMA WEYCO CHIE		PS_A_23	47° 18′ 0	TA_BW_1	47° 16′ 50′′ N 122° 24	2.24 Pierce	0	5	5	5	5
Sea_Tacoma	TACOMA WEYCO CHIE		TA_BW_1	47° 16′ 5	TA_BW_2	47° 16′ 40′′ N 122° 24	0.25 Pierce	0	4	4	4	4
Sea_Tacoma	TACOMA WEYCO CHIE	Arrival Arrival	TA_BW_2	47° 16′ 4	TA_BW_3	47° 15′ 58′′ N 122° 23	1.03 Pierce	0	3	3	3	3
Sea_Tacoma	TACOMA WEYCO CHIE	Arrival Arrival	TA_BW_3	47° 15′ 5	TA_BW_4	47° 15′ 42′′ N 122° 23	0.40 Pierce	0	2	2	2	2
Sea_Tacoma	TACOMA WEYCO CHIP	Arrival	TA_BW_4	47° 15′ 4′	TA_B_WYCF	47° 15′ 43′′ N 122° 23	0.04 Pierce	0	1	1	1	1

Lat/Long in WGS84 Datum

DRAFT

Speed by Link (knots)
Fast Fast Medium Slow Very Slow

Bulkers Reefer Tankers

DKM I									Container	RO/RO	Log	
Route	To_Port To_Pier	Arr/Dep nk	Start WP	ıg WP La	End WP	nding Waypoint Lat/L	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
Tacoma_Sea	TACOMA WEYCO CHIP		TA_B_WYCF		TA_BW_4	47° 15′ 42′′ N 122° 23	0.04 Pierce	0	1	1	1	1
Tacoma_Sea	TACOMA WEYCO CHIP	1	TA_BW_4	47° 15′ 4	TA_BW_3	47° 15′ 58′′ N 122° 23	0.40 Pierce	0	3	3	3	3
Tacoma_Sea	TACOMA WEYCO CHIP		TA_BW_3	47° 15′ 5	TA_BW_2	47° 16′ 40′′ N 122° 24	1.03 Pierce	0	4	4	4	4
Tacoma_Sea	TACOMA WEYCO CHIP	Departure	TA_BW_2	47° 16′ 4	TA_BW_1	47° 16′ 50′′ N 122° 24	0.25 Pierce	0	4	4	4	4
Tacoma_Sea	TACOMA WEYCO CHIP	Departure	TA_BW_1	47° 16′ 5	PS_D_2	47° 18′ 07′′ N 122° 27	2.24 Pierce	0	9	9	6	6
		•										
Sea_Tacoma	TACOMA TOTE	Arrival	PS A 23	47° 18′ 0	TA BW 1	47° 16′ 50′′ N 122° 24	2.24 Pierce	0	5	5	5	5
Sea_Tacoma	TACOMA TOTE	Arrival	TA_BW_1		TA_BW_1 TA_BW_2	47° 16′ 40′′ N 122° 24	0.25 Pierce	0	3	3	3	3
Sea_Tacoma	TACOMA TOTE	Arrival	TA_BW_1 TA_BW_2		TA_B_TO	47° 16′ 24′′ N 122° 24	0.45 Pierce	0	2	2	2	2
Sea_Tacoma	TACOMA TOTE	Amvai	1A_BW_2	4/ 10 4	1A_B_1O	4/ 10 24 IN 122 24	0.43 Fierce	0				
Tacoma_Sea	TACOMA TOTE	Departure	TA_B_TO	47° 16′ 2	TA_BW_2	47° 16′ 40′′ N 122° 24	0.45 Pierce	0	2	2	2	2
Tacoma_Sea	TACOMA TOTE	Departure	TA_BW_2		TA_BW_1	47° 16′ 50′′ N 122° 24	0.25 Pierce	0	4	4	4	4
Tacoma_Sea	TACOMA TOTE	Departure	TA_BW_1	47° 16′ 5	PS_D_2	47° 18′ 07′′ N 122° 27	2.24 Pierce	0	9	9	6	6
Sea_Tacoma	TACOMA ANCHORAGE	Arrival	PS_A_23	47° 18′ 0	TA_AN_1	47° 17′ 25′′ N 122° 25	1.54 Pierce	0	3	3	3	3
Tacoma_Sea	TACOMA ANCHORAGE	Departure	TA_AN_1	47° 17′ 2	PS_D_2	47° 18′ 07′′ N 122° 27	1.54 Pierce	0	5	5	5	5
Tacoma_oca	THEOMET HIVOHOLEHOL	Берание	171_711 1_1	17 17 2	10_D_2	17 10 07 14 122 27	1.5 () ()	0				
C T	TACOMA	A . 1	DC 4 22	470 4040	DC 4 2/	470 477 5277 31 4000 27	1.00 P		-	-	_	-
Sea_Tacoma	TACOMA 7-A	Arrival	PS_A_23	47° 18′ 0	PS_A_24	47° 16′ 53′′ N 122° 25	1.69 Pierce	0	5	5	5	5
Sea_Tacoma	TACOMA 7-A	Arrival	PS_A_24	47° 16′ 5	TA_SI_1	47° 16′ 20′′ N 122° 25	0.74 Pierce	0	4	4	4	4
Sea_Tacoma	TACOMA 7-A	Arrival	TA_SI_1	47° 16′ 2	TA_B_7A	47° 16′ 02′′ N 122° 24	0.42 Pierce	0	2	2	2	2
Tacoma_Sea	TACOMA 7-A	Departure	TA_B_7A	47° 16′ 0	TA_SI_1	47° 16′ 20′′ N 122° 25	0.42 Pierce	0	2	2	2	2
Tacoma_Sea	TACOMA 7-A	Departure	TA_SI_1	47° 16′ 2	PS_A_24	47° 16′ 53′′ N 122° 25	0.74 Pierce	0	4	4	4	4
Tacoma_Sea	TACOMA 7-A	Departure	PS_A_24	47° 16′ 5	PS_D_2	47° 18′ 07′′ N 122° 27	1.69 Pierce	0	9	9	6	6
Sea_Tacoma	TACOMA 7-B	Arrival	PS_A_23	47° 18′ 0	PS_A_24	47° 16′ 53′′ N 122° 25	1.69 Pierce	0	5	5	5	5
Sea_Tacoma	TACOMA 7-B	Arrival	PS_A_24	47° 16′ 5	TA_SI_1	47° 16′ 20′′ N 122° 25	0.74 Pierce	0	4	4	4	4
Sea_Tacoma	TACOMA 7-B	Arrival	TA_SI_1	47° 16′ 2	TA_B_7B	47° 16′ 07′′ N 122° 24	0.32 Pierce	0	2	2	2	2
Tacoma_Sea	TACOMA 7-B	Departure	TA_B_7B	47° 16′ 0	TA_SI_1	47° 16′ 20′′ N 122° 25	0.32 Pierce	0	2	2	2	2
Tacoma_Sea	TACOMA 7-B	Departure	TA_SI_1	47° 16′ 2	PS_A_24	47° 16′ 53′′ N 122° 25	0.74 Pierce	0	4	4	4	4
Tacoma_Sea	TACOMA 7-B	Departure	PS_A_24	47° 16′ 5	PS_D_2	47° 18′ 07′′ N 122° 27	1.69 Pierce	0	9	9	6	6
Sea_Tacoma	TACOMA 7-C	Arrival	PS_A_23	47° 18′ 0	PS_A_24	47° 16′ 53′′ N 122° 25	1.69 Pierce	0	5	5	5	5
Sea_Tacoma	TACOMA 7-C	Arrival	PS_A_24	47° 16′ 5	TA_SI_1	47° 16′ 20′′ N 122° 25	0.74 Pierce	0	4	4	4	4
Sea_Tacoma	TACOMA 7-C	Arrival	TA_SI_1	47° 16′ 2	TA_B_7C	47° 16′ 12′′ N 122° 25	0.74 Fierce	0	2	2	2	2
Sca_1 acoma	mcown /-c	Milivai	171_51_1	4/ 10 2	IN_D_/C	+/ 10 12 1 N 122 23	0.22 1 10100	0				
Tacoma_Sea	TACOMA 7-C	Departure	TA_B_7C	47° 16′ 1	TA_SI_1	47° 16′ 20′′ N 122° 25	0.22 Pierce	0	2	2	2	2
Tacoma_Sea	TACOMA 7-C	Departure	TA_SI_1	47° 16′ 2	PS_A_24	47° 16′ 53′′ N 122° 25	0.74 Pierce	0	4	4	4	4
Tacoma_Sea	TACOMA 7-C	Departure	PS_A_24	47° 16′ 5	PS_D_2	47° 18′ 07′′ N 122° 27	1.69 Pierce	0	9	9	6	6
Sea_Tacoma	TACOMA 7-D	Arrival	PS_A_23	47° 18′ 0	PS_A_24	47° 16′ 53″ N 122° 25	1.69 Pierce	0	5	5	5	5
Sea_Tacoma	TACOMA 7-D	Arrival	PS_A_24	47° 16′ 5	TA_SI_1	47° 16′ 20′′ N 122° 25	0.74 Pierce	0	4	4	4	4
Sea_Tacoma	TACOMA 7-D	Arrival	TA_SI_1	47° 16′ 2	TA_B_7D	47° 16′ 16′′ N 122° 25	0.13 Pierce	0	2	2	2	2
Tacoma_Sea	TACOMA 7-D	Departure	TA_B_7D	47° 16′ 1	TA_SI_1	47° 16′ 20′′ N 122° 25	0.13 Pierce	0	2	2	2	2
Tacoma_Sea	TACOMA 7-D	Departure	TA_SI_1	47° 16′ 2	PS_A_24	47° 16′ 53′′ N 122° 25	0.74 Pierce	0	4	4	4	4
Tacoma_Sea	TACOMA 7-D	Departure	PS_A_24	47° 16′ 5	PS_D_2	47° 18′ 07′′ N 122° 27	1.69 Pierce	0	9	9	6	6
Sea_Tacoma	TACOMA MAERSK	Arrival	PS_A_23	47° 18′ 0	PS_A_24	47° 16′ 53′′ N 122° 25	1.69 Pierce	0	5	5	5	5
Sea Tacoma	TACOMA MAFRSK	Arrival	PS A 24		TA SI 1	47° 16′ 20′′ N 122° 25	0.74 Pierce	0	4	4	4	4

Lat/Long in WGS84 Datum

Tacoma Sea

Tacoma Saa

TACOMA SCHNITZER Departure

TACOMA SCHNITZER Departure

Speed by Link (knots) Fast Medium Slow Very Slow Fast Bulkers

DRAFT Reefer Tankers Container RO/RO Log Arr/Dep nk Start WP 1g WP La End WP 1ding Waypoint Lat/L Route To_Port To_Pier Dist. County Cruise Auto Fishing Fishing Tacoma_Sea TACOMA MAERSK Departure 47° 16′ 0 TA_SI_1 47° 16′ 20′′ N 122° 25 0.37 Pierce TACOMA MAERSK 47° 16′ 2 47° 16′ 53′′ N 122° 25 0.74 Pierce 0 Tacoma_Sea Departure TA_SI_1 PS_A_24 4 4 TACOMA MAERSK 47° 16′ 5 47° 18′ 07′′ N 122° 27 1.69 Pierce 9 PS_A_24 PS_D_2 0 Tacoma_Sea Departure Sea_Tacoma TACOMA Sound Oil Arrival PS_A_23 47° 18′ 0 TA_HY_1 47° 17′ 16′′ N 122° 24 2.09 Pierce 0 0.30 Pierce Sea_Tacoma TACOMA Sound Oil Arrival TA HY 1 47° 17′ 1 TA_HY_2 47° 17′ 04′′ N 122° 24 0 0 4 4 Sea Tacoma TACOMA Sound Oil Arrival TA_HY_2 47° 17′ 0 TA_HY_3 47° 16′ 46′′ N 122° 24 0.46 Pierce 0 0 3 3 3 Sea_Tacoma TACOMA Sound Oil Arrival TA_HY_3 47° 16′ 4 TA_B_SO 47° 16′ 33′′ N 122° 23 0.65 Pierce 0 0 TACOMA Sound Oil TA_B_SO 47° 16′ 2 TA_HY_3 47° 16′ 46′′ N 122° 24 0.65 Pierce Tacoma_Sea Departure 0 0 0.46 Pierce 0 0 Tacoma_Sea TACOMA Sound Oil Departure TA_HY_3 47° 16′ 4 TA_HY_2 47° 17′ 04′′ N 122° 24 0.30 Pierce TACOMA Sound Oil Departure TA_HY_2 47° 17′ 0 TA_HY_1 47° 17′ 16′′ N 122° 24 0 0 Tacoma Sea Tacoma Sea TACOMA Sound Oil Departure TA HY 1 47° 17′ 1 PS D 2 47° 18′ 07′′ N 122° 27 2.09 Pierce 0 0 9 6 6 Sea_Tacoma TACOMA WEYCO LOG 1 Arrival 47° 18′ 0 TA_HY_1 47° 17′ 16′′ N 122° 24 2.09 Pierce 0 6 TACOMA WEYCO LOG 1 Arrival TA_HY_1 47° 17′ 1 TA_HY_2 47° 17′ 04′′ N 122° 24 0.30 Pierce Sea_Tacoma Sea Tacoma TACOMA WEYCO LOG 1 Arrival TA_HY_2 47° 17′ 0 TA_HY_3 47° 16′ 46′′ N 122° 24 0.46 Pierce 0 0 3 3 TA_HY_3 47° 16′ 4 TA_HY_4 47° 16′ 28′′ N 122° 22 0.83 Pierce 0 Sea_Tacoma TACOMA WEYCO LOG 1 Arrival 3 0.44 Pierce 0 Sea_Tacoma TACOMA WEYCO LOG 1 Arrival TA_HY_4 47° 16′ 2 TA_HY_5 47° 16′ 10′′ N 122° 22 0 3 2 TACOMA WEYCO LOG 1 Arrival TA_HY_5 47° 16′ 1 TA_HY_6 47° 15′ 52′′ N 122° 21 0.45 Pierce 0 0 2 2 Sea_Tacoma TACOMA WEYCO LOG 1 Arrival TA_HY_6 47° 15′ 5 TA_B_WYL1 47° 15′ 47′′ N 122° 21 0.11 Pierce Sea_Tacoma 0 0 Tacoma_Sea TACOMA WEYCO LOG 1 Departure TA B WYL1 47° 15′ 4 TA HY 6 47° 15′ 52′′ N 122° 21 0.11 Pierce Tacoma Sea TACOMA WEYCO LOG 1 Departure TA HY 6 47° 15′ 5 TA HY 5 47° 16′ 10″ N 122° 22 0.45 Pierce 0 0 0.44 Pierce Tacoma Sea TACOMA WEYCO LOG 1Departure TA_HY_5 47° 16′ 1 TA_HY_4 47° 16′ 28′′ N 122° 22 0 0 Tacoma_Sea TACOMA WEYCO LOG 1 Departure TA_HY_4 47° 16′ 2 TA_HY_3 47° 16′ 46′′ N 122° 24 0.83 Pierce 0 0 Tacoma_Sea TACOMA WEYCO LOG 1 Departure TA_HY_3 47° 16′ 4 TA_HY_2 47° 17′ 04′′ N 122° 24 0.46 Pierce 0 0 0.30 Pierce Tacoma_Sea TACOMA WEYCO LOG 1 Departure TA_HY_2 47° 17′ 0 TA_HY_1 47° 17′ 16′′ N 122° 24 0 0 Tacoma_Sea 2.09 Pierce TACOMA WEYCO LOG 1 Departure TA_HY_1 47° 17′ 1 PS_D_2 47° 18′ 07′′ N 122° 27 0 0 9 6 Sea Tacoma TACOMA WEYCO LOG 2 Arrival 47° 18′ 0 TA HY 1 47° 17′ 16′′ N 122° 24 2.09 Pierce 0 0.30 Pierce Sea Tacoma TACOMA WEYCO LOG 2 Arrival TA_HY_1 47° 17′ 1 TA_HY_2 47° 17′ 04′′ N 122° 24 0 Sea_Tacoma TACOMA WEYCO LOG 2 Arrival TA_HY_2 47° 17′ 0 TA_HY_3 47° 16′ 46′′ N 122° 24 0.46 Pierce 0 0 TA_HY_3 47° 16′ 4 TA_HY_4 47° 16′ 28′′ N 122° 22 0.83 Pierce 0 Sea Tacoma TACOMA WEYCO LOG 2 Arrival 0 TA_HY_4 47° 16′ 2 TA_HY_5 47° 16′ 10′′ N 122° 22 0.44 Pierce Sea_Tacoma TACOMA WEYCO LOG 2 Arrival 0 0 Sea_Tacoma TACOMA WEYCO LOG 2 Arrival TA_HY_5 47° 16′ 1 TA_HY_6 47° 15′ 52′′ N 122° 21 0.45 Pierce 0 0 2 2 2 Sea Tacoma TACOMA WEYCO LOG 2 Arrival TA HY 6 47° 15′ 5 TA B WYL2 47° 15′ 51′′ N 122° 21 0.03 Pierce 0 Tacoma_Sea TACOMA WEYCO LOG 2 Departure 0.03 Pierce TA_B_WYL2 47° 15′ 5 TA_HY_6 47° 15′ 52′′ N 122° 21 Tacoma_Sea TACOMA WEYCO LOG 2 Departure TA_HY_6 47° 15′ 5 TA_HY_5 47° 16′ 10′′ N 122° 22 0.45 Pierce Tacoma Sea TACOMA WEYCO LOG 2 Departure TA_HY_5 47° 16′ 1 TA_HY_4 47° 16′ 28′′ N 122° 22 0.44 Pierce 0 0 Tacoma Sea TACOMA WEYCO LOG 2 Departure TA_HY_4 47° 16′ 2 TA_HY_3 47° 16′ 46′′ N 122° 24 0.83 Pierce 0 0 0.46 Pierce Tacoma_Sea TACOMA WEYCO LOG 2 Departure TA_HY_3 47° 16′ 4 TA_HY_2 47° 17′ 04′′ N 122° 24 0 0 0.30 Pierce Tacoma_Sea TACOMA WEYCO LOG 2 Departure TA_HY_2 47° 17′ 0 TA_HY_1 47° 17′ 16′′ N 122° 24 0 0 TACOMA WEYCO LOG 2 Departure 2.09 Pierce Tacoma_Sea TA_HY_1 47° 17′ 1 PS_D_2 47° 18′ 07′′ N 122° 27 0 0 9 6 Sea_Tacoma TACOMA SCHNITZER Arrival TA_HY_1 47° 17′ 16′′ N 122° 24 2.09 Pierce 0 6 0.30 Pierce Sea Tacoma TACOMA SCHNITZER Arrival TA HY 1 47° 17′ 1 TA HY 2 47° 17′ 04′′ N 122° 24 0 Sea Tacoma TACOMA SCHNITZER Arrival TA_HY_2 47° 17′ 0 TA_HY_3 47° 16′ 46′′ N 122° 24 0.46 Pierce 0 0 3 Sea_Tacoma TACOMA SCHNITZER Arrival TA_HY_3 47° 16′ 4 TA_HY_4 47° 16′ 28′′ N 122° 22 0.83 Pierce 0 0 3 3 TA_HY_4 47° 16′ 2 TA_HY_5 47° 16′ 10′′ N 122° 22 0.44 Pierce 0 0 2 2 Sea_Tacoma TACOMA SCHNITZER Arrival TA_HY_5 47° 16′ 1 TA_B_SHZ 47° 16′ 02′′ N 122° 22 0.23 Pierce Sea_Tacoma TACOMA SCHNITZER Arrival 0 0 0.23 Pierce Tacoma_Sea TACOMA SCHNITZER Departure TA_B_SHZ 47° 16′ 0 TA_HY_5 47° 16′ 10′′ N 122° 22

TA HY 5 47° 16′ 1 TA HY 4 47° 16′ 28′′ N 122° 22

TA HV 4 47° 16′ 2 TA HV 3 47° 16′ 46′′ N 122° 24

0.44 Pierce

0.83 Diore

Puget Sound Emissions Inventory OGV-Routing: TACOMA HARBOR

Lat/Long in WGS84 Datum DRAFT

Speed by Link (knots) Fast Medium Slow Very Slow Fast Bulkers Reefer Tankers

DRAFT										Reefer	Tankers	
									Container	RO/RO	Log	
Route	To_Port To_Pier	Arr/Dep nk	Start WP	ıg WP La	End WP	nding Waypoint Lat/L	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
Tacoma_Sea	TACOMA SCHNITZER	Departure	TA_HY_2	47° 17′ 0	TA_HY_1	47° 17′ 16′′ N 122° 24	0.30 Pierce	0	0	4	4	4
Tacoma_Sea	TACOMA SCHNITZER	Departure	TA_HY_1	47° 17′ 1	PS_D_2	47° 18′ 07′′ N 122° 27	2.09 Pierce	0	0	9	6	6
Sea_Tacoma	TACOMA PIONEER	Arrival	PS_A_23	47° 18′ 0	TA_HY_1	47° 17′ 16′′ N 122° 24	2.09 Pierce	0	0	5	5	5
Sea_Tacoma	TACOMA PIONEER	Arrival	TA_HY_1	47° 17′ 1	TA_HY_2	47° 17′ 04′′ N 122° 24	0.30 Pierce	0	0	3	3	3
Sea_Tacoma	TACOMA PIONEER	Arrival	TA_HY_2	47° 17′ 0	TA_B_PI	47° 16′ 58′′ N 122° 24	0.13 Pierce	0	0	1	1	1

Lat/Long in WGS84 Datum

Sea_Tacoma

TACOMA 3-SOUTH

Departure

TA_BW_1

47° 16′ 5

PS_D_2

Speed by Link (knots) Fast Medium Slow Very Slow Fast

Bulkers DRAFT Reefer Tankers Container RO/RO Log Start WP 1g WP La End WP 1ding Waypoint Lat/L Dist. County Cruise Fishing Fishing Fishing Route To Port To Pier Arr/Dep nk Auto TACOMA PIONEER TA_B_PI 47° 16′ 5 TA_HY_2 47° 17′ 04′′ N 122° 24 0.13 Pierce Tacoma_Sea Departure Tacoma_Sea TACOMA PIONEER Departure TA_HY_2 47° 17′ 0 TA_HY_1 47° 17′ 16′′ N 122° 24 0.30 Pierce 0 0 TACOMA PIONEER TA HY 1 47° 17′ 1 PS D 2 47° 18′ 07′′ N 122° 27 2.09 Pierce 0 0 9 Tacoma_Sea Departure Sea_Tacoma TACOMA PNW Arrival PS_A_23 47° 18′ 0 TA_HY_1 47° 17′ 16′′ N 122° 24 2.09 Pierce 0 TA_HY_1 47° 17′ 1 TA_HY_2 47° 17′ 04′′ N 122° 24 0.30 Pierce Sea Tacoma TACOMA PNW Arrival 0 0 4 Sea Tacoma TACOMA PNW Arrival TA_HY_2 47° 17′ 0 TA_HY_3 47° 16′ 46′′ N 122° 24 0.46 Pierce 0 0 3 3 Sea Tacoma TACOMA PNW Arrival TA_HY_3 47° 16′ 4 TA_HY_4 47° 16′ 28′′ N 122° 22 0.83 Pierce 0 0 3 Sea Tacoma TACOMA PNW Arrival TA_HY_4 47° 16′ 2 TA_HY_5 47° 16′ 10′′ N 122° 22 0.44 Pierce 0 0 3 3 3 Sea Tacoma TACOMA PNW Arrival TA_HY_5 47° 16′ 1 TA_HY_6 47° 15′ 52′′ N 122° 21 0.45 Pierce 0 0 2 2 2 TACOMA PNW Arrival TA_HY_6 47° 15′ 5 TA_B_PNW 47° 15′ 50′′ N 122° 21 0.21 Pierce 0 0 Sea_Tacoma Tacoma Sea TACOMA PNW Departure TA B PNW 47° 15′ 5 TA HY 6 47° 15′ 52′′ N 122° 21 0.21 Pierce 0 0 Tacoma_Sea TACOMA PNW Departure TA_HY_6 47° 15′ 5 TA_HY_5 47° 16′ 10′′ N 122° 22 0.45 Pierce 0 Tacoma_Sea TACOMA PNW Departure TA_HY_5 47° 16′ 1 TA_HY_4 47° 16′ 28′′ N 122° 22 0.44 Pierce 0 0 Tacoma_Sea TACOMA PNW Departure TA_HY_4 47° 16′ 2 TA_HY_3 47° 16′ 46′′ N 122° 24 0.83 Pierce 0 Tacoma_Sea TACOMA PNW Departure TA_HY_3 47° 16′ 4 TA_HY_2 47° 17′ 04′′ N 122° 24 0.46 Pierce 0 0 TACOMA PNW TA_HY_2 47° 17′ 0 TA_HY_1 47° 17′ 16′′ N 122° 24 0.30 Pierce 0 Tacoma_Sea Departure 47° 18′ 07′′ N 122° 27 Tacoma_Sea TACOMA PNW Departure TA_HY_1 47° 17′ 1 PS_D_2 2.09 Pierce 0 0 9 6 Sea Tacoma TACOMA US OIL Arrival PS A 23 47° 18′ 0 TA_BW_1 47° 16′ 50′′ N 122° 24 2.24 Pierce 0 0 0 Sea_Tacoma TACOMA US OIL Arrival 47° 16′ 5 TA_BW_2 47° 16′ 40′′ N 122° 24 0.25 Pierce 0 0 3 0 0 TACOMA US OIL TA BW 2 47° 16′ 4 TA UO 1 47° 16′ 11′′ N 122° 23 0.72 Pierce Sea Tacoma Arrival 0 0 0 3 0 TACOMA US OIL Arrival TA_UO_1 47° 16′ 1 TA_B_USO 47° 16′ 00′′ N 122° 23 0.20 Pierce Sea_Tacoma 0 0 0 0 Sea Tacoma TACOMA US OIL Departure TA B USO 47° 16′ 0 TA UO 1 47° 16′ 11′′ N 122° 23 0.20 Pierce 0 0 TA_UO_1 47° 16′ 1 TA_BW_2 47° 16′ 40′′ N 122° 24 0.72 Pierce Sea Tacoma TACOMA US OIL Departure 0 0 0 0 TA_BW_2 47° 16′ 4 TA_BW_1 47° 16′ 50′′ N 122° 24 0.25 Pierce Sea_Tacoma TACOMA US OIL Departure 0 0 0 Sea_Tacoma TACOMA US OIL Departure TA_BW_1 47° 16′ 5 PS_D_2 47° 18′ 07′′ N 122° 27 2.24 Pierce 0 0 0 6 0 Sea Tacoma TACOMA TEMCO Arrival 47° 18′ 0 TA TC 1 47° 16′ 07′′ N 122° 26 2.12 Pierce 0 Sea_Tacoma TACOMA TEMCO Arrival TA_TC_1 47° 16′ 0 TA_B_TEM 47° 15′ 59′′ N 122° 26 0.15 Pierce 0 0 0 Tacoma Sea TACOMA TEMCO Departure TA B TEM 47° 15′ 5 TA TC 1 47° 16′ 07′′ N 122° 26 0.15 Pierce 0 Tacoma_Sea TACOMA TEMCO Departure TA_TC_1 47° 16′ 0 PS_D_2 47° 18′ 07′′ N 122° 27 2.12 Pierce 0 0 Arrival Sea_Tacoma TACOMA SPERRY 47° 18′ 0 TA_SP_1 47° 16′ 36′′ N 122° 27 1.54 Pierce 6 Sea_Tacoma TACOMA SPERRY Arrival 47° 16′ 3 TA_B_SPR 47° 16′ 26′′ N 122° 27 0.16 Pierce 0 Tacoma Sea TACOMA SPERRY Departure TA B SPR 47° 16′ 2 TA SP 1 47° 16′ 36′′ N 122° 27 0.16 Pierce 0 2 2 2 0 TACOMA SPERRY TA_SP_1 47° 16′ 3 PS_D_2 47° 18′ 07′′ N 122° 27 1.53 Pierce 9 9 Tacoma_Sea Departure 0 6 0 Sea Tacoma TACOMA 3-SOUTH 47° 18′ 0 TA BW 1 47° 16′ 50′′ N 122° 24 2.24 Pierce Arrival PS A 23 0 0 0 0.25 Pierce Sea_Tacoma TACOMA 3-SOUTH Arrival 47° 16′ 5 TA_BW_2 47° 16′ 40′′ N 122° 24 0 0 0 3 0 Sea_Tacoma TACOMA 3-SOUTH Arrival TA_BW_2 47° 16′ 4 TA_UO_1 47° 16′ 11′′ N 122° 23 0.72 Pierce 0 3 0 0 0 Sea Tacoma TACOMA 3-SOUTH TA_UO_1 47° 16′ 1 TA_B_3S 47° 16′ 07′′ N 122° 23 0.13 Pierce Arrival 0 0 0 0 Sea_Tacoma TACOMA 3-SOUTH Departure 47° 16′ 0 TA_UO_1 47° 16′ 11′′ N 122° 23 0.13 Pierce 0 0 Sea Tacoma TACOMA 3-SOUTH Departure TA_UO_1 47° 16′ 1 TA_BW_2 47° 16′ 40′′ N 122° 24 0.72 Pierce 0 0 0 0 47° 16′ 4 TA_BW_1 0.25 Pierce Ο Sea_Tacoma TACOMA 3-SOUTH Departure TA_BW_2 47° 16′ 50′′ N 122° 24 Ω

> 0 Engines off in constricted channels: Hylebos, Blair, & Sitcum Waterways Shine pulled out by tuge

0

0

0

2.24 Pierce

47° 18′ 07′′ N 122° 27

OGV-Routing: TACOMA to SEA

Lat/Long in WGS84 Datum

Latt/ Long III	N 050 1 Dat	CIIII									Reefer	Tankers	
DRAFT										Containe	RO/RO	Log	
Route	Arr/Dep	Mode	NPM	Link ID	Start WP	WP 1 End WP	aypoir l	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
Tacoma_Sea	Departure	X	Y	L2	PS_D_2	47° 1PS_D_3	47° 19	1.3 Pierce	0	10	10	10	9
Tacoma_Sea	Departure	X	Y	L3	PS_D_3	47° 1PS_D_4	47° 19	0.9 Pierce	0	12	12	12	SS
Tacoma_Sea	Departure	X	Y	L4	PS_D_4	47° 1PS_D_5	47° 23	4.8 King	0	16	14	SS	SS
Tacoma_Sea	Departure	Τ	N	L5	PS_D_5	47° 2PS_D_6	47° 26	4.4 King	0	17	16	SS	SS
Tacoma_Sea	Departure	Т	N	L6	PS_D_6	47° 2PS_D_7	47° 34	7.8 King	0	16	15	SS	SS
Tacoma_Sea	Departure	Т	N	L7	PS_D_7	47° 3PS_D_8	47° 35	1.4 King	0	17	16	SS	SS
Tacoma_Sea	Departure	Т	N	L8	PS_D_8	47° 3PS_D_9	47° 37	1.1 Kitsap	0	20	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L9	PS_D_9	47° 3 PS_D_10	47° 39	2.7 King	0	22	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L10	PS_D_10	47° 3PS_D_11	47° 41	2.3 King	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L11	PS_D_11	47° 4PS_D_12	47° 45	4.0 Kitsap	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L12	PS_D_12	47° 4PS_D_13	47° 46	0.8 King	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L13	PS_D_13	47° 4PS_D_14	47° 48	1.5 Snohomish	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L14	PS_D_14	47° 4PS_D_15	47° 52	4.6 Kitsap	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L15	PS_D_15	47° 5 PS_D_16	47° 55	3.1 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L16	PS_D_16	47° 5 PS_D_17	47° 57	2.4 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L17	PS_D_17	47° 5 PS_D_18	47° 58	1.9 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L18	PS_D_18	47° 5 PS_D_19	48° 02	4.5 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L19	PS_D_19	48° (PS_D_20	48° 04	2.8 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L20	PS_D_20	48° (PS_D_21	48° 0€	2.2 Jefferson	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L21	PS_D_21	48° (PS_D_22	48° 07	1.3 Jefferson	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L22	PS_D_22	48° (PS_D_23	48° 11	5.3 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L23	PS_D_23	48° 1PS_D_24	48° 11	1.4 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L24	PS_D_24	48° 1PS_D_25	48° 11	2.4 Jefferson	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L25	PS_D_25	48° 1PS_D_26	48° 12	9.5 Calallam	0	SS	SS	SS	SS
Tacoma_Sea	Departure	X	N	L26	PS_D_26	48° 1PS_D_27	48° 10	11.2 Calallam	0	17	16	12	SS
Tacoma_Sea	Departure	M	N	L27	PS_D_27	48° 1PS_D_28	48° 11	0.8 Calallam	0	8	8	8	8
Tacoma_Sea	Departure	X	N	L28	PS_D_28	48° 1PS_D_29	48° 14	4.9 Calallam	0	15	14	12	SS
Tacoma_Sea	Departure	T	N	L29	PS_D_29	48° 1PS_D_30	48° 15	3.1 Calallam	0	19	SS	SS	SS
Tacoma_Sea			N	L30	PS_D_30	48° 1PS_D_31	48° 17	15.4 Calallam	0	SS	SS	SS	SS
Tacoma_Sea			N	L31	PS_D_31	48° 1PS_D_32	48° 3(34.1 Calallam	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L32	PS_D_32	48° 3PS_D_33	48° 30	10.9 Calallam	0	SS	SS	SS	SS

Total Distance 154.8 nm Note: SS - Service Speed

Speed by Link (knots)

Bulkers

Very Slow

Fast Medium Slow

OGV-Routing: VANCOUVER (NB2) to TACOMA

			(1122)	1 400	1 400	1/10/10/11/1	Bulkers	very erow						
Lat/Long in V	VGS84 Datu	ım										D C		
DDAET											Cantainan	Reefer	Tankers	
DRAFT	A /D	M . 1.	NIDM	T to LID	Ca and W/D	. W/D I	E . 1 W/D	V/):	C	Container	-	Log	T21-1-1
Route									Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
NBndry_AI	Arrival	Т	N	L1			AD_A_2		5.2 San Juan	0	18	16	SS	SS
NBndry_AI	Arrival	T	N	L2			AD_A_3		5.9 San Juan	0	SS	SS	SS	SS
NBndry_AI	Arrival	Т	N	L3			AD_A_4		2.4 San Juan	0	SS	SS	SS	SS
NBndry_AI	Arrival	T	N	L4	AD_A_4		AD_A_5		3.6 San Juan	0	SS	SS	SS	SS
NBndry_AI	Arrival	T	N	L5	AD_A_5		AD_A_6		3.3 San Juan	0	SS	SS	SS	SS
NBndry_AI	Arrival	Т	N	L6	AD_A_6		AD_A_7		2.9 San Juan	0	SS	SS	SS	SS
NBndry_AI	Arrival	Т	N	L7			AD_A_8		8.8 San Juan	0	SS	SS	SS	SS
NBndry_AI	Arrival	Т	N	L8			PS_D_25		0.9 Jefferson	0	SS	SS	SS	SS
Tacoma_Sea	Departure		N	L25			PS_D_26		9.5 Calallam	0	SS	SS	SS	SS
Tacoma_Sea	Departure		N	L26			PS_D_27		11.2 Calallam	0	16	12	SS	SS
Tacoma_Sea	Departure		N	L27a	PS_D_27	48° 10′	PS_A_6	48° 09′ 5	0.8 Calallam	0	8	8	8	8
Sea_Tacoma	Arrival	X	N	L6	PS_A_6	48° 09′	PS_A_7	48° 11′ 5	11.4 Calallam	0	18	16	12	SS
Sea_Tacoma	Arrival	Т	N	L7	PS_A_7	48° 11′	PS_A_8	48° 11′ 1	9.5 Calallam	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L8	PS_A_8	48° 11′	PS_A_9	48° 10′ 5	2.9 Jefferson	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L9	PS_A_9	48° 10′	PS_A_10	48° 06′ 3	6.8 Jefferson	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L10	PS_A_10	48° 06′	PS_A_11	48° 01′ 0	5.6 Jefferson	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L11	PS_A_11	48° 01′	PS_A_12	47° 57′ 4	4.0 Island	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L12	PS_A_12	47° 57′	PS_A_13	47° 56′ 3	1.8 Island	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L13	PS_A_13	47° 56′	PS_A_14	47° 55′ 1	2.3 Kitsap	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L14	PS_A_14	47° 55′	PS_A_15	47° 45′ 5	9.7 Kitsap	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L15	PS_A_15	47° 45′	PS_A_16	47° 39′ 4	6.3 Kitsap	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L16	PS_A_16	47° 39′	PS_A_17	47° 34′ 3	5.2 Kitsap	0	18	16	13	SS
Sea_Tacoma	Arrival	Т	N	L17	PS_A_17	47° 34′	PS_A_18	47° 31′ 5	2.8 Kitsap	0	17	16	13	SS
Sea_Tacoma	Arrival	Т	N	L18			PS_A_19		5.3 King	0	16	16	13	SS
Sea_Tacoma	Arrival	X	N	L19	PS A 19	47° 26′	PS_A_20	47° 23′ 0	4.1 King	0	17	17	13	SS
Sea_Tacoma	Arrival	X	Y	L20			PS_A_21		5.3 King	0	14	13	12	SS
Sea_Tacoma	Arrival	M	Y	L21			PS_A_22		0.5 King	0	10	10	10	9
Sea_Tacoma	Arrival	M	Y	L22			PS_A_23		1.1 Pierce	0	10	10	10	8

Total Distance 139.1 nm Note: SS - Service Speed

Speed by Link (knots)

Very Slow

Fast Medium Slow

AI_NB2

AI_NB2

AI_NB2

Departure T

Departure T
Departure T

N

N

Ν

L4

L5

L6

OGV-Routing			Fast	Fast	Medium	Slow	Very Slow							
Lat/Long in W	_		11000	V LIC (14.	D2)				=	1 451	1 451	McGiuiii	Bulkers	very slow
Lat/ Long III V	OSO+ Datui	11										Reefer	Tankers	
DRAFT											Container	r RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start W/P	W/P	End WP	avnoin I	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
Tacoma_Sea	Departure	X	Y	L2	PS_D_2			47° 19	1.3 Pierce	0	10	10	10	9
Tacoma_Sea	Departure	X	Y	L3	PS_D_3			47° 19	0.9 Pierce	0	12	12	12	SS
Tacoma_Sea	Departure	X	Y	L4	PS_D_4			47° 23	4.8 King	0	16	14	SS	SS
Tacoma_Sea	Departure	T	N	L5	PS_D_5			47° 26	4.4 King	0	17	16	SS	SS
Tacoma_Sea	Departure	Т	N	L6	PS_D_6			47° 34	7.8 King	0	16	15	SS	SS
Tacoma_Sea	Departure	T	N	L7	PS_D_7			47° 35	1.4 King	0	17	16	SS	SS
Tacoma Sea	Departure	Т	N	L8	PS_D_8			47° 37	1.1 Kitsap	0	20	SS	SS	SS
Tacoma Sea	Departure	Т	N	L9			PS_D_10		2.7 King	0	22	SS	SS	SS
Tacoma Sea	Departure	Т	N	L10			PS_D_11		2.3 King	0	SS	SS	SS	SS
Tacoma Sea	Departure	Т	N	L11			PS_D_12		4.0 Kitsap	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L12			PS_D_13		0.8 King	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L13			PS_D_14		1.5 Snohomish	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L14			PS_D_15		4.6 Kitsap	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L15			PS_D_16		3.1 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L16			PS_D_17		2.4 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L17			PS_D_18		1.9 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L18	PS_D_18	47°	PS_D_19	48° 02	4.5 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L19	PS_D_19	48°	PS_D_20	48° 04	2.8 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L20	PS_D_20	48°	PS_D_21	48° 06	2.2 Jefferson	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L21	PS_D_21	48°	PS_D_22	48° 07	1.3 Jefferson	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L22	PS_D_22	48°	PS_D_23	48° 11	5.3 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L23	PS_D_23	48°	PS_D_24	48° 11	1.4 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L24	PS_D_24	48°	PS_D_25	48° 11	2.4 Jefferson	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L25	PS_D_25	48°	PS_D_26	48° 12	9.5 Calallam	0	SS	SS	SS	SS
Tacoma_Sea	Departure	X	N	L26	PS_D_26	48°	PS_D_27	48° 10	11.2 Calallam	0	17	16	12	SS
Tacoma_Sea	Departure	M	N	L27a	PS_D_27	48°	PS_A_6	48° 09	0.8 Calallam	0	8	8	8	8
Sea_Tacoma	Arrival	X	N	L6	PS_A_6	48°	PS_A_7	48° 11	11.4 Calallam	0	18	15	SS	SS
Sea_Tacoma	Arrival	Т	N	L7	PS_A_7	48°	PS_A_8	48° 11	9.5 Calallam	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L8a	PS_A_8		PS_D_24		2.5 Jefferson	0	SS	SS	SS	SS
AI_NB2	Departure	Т	N	L1a	PS_D_24	48°	AD_D_2	48° 13	2.1 San Juan	0	18	17	16	SS
AI_NB2	Departure	Т	N	L2			AD_D_3		8.1 San Juan	0	16	15	15	SS
AI_NB2	Departure	Т	N	L3	AD_D_3	48°	AD_D_4	48° 24	5.1 San Juan	0	15	15	15	SS

AD_D_6 48° AD_D_7 48° 40 5.4 San Juan

Total Distance 143.6 nm

AD_D_4 48° AD_D_5 48° 29

AD_D_5 48° AD_D_6 48° 34

0

0

0

15

15

15

15

15

15

7.3 San Juan

5.8 San Juan

Speed by Link (knots)

15

15

15

SS

SS

SS

Puget Sound Emissions Inventory OGV-Routing: SEA to Point Wells

Puget Sound Emissions Inventory											Speed by Link (knots)					
OGV-Routing	: SEA to I	Point W	ells							Fast	Fast	Medium	Slow	Very Slow		
Lat/Long in W	GS84 Datu	m							•				Bulkers			
												Reefer	Tankers			
DRAFT											Container	RO/RO	Log			
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	g WP L	End WP	aypoin [Dist. County	Cruise	Auto	Fishing	Fishing	Fishing		
Sea_Tacoma	Arrival	Т	N	L1	PS_A_1	48° 28	PS_A_2	48° 28	10.7 Calallam	0	0	SS	SS	SS		
Sea_Tacoma	Arrival	Τ	N	L2	PS_A_2	48° 28	PS_A_3	48° 13	35.9 Calallam	0	0	SS	SS	SS		
Sea_Tacoma	Arrival	Τ	N	L3	PS_A_3	48° 13	PS_A_4	48° 13	15.4 Calallam	0	0	SS	SS	SS		
Sea_Tacoma	Arrival	X	N	L4	PS_A_4	48° 13	PS_A_5	48° 09	6.9 Calallam	0	0	15	12	SS		
Sea_Tacoma	Arrival	M	N	L5	PS_A_5	48° 09	PS_A_6	48° 09	0.6 Calallam	0	0	8	8	8		
Sea_Tacoma	Arrival	X	N	L6	PS_A_6	48° 09	PS_A_7	48° 11	11.4 Calallam	0	0	16	12	SS		
Sea_Tacoma	Arrival	Τ	N	L7	PS_A_7	48° 11	PS_A_8	48° 11	9.5 Calallam	0	0	SS	SS	SS		
Sea_Tacoma	Arrival	Τ	N	L8	PS_A_8	48° 11	PS_A_9	48° 10°	2.9 Jefferson	0	0	SS	SS	SS		
Sea_Tacoma	Arrival	Τ	N	L9	PS_A_9	48° 10	PS_A_10	48° 06	6.8 Jefferson	0	0	SS	SS	SS		
Sea_Tacoma	Arrival	Τ	N	L10	PS_A_10	48° 06	PS_A_11	48° 01	5.6 Jefferson	0	0	SS	SS	SS		
Sea_Tacoma	Arrival	Τ	N	L11	PS_A_11	48° 01	PS_A_12	47° 57	4.0 Island	0	0	SS	SS	SS		
Sea_Tacoma	Arrival	Τ	N	L12	PS_A_12	47° 57	PS_A_13	47° 56	1.8 Island	0	0	SS	SS	SS		
Sea_Tacoma	Arrival	Τ	N	L13	PS_A_13	47° 56	PS_A_14	47° 55	2.3 Kitsap	0	0	SS	SS	SS		
Sea_Tacoma	Arrival	X	Y	L14a	PS_A_14	47° 55	PW_A_1	47° 49°	6.2 Kitsap	0	0	12	9	SS		
PS_PointWells	Arrival	M	Y	L1	PW_A_1		PW_A_2	_	1.3 Kitsap	0	0	8	6	6		
PS_PointWells	Arrival	M	Y	L2	PW_A_2	47° 48	PW_B_1		2.3 Snohomish	0	0	4	2	2		

Total Distance 123.6 nm

Puget Sound Emissions Inventory Speed by Link (knots) **OGV-Routing: POINT WELLS to SEA** Medium Slow Very Slow Fast Fast Lat/Long in WGS84 Datum **Bulkers** Reefer **Tankers** DRAFT Container RO/RO Log Start WP g WP La End WP Arr/Dep Mode NPE Link ID aypoin Dist. Fishing Route County Cruise Auto Fishing Fishing PointWells_PS Departure Μ Y L₁a PW B 1 47° 46′ PS D 14 47° 48 2.1 Snohomish 0 0 9 6 5 Y SS X 47° 48′ PS_D_15 47° 52 4.6 Kitsap 0 0 12 8 Tacoma_Sea Departure L14 PS D 14 SS Χ Y PS_D_15 14 Tacoma Sea Departure L15 47° 52′ PS D 16 47° 55 3.1 Island 0 0 10 SS SS Tacoma_Sea Departure Τ N L16 PS D 16 47° 55′ PS D 17 47° 57 2.4 Island 0 SS Tacoma_Sea Departure 47° 57′ PS_D_18 N PS_D_17 47° 58 1.9 Island 0 SS SS SS L17 0 SS SS Tacoma_Sea Departure N L18 PS D 18 47° 58′ PS_D_19 48° 02 4.5 Island 0 SS Tacoma_Sea Departure Τ N PS D 19 48° 02′ PS_D_20 48° 04 2.8 Island 0 SS SS SS L19 SS SS SS Tacoma Sea Departure N L20 PS D 20 48° 04′ PS D 21 48° 06 2.2 Jefferson 0 PS_D_21 1.3 Jefferson Tacoma_Sea Departure Τ N L21 48° 06′ PS_D_22 48° 07 0 0 SS SS SS Tacoma_Sea Departure 5.3 Island SS SS SS N L22 PS_D_22 48° 07′ PS_D_23 48° 11 0 Tacoma_Sea Departure Τ 48° 11 SS SS SS N L23 PS D 23 48° 11′ PS D 24 1.4 Island 0 0 SS Tacoma_Sea Departure Τ N L24 PS D 24 48° 11′ PS D 25 48° 11 2.4 Jefferson 0 0 SS SS Tacoma_Sea Departure 48° 11′ PS_D_26 SS SS SS Τ N L25 PS_D_25 48° 12 9.5 Calallam 0 0 SS N PS D 26 48° 10 11.2 Calallam 0 16 12 Tacoma_Sea Departure L26 48° 12′ PS_D_27 0 48° 10′ PS_D_28 Tacoma_Sea Departure Τ N L27 PS D 27 48° 11 0.8 Calallam 0 0 8 8 8 4.9 Calallam 48° 14 12 SS Tacoma Sea Departure N L28 PS D 28 48° 11′ PS D 29 0 0 14 N L29 PS D 29 48° 14′ PS_D_30 48° 15 3.1 Calallam 0 0 SS SS SS Tacoma_Sea Departure Tacoma_Sea Departure N L30 PS D 30 48° 15′ PS_D_31 48° 17 15.4 Calallam 0 SS SS SS T 48° 30 34.1 Calallam 0 0 SS SS SS Tacoma Sea Departure N L31 PS D 31 48° 17′ PS D 32

Total Distance 123.9 nm

48° 30 10.9 Calallam

0

0

SS

SS

SS

48° 30′ PS_D_33

Tacoma Sea Departure

Ν

L32

PS D 32

Puget Sound Emissions Inventory OGV-Routing: POINT WELLS to PORT ANGELES

Sea_PortAngeles Arrival

Y

L2

M

OGV-Routing	: POINT W	VELLS	to PO	Fast	Fast	Medium	Slow	Very Slow						
Lat/Long in W	GS84 Datun	n							_				Bulkers	
												Reefer	Tankers	
DRAFT											Container	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	g WP La	End WP	7aypoin ₁ I	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
PointWells_PS	Departure	M	Y	L1a	PW_B_1	47° 46′	PS_D_14	47° 48′	2.1 Snohomish	0	0	9	6	5
Tacoma_Sea	Departure	X	Y	L14	PS_D_14	47° 48′	PS_D_15	47° 52′	4.6 Kitsap	0	0	12	8	SS
Tacoma_Sea	Departure	X	Y	L15	PS_D_15	47° 52′	PS_D_16	47° 55′	3.1 Island	0	0	14	10	SS
Tacoma_Sea	Departure	Τ	N	L16	PS_D_16	47° 55′	PS_D_17	47° 57′	2.4 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L17	PS_D_17	47° 57′	PS_D_18	47° 58′	1.9 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L18	PS_D_18	47° 58′	PS_D_19	48° 02′	4.5 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L19	PS_D_19	48° 02′	PS_D_20	48° 04′	2.8 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L20	PS_D_20	48° 04′	PS_D_21	48° 06′	2.2 Jefferson	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L21	PS_D_21	48° 06′	PS_D_22	48° 07′	1.3 Jefferson	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L22	PS_D_22	48° 07′	PS_D_23	48° 11′	5.3 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L23	PS_D_23	48° 11′	PS_D_24	48° 11′	1.4 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L24	PS_D_24	48° 11′	PS_D_25	48° 11′	2.4 Jefferson	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L25	PS_D_25	48° 11′	PS_D_26	48° 12′	9.5 Calallam	0	0	SS	SS	SS
Tacoma_Sea	Departure	X	Y	L26	PS_D_26	48° 12′	PS_D_27	48° 10′	11.2 Calallam	0	0	16	12	SS
Tacoma_Sea	Departure	M	Y	L27a	PS_D_27	48° 10′	PA_A_2	48° 09′	0.6 Calallam	0	0	8	8	8
Sea_PortAngele	es Arrival	M	Y	L1	PA_A_2	48° 09′	PA_A_3	48° 08′	1.6 Calallam	0	0	8	8	8

PA_A_3 48° 08′ PA_A_4 48° 08′

Total Distance 58.0 nm

1.0 Calallam

Speed by Link (knots)

0

0

6

6

6

OGV-Routing: PORT ANGELES to POINT WELLS

Lat/Long in WGS	S84 Datum										Reefer	Bulkers Tankers	-
DRAFT										Containe	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	WP I End V	VP Vaypoint	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
PortAngeles_Sea	Departure	M	Y	L1	PA_D_1	48° 0{PA_D	_2 48° 08′	1.2 Calallam	0	0	6	6	6
PortAngeles_Sea	Departure	M	Y	L2	PA_D_2	48° 0(PA_D	_3 48° 09′	1.5 Calallam	0	0	8	8	8
PortAngeles_Sea	Departure	M	Y	L3a	PA_D_3	48° 0! PS_A	_6 48° 09′	0.5 Calallam	0	0	10	10	9
Sea_Tacoma	Arrival	X	Y	L6	PS_A_6	48° 0! PS_A	_7 48° 11′	11.4 Calallam	0	0	16	12	SS
Sea_Tacoma	Arrival	Τ	N	L7	PS_A_7	48° 11 PS_A	_8 48° 11′	9.5 Calallam	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L8	PS_A_8	48° 11 PS_A	_9 48° 10′	2.9 Jefferson	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L9	PS_A_9	48° 10 PS_A_	10 48° 06′	6.8 Jefferson	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L10	PS_A_10	48° 0ι PS_A_	_11 48° 01′	5.6 Jefferson	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L11	PS_A_11	48° 0° PS_A_	12 47° 57′	4.0 Island	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L12	PS_A_12	47° 5′ PS_A_	_13 47° 56′	1.8 Island	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L13	PS_A_13	47° 5(PS_A_	_14 47° 55′	2.3 Kitsap	0	0	SS	SS	SS
Sea_Tacoma	Arrival	X	Y	L14a	PS_A_14	47° 5. PW_A	_1 47° 49′	6.2 Kitsap	0	0	12	9	SS
PS_PointWells	Arrival	M	Y	L1	PW_A_1	47° 4! PW_A	_2 47° 48′	1.3 Kitsap	0	0	8	6	6
PS_PointWells	Arrival	M	Y	L2	PW_A_2	47° 41 PW_B	_1 47° 46′	2.3 Snohomis	0	0	4	2	2

Total Distance 57.3 nm

Speed by Link (knots)

Fast Medium Slow

Very Slow

OGV-Routing: POINT WELLS to MARCH POINT

Lat/Long in WGS84 Datum

Name	Lat, Long III W	300 i Dutuii												Reefer	Tankers	
Point Poin	DRAFT												Container	RO/RO	Log	
Tacoma_Sea Departure X Y L14 PS_D_14 47° 48 PS_D_15 47° 5′. 4.6 Kitsap 0 0 12 8 SS Tacoma_Sea Departure X Y L15 PS_D_15 47° 52 PS_D_16 47° 5′. 3.1 Island 0 0 14 10 SS Tacoma_Sea Departure T N L16 PS_D_16 47° 5′. 2.4 Island 0 0 SS	Route	Arr/Dep	Mode	NPE	Link ID	Start WP	g WP L	End WP	aypoir I	Dist. C	ounty Cr	uise	Auto	Fishing		Fishing
Tacoma_Sea Departure X Y L15 PS_D_15 47° 52 PS_D_16 47° 5! 3.1 Island 0 0 14 10 SS Tacoma_Sea Departure T N L16 PS_D_16 47° 55 PS_D_17 47° 5' 2.4 Island 0 0 SS SS Tacoma_Sea Departure T N L17 PS_D_17 47° 57 PS_D_18 47° 5! 1.9 Island 0 0 SS SS SS Tacoma_Sea Departure T N L18 PS_D_18 47° 58 PS_D_19 48° 0! 4.5 Island 0 0 SS SS SS Tacoma_Sea Departure T N L19 PS_D_19 48° 0! 2.8 Island 0 0 SS SS SS Tacoma_Sea Departure T N L20 PS_D_20 48° 0! 2.8 Island 0 0 SS SS SS SS SS SS SS SS <th>PointWells_PS</th> <th>Departure</th> <th>M</th> <th>Y</th> <th>L1a</th> <th>PW_B_1</th> <th>47° 46 1</th> <th>PS_D_14</th> <th>47° 48</th> <th>2.1 Sno</th> <th>homish</th> <th>0</th> <th>0</th> <th>9</th> <th>6</th> <th>5</th>	PointWells_PS	Departure	M	Y	L1a	PW_B_1	47° 46 1	PS_D_14	47° 48	2.1 Sno	homish	0	0	9	6	5
Tacoma_Sea Departure T N L16 PS_D_16 47° 55 PS_D_17 47° 5′ 2.4 Island 0 0 SS SS SS SS Tacoma_Sea Departure T N L17 PS_D_17 47° 5′ PS_D_18 47° 5′ 1.9 Island 0 0 SS SS SS SS Tacoma_Sea Departure T N L18 PS_D_18 47° 58 PS_D_19 48° 0′ 4.5 Island 0 0 SS SS SS SS Tacoma_Sea Departure T N L19 PS_D_19 48° 0′ 2.8 D_20 48° 0′ 2.8 Island 0 0 SS SS SS SS Tacoma_Sea Departure T N L20 PS_D_20 48° 0′ 2.8 D_21 48° 0′ 2.2 Jefferson 0 0 SS SS SS SS Tacoma_Sea Departure T N L21 PS_D_20 48° 0′ 4.5 D_21 48° 0′ 2.2 Jefferson 0 0 SS SS SS SS SS Tacoma_Sea Departure T N L21 PS_D_21 48° 0′ 6 PS_D_22 48° 0′ 1.3 Jefferson 0 0 SS SS SS SS SS Tacoma_Sea Departure T N L22 PS_D_22 48° 0′ PS_D_23 48° 1′ 5.3 Island 0 0 SS SS SS SS SS SS Tacoma_Sea Departure T N L23 PS_D_23 48° 11 PS_D_24 48° 1′ 1.4 Island 0 0 SS SS SS SS SS Tacoma_Sea Departure T N L24 PS_D_23 48° 11 PS_D_24 48° 1′ 1.4 Island 0 0 SS SS SS SS SS SS SS Tacoma_Sea Departure T N L24 PS_D_23 48° 11 PS_D_24 48° 1′ 1.4 Island 0 0 SS	Tacoma_Sea	Departure	X	Y	L14	PS_D_14	47° 48 1	PS_D_15	47° 52	4.6 Kits	sap	0	0	12	8	SS
Tacoma_Sea Departure T N L17 PS_D_17 47° 57 PS_D_18 47° 58 1.9 Island 0 0 SS SS SS Tacoma_Sea Departure T N L18 PS_D_18 47° 58 PS_D_19 48° 0′. 4.5 Island 0 0 SS SS SS SS Tacoma_Sea Departure T N L19 PS_D_19 48° 0′. 2.8 Island 0 0 SS SS SS SS Tacoma_Sea Departure T N L20 PS_D_20 48° 0′. 48° 0′. 2.8 Island 0 0 SS SS SS SS Tacoma_Sea Departure T N L20 PS_D_20 48° 0′. 48° 0′. 2.2 Jefferson 0 0 SS SS SS SS Tacoma_Sea Departure T N L21 PS_D_21 48° 0′. 48° 0′. 2.2 Jefferson 0 0 SS SS SS SS Tacoma_Sea Departure T N L21 PS_D_21 48° 0′. 1.3 Jefferson 0 0 SS SS SS SS Tacoma_Sea Departure T N L22 PS_D_22 48° 0′. 18 Jefferson 0 0 SS SS SS SS SS SS Tacoma_Sea Departure T N L23 PS_D_23 48° 11 PS_D_24 48° 1′. 5.3 Island 0 0 SS SS SS SS SS Tacoma_Sea Departure T N L24 PS_D_24 48° 11 PS_D_24 48° 1′. 1.4 Island 0 0 SS	Tacoma_Sea	Departure	X	Y	L15	PS_D_15	47° 52 1	PS_D_16	47° 5!	3.1 Isla	nd	0	0	14	10	SS
Tacoma_Sea Departure T N L18 PS_D_18 47° 58 PS_D_19 48° 0. 4.5 Island 0 0 SS SS Tacoma_Sea Departure T N L19 PS_D_19 48° 02 PS_D_20 48° 04 2.8 Island 0 0 SS SS SS Tacoma_Sea Departure T N L20 PS_D_20 48° 04 PS_D_21 48° 06 2.2 Jefferson 0 0 SS SS SS Tacoma_Sea Departure T N L21 PS_D_21 48° 06 PS_D_22 48° 07 1.3 Jefferson 0 0 SS SS SS Tacoma_Sea Departure T N L22 PS_D_22 48° 07 PS_D_23 48° 1 1.4 Island 0 0 SS	Tacoma_Sea	Departure	T	N	L16	PS_D_16	47° 55 l	PS_D_17	47° 5′	2.4 Isla	nd	0	0	SS	SS	SS
Tacoma_Sea Departure T N L19 PS_D_19 48° 02 PS_D_20 48° 06 2.8 Island 0 0 SS SS Tacoma_Sea Departure T N L20 PS_D_20 48° 04 PS_D_21 48° 06 2.2 Jefferson 0 0 SS SS SS Tacoma_Sea Departure T N L21 PS_D_21 48° 06 PS_D_22 48° 07 1.3 Jefferson 0 0 SS	Tacoma_Sea	Departure	Τ	N	L17	PS_D_17	47° 57 1	PS_D_18	47° 58	1.9 Isla	nd	0	0	SS	SS	SS
Tacoma_Sea Departure T N L20 PS_D_20 48° 04 PS_D_21 48° 00 2.2 Jefferson 0 0 SS SS Tacoma_Sea Departure T N L21 PS_D_21 48° 06 PS_D_22 48° 07 1.3 Jefferson 0 0 SS SS SS Tacoma_Sea Departure T N L22 PS_D_22 48° 07 PS_D_23 48° 11 5.3 Island 0 0 SS SS SS Tacoma_Sea Departure T N L23 PS_D_23 48° 11 PS_D_24 48° 11 1.4 Island 0 0 SS	Tacoma_Sea	Departure	T	N	L18	PS_D_18	47° 58 1	PS_D_19	48° 0′	4.5 Isla	nd	0	0	SS	SS	SS
Tacoma_Sea Departure T N L21 PS_D_21 48° 06 PS_D_22 48° 0′ 1.3 Jefferson 0 0 SS SS Tacoma_Sea Departure T N L22 PS_D_22 48° 0′ PS_D_23 48° 1′ 5.3 Island 0 0 SS SS SS Tacoma_Sea Departure T N L23 PS_D_23 48° 11 PS_D_24 48° 1′ 1.4 Island 0 0 SS SS SS Tacoma_Sea Departure T N L24a PS_D_24 48° 11 AA_A1 48° 1′ 1.4 Island 0 0 SS SS<	Tacoma_Sea	Departure	T	N	L19	PS_D_19	48° 02 1	PS_D_20	48° 04	2.8 Isla	nd	0	0	SS	SS	SS
Tacoma_Sea Departure T N L22 PS_D_22 48° 07 PS_D_23 48° 11 5.3 Island 0 0 SS SS Tacoma_Sea Departure T N L23 PS_D_23 48° 11 PS_D_24 48° 11 1.4 Island 0 0 SS SS Tacoma_Sea Departure T N L24a PS_D_24 48° 11 AA_A_1 48° 11 2.2 Island 0 0 SS SS SS Admr_Anacorte: Arrival T N L1 AA_A_1 48° 13 AA_A_2 48° 24 1.3 Island 0 0 18 SS SS Admr_Anacorte: Arrival T N L2 AA_A_2 48° 24 AA_A_3 48° 24 1.3 Island 0 0 16 12 SS Admr_Anacorte: Arrival T N L3 AA_A_3 48° 24 RS_A_6 48° 25 3.2 Skagit 0 0 13 11 <	Tacoma_Sea	Departure	T	N	L20	PS_D_20	48° 04 1	PS_D_21	48° 00	2.2 Jeff	erson	0	0	SS	SS	SS
Tacoma_Sea Departure T N L23 PS_D_23 48° 11 PS_D_24 48° 11 1.4 Island 0 0 SS SS Tacoma_Sea Departure T N L24a PS_D_24 48° 11 AA_A_1 48° 11 2.2 Island 0 0 SS SS Admr_Anacorte Arrival T N L1 AA_A_1 48° 13 AA_A_2 48° 24 11.3 Island 0 0 18 SS Admr_Anacorte Arrival T N L2 AA_A_2 48° 24 AA_A_3 48° 24 0.7 Island 0 0 16 12 SS Admr_Anacorte Arrival T N L3a AA_A_3 48° 24 RS_A_6 48° 24 3.2 Skagit 0 0 13 11 SS PA_CherryPT Arrival T N L6 RS_A_6 48° 28 RS_A_7 48° 30 2.0 Skagit 0 0 11 11 SS RS_MarchPT Arrival X Y L1a RS_A_7 48° 30 MP_A_2 <td>Tacoma_Sea</td> <td>Departure</td> <td>Τ</td> <td>N</td> <td>L21</td> <td>PS_D_21</td> <td>48° 06 1</td> <td>PS_D_22</td> <td>48° 0′</td> <td>1.3 Jeff</td> <td>erson</td> <td>0</td> <td>0</td> <td>SS</td> <td>SS</td> <td>SS</td>	Tacoma_Sea	Departure	Τ	N	L21	PS_D_21	48° 06 1	PS_D_22	48° 0′	1.3 Jeff	erson	0	0	SS	SS	SS
Tacoma_Sea Departure T N L24a PS_D_24 48° 11 AA_A_1 48° 11 2.2 Island 0 0 SS SS Admr_Anacorte: Arrival T N L1 AA_A_1 48° 13 AA_A_2 48° 24 11.3 Island 0 0 18 SS SS Admr_Anacorte: Arrival T N L2 AA_A_2 48° 24 AA_A_3 48° 24 0.7 Island 0 0 16 12 SS Admr_Anacorte: Arrival T N L3a AA_A_3 48° 24 RS_A_6 48° 25 3.2 Skagit 0 0 13 11 SS PA_CherryPT Arrival T N L6 RS_A_6 48° 28 RS_A_7 48° 30 2.0 Skagit 0 0 11 11 SS RS_MarchPT Arrival T Y L1a RS_A_7 48° 30 MP_A_2 48° 31 1.6 Skagit 0 0	Tacoma_Sea	Departure	T	N	L22	PS_D_22	48° 07 1	PS_D_23	48° 11	5.3 Isla	nd	0	0	SS	SS	SS
Admr_Anacorte: Arrival T N L1 AA_A_1 48° 13 AA_A_2 48° 24 11.3 Island 0 0 18 SS SS Admr_Anacorte: Arrival T N L2 AA_A_2 48° 24 AA_A_3 48° 24 0.7 Island 0 0 16 12 SS Admr_Anacorte: Arrival T N L3a AA_A_3 48° 24 RS_A_6 48° 28 3.2 Skagit 0 0 13 11 SS PA_CherryPT Arrival T N L6 RS_A_6 48° 28 RS_A_7 48° 30 2.0 Skagit 0 0 11 11 SS RS_MarchPT Arrival T Y L1a RS_A_7 48° 30 MP_A_2 48° 31 1.6 Skagit 0 0 11 11 SS RS_MarchPT Arrival X Y L2 MP_A_2 48° 31 MP_A_3 48° 31 0.7 Skagit 0	Tacoma_Sea	Departure	T	N	L23	PS_D_23	48° 11 1	PS_D_24	48° 11	1.4 Isla	nd	0	0	SS	SS	SS
Admr_Anacorte: Arrival T N L2 AA_A_2 48° 24 AA_A_3 48° 24° 0.7 Island 0 0 16 12 SS Admr_Anacorte: Arrival T N L3a AA_A_3 48° 24 RS_A_6 48° 28 3.2 Skagit 0 0 13 11 SS PA_CherryPT Arrival T N L6 RS_A_6 48° 28 RS_A_7 48° 30 2.0 Skagit 0 0 11 11 SS RS_MarchPT Arrival T Y L1a RS_A_7 48° 30 MP_A_2 48° 31 1.6 Skagit 0 0 11 11 SS RS_MarchPT Arrival X Y L2 MP_A_2 48° 31 MP_A_3 48° 31 0.7 Skagit 0 0 11 11 SS RS_MarchPT Arrival X Y L3 MP_A_3 48° 31 MP_A_4 48° 31 3.1 Skagit 0 0 11 10 SS	Tacoma_Sea	Departure	T	N	L24a	PS_D_24	48° 11	AA_A_1	48° 13	2.2 Isla	nd	0	0	SS	SS	SS
Admr_Anacorte: Arrival T N L3a AA_A_3 48° 24 RS_A_6 48° 28 3.2 Skagit 0 0 13 11 SS PA_CherryPT Arrival T N L6 RS_A_6 48° 28 RS_A_7 48° 30 2.0 Skagit 0 0 11 11 SS RS_MarchPT Arrival T Y L1a RS_A_7 48° 30 MP_A_2 48° 31 1.6 Skagit 0 0 11 11 SS RS_MarchPT Arrival X Y L2 MP_A_2 48° 31 MP_A_3 48° 31 0.7 Skagit 0 0 11 11 SS RS_MarchPT Arrival X Y L3 MP_A_3 48° 31 MP_A_4 48° 31 3.1 Skagit 0 0 11 10 SS	Admr_Anacorte	Arrival	T	N	L1	AA_A_1	48° 13	AA_A_2	48° 24	11.3 Isla:	nd	0	0	18	SS	SS
PA_CherryPT Arrival T N L6 RS_A_6 48° 28 RS_A_7 48° 30 2.0 Skagit 0 0 11 11 SS RS_MarchPT Arrival T Y L1a RS_A_7 48° 30 MP_A_2 48° 31 1.6 Skagit 0 0 11 11 SS RS_MarchPT Arrival X Y L2 MP_A_2 48° 31 MP_A_3 48° 31 0.7 Skagit 0 0 11 11 SS RS_MarchPT Arrival X Y L3 MP_A_3 48° 31 MP_A_4 48° 31 3.1 Skagit 0 0 11 10 SS	Admr_Anacorte	Arrival	T	N	L2	AA_A_2	48° 24	AA_A_3	48° 24	0.7 Isla	nd	0	0	16	12	SS
RS_MarchPT Arrival T Y L1a RS_A_7 48° 30 MP_A_2 48° 3: 1.6 Skagit 0 0 11 11 SS RS_MarchPT Arrival X Y L2 MP_A_2 48° 31 MP_A_3 48° 3: 0.7 Skagit 0 0 11 11 SS RS_MarchPT Arrival X Y L3 MP_A_3 48° 31 MP_A_4 48° 3: 3.1 Skagit 0 0 11 10 SS	Admr_Anacorte	Arrival	T	N	L3a	AA_A_3	48° 24	RS_A_6	48° 28	3.2 Ska	git	0	0	13	11	SS
RS_MarchPT Arrival X Y L2 MP_A_2 48° 31 MP_A_3 48° 3′ 0.7 Skagit 0 0 11 11 SS RS_MarchPT Arrival X Y L3 MP_A_3 48° 31 MP_A_4 48° 3′ 3.1 Skagit 0 0 11 10 SS	PA_CherryPT	Arrival	T	N	L6	RS_A_6	48° 28	RS_A_7	48° 30	2.0 Ska	git	0	0	11	11	SS
RS_MarchPT Arrival X Y L3 MP_A_3 48° 31 MP_A_4 48° 3. 3.1 Skagit 0 0 11 10 SS	RS_MarchPT	Arrival	T	Y	L1a	RS_A_7	48° 30	MP_A_2	48° 31	1.6 Ska	git	0	0	11	11	SS
	RS_MarchPT	Arrival	X	Y	L2	MP_A_2	48° 31	MP_A_3	48° 31	0.7 Ska	git	0	0	11	11	SS
RS_MarchPT Arrival M Y L3 MP_A_4 48° 31 MP_A_5 48° 31 1.1 Skagit 0 0 11 9 6	RS_MarchPT	Arrival	X	Y	L3	MP_A_3	48° 31	MP_A_4	48° 31	3.1 Ska	git	0	0	11	10	SS
T_{i} 1D' T_{i} 77 T_{i} 2C C C C C 1	RS_MarchPT	Arrival	M	Y	L3	MP_A_4	48° 31	MP_A_5	48° 31		git	-	-	11	9	6

Total Distance 57.6 nm Note: SS - Service Speed

Speed by Link (knots)

Slow

Bulkers

Very Slow

Medium

Fast

OGV-Routing: MARCH POINT to POINT WELLS

Lat/Long in WGS	S84 Datum							•			Reefer	Bulkers Tankers	, 62y 626 W
DRAFT	. 15				0 WWD		- 1 Marie III	D		Container	RO/RO	Log	-
Route						0	End WP Waypoint		Cruise	Auto	Fishing	Fishing	Fishing
MarchPT_RS	Departure	M	Y	L1			MP_D_2 48° 31′ 3		0	0	10	8	6
MarchPT_RS	Departure	X	Y	L2	MP_D_2	48° 31′	MP_D_3 48° 31′ 0	3.1 Skagit	0	0	13	10	SS
MarchPT_RS	Departure	X	Y	L3	MP_D_3	48° 31′	MP_D_4 48° 31′ 0	0.7 Skagit	0	0	14	11	SS
MarchPT_RS	Departure	Τ	N	L4a	MP_D_4	48° 31′	RS_A_7 48° 30′ 0	1.6 Skagit	0	0	15	11	SS
CherryPT_PA	Departure	Т	N	L1a	RS_A_7	48° 30′	RS_D_10 48° 29′ 3	0.8 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	Τ	N	L9	RS_D_10	48° 29′	RS_D_11 48° 28′ 5	0.7 Skagit	0	0	16	13	SS
CherryPT_PA	Departure	T	N	L10a	RS_D_14	48° 28′	AA_D_1 48° 26′ 0	2.8 Skagit	0	0	15	13	SS
Anacortes_Admr	Departure	T	N	L1	AA_D_1	48° 26′	AA_D_2 48° 24′ 0	1.9 San Juan	0	0	15	13	SS
Anacortes_Admr	Departure	T	N	L2	AA_D_2	48° 24′	AA_D_3 48° 22′ 2	1.8 San Juan	0	0	16	13	SS
Anacortes_Admr	Departure	T	N	L3	AA_D_3	48° 22′	AA_D_4 48° 13′ 2	9.3 Island	0	0	17	13	SS
Anacortes_Admr	Departure	T	N	L4	AA_D_4	48° 13′	AA_D_5 48° 11′ 3	2.1 Island	0	0	SS	SS	SS
Anacortes_Admr	Departure	T	N	L5a	AA_D_5	48° 11′	PS_A_9 48° 10′ 5	0.6 Jefferson	0	0	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L9	PS_A_9	48° 10′	PS_A_10 48° 06′ 3	6.8 Jefferson	0	0	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L10	PS_A_10	48° 06′	PS_A_11 48° 01′ 0	5.6 Jefferson	0	0	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L11	PS_A_11	48° 01′	PS_A_12 47° 57′ 4	4.0 Island	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L12	PS_A_12	47° 57′	PS_A_13 47° 56′ 3	1.8 Island	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L13	PS_A_13	47° 56′	PS_A_14 47° 55′ 1	2.3 Kitsap	0	0	SS	SS	SS
Sea_Tacoma	Arrival	X	N	L14a	PS_A_14	47° 55′	PW_A_1 47° 49′ 1	6.2 Kitsap	0	0	12	9	SS
PS_PointWells	Arrival	M	N	L1	PW_A_1	47° 49′	PW_A_2 47° 48′ 2	1.3 Kitsap	0	0	8	6	6
PS_PointWells	Arrival	M	N	L2	PW_A_2	47° 48′	PW_B_1 47° 46′ 5	2.3 Snohomis	0	0	4	2	2

Speed by Link (knots)

Slow

Very Slow

Medium

Fast

Fast

Total Distance 56.8 nm

Puget Sound Emissions Inventory OGV-Routing: SEA to OLYMPIA Lat/Long in WGS84 Datum

Speed by Link (knots)
Fast Fast Medium Slow Very Slow
Bulkers

Lat, Long III W										Reefer	Tankers	
DRAFT									Container	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	g WP L End WP aypoir	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
Sea_Tacoma	Arrival	Т	N	L1	PS_A_1	48° 28 PS_A_2 48° 2	10.7 Calallam	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L2	PS_A_2	48° 28 PS_A_3 48° 1	35.9 Calallam	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L3	PS_A_3	48° 13 PS_A_4 48° 1	15.4 Calallam	0	20	SS	SS	SS
Sea_Tacoma	Arrival	X	N	L4	PS_A_4	48° 13 PS_A_5 48° 0	6.9 Calallam	0	16	15	12	SS
Sea_Tacoma	Arrival	M	N	L5	PS_A_5	48° 09 PS_A_6 48° 0	0.6 Calallam	0	8	8	8	8
Sea_Tacoma	Arrival	X	N	L6	PS_A_6	48° 09 PS_A_7 48° 1	11.4 Clallam	0	18	16	12	SS
Sea_Tacoma	Arrival	Т	N	L7	PS_A_7	48° 11 PS_A_8 48° 1	9.5 Calallam	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L8	PS_A_8	48° 11 PS_A_9 48° 1	2.9 Jefferson	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L9	PS_A_9	48° 10 PS_A_10 48° 0	6.8 Jefferson	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L10	PS_A_10	48° 06 PS_A_11 48° 0	5.6 Jefferson	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L11	PS_A_11	48° 01 PS_A_12 47° 5	4.0 Island	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L12	PS_A_12	47° 57 PS_A_13 47° 5	1.8 Island	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L13	PS_A_13	47° 56 PS_A_14 47° 5	2.3 Kitsap	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L14		47° 55 PS_A_15 47° 4	9.7 Kitsap	0	20	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L15		47° 45 PS_A_16 47° 3	6.3 Kitsap	0	18	17	SS	SS
Sea_Tacoma	Arrival	Т	N	L16	PS_A_16	47° 39 PS_A_17 47° 3	5.2 Kitsap	0	17	16	13	SS
Sea_Tacoma	Arrival	Т	N	L17a	PS_A_17	47° 34 VW_A_1 47° 3	1.5 Kitsap	0	14	13	13	SS
Vash_Olympia	Arrival	Т	N	L1	VW_A_1	47° 33 VW_A_2 47° 3	2.0 Kitsap	0	13	13	13	9
Vash_Olympia	Arrival	Т	N	L2	VW_A_2	47° 31 VW_A_3 47° 3	0.7 King	0	13	13	13	9
Vash_Olympia	Arrival	Т	N	L3	VW_A_3	47° 30 VW_A_4 47° 2	1.9 Kitsap	0	13	13	13	9
Vash_Olympia	Arrival	Т	N	L4	VW_A_4	47° 28 VW_A_5 47° 2	1.5 King	0	13	13	13	9
Vash_Olympia	Arrival	Т	N	L5	VW_A_5	47° 27 VW_A_6 47° 2	1.8 King	0	13	13	13	9
Vash_Olympia	Arrival	Т	N	L6	VW_A_6	47° 25 VW_A_7 47° 2	1.3 Kitsap	0	13	13	13	9
Vash_Olympia	Arrival	Т	N	L7	VW_A_7	47° 24 VW_A_8 47° 2	0.8 King	0	13	13	13	9
Vash_Olympia	Arrival	Т	N	L8		47° 23 VW_A_9 47° 2	0.8 King	0	13	13	13	9
Vash_Olympia	Arrival	Т	N	L9		47° 23 VW_A_10 47° 2	0.5 Pierce	0	13	13	13	9
Vash_Olympia	Arrival	Т	N	L10		47° 22 VW_A_11 47° 2	1.6 King	0	13	13	13	9
Vash_Olympia	Arrival	Т	N	L11a		47° 22 OL_A_4 47° 1	3.1 Pierce	0	13	13	13	9
PS_Olympia	Arrival	Т	N	L4		47° 19 OL_A_5 47° 1	1.0 Pierce	0	13	13	13	9
PS_Olympia	Arrival	T	N	L5		47° 18 OL_A_6 47° 1	1.3 Pierce	0	13	13	13	9
PS_Olympia	Arrival	T	N	L6		47° 17 OL_A_7 47° 1	0.5 Pierce	0	13	13	13	9
PS_Olympia	Arrival	T	N	L7	OL_A_7	47° 16 OL_A_8 47° 1	2.4 Pierce	0	13	13	13	9
PS_Olympia	Arrival	Т	N	L8		47° 14 OL_A_9 47° 1	3.4 Pierce	0	13	13	13	9
PS_Olympia	Arrival	T	N	L9		47° 11 OL_A_10 47° 1	1.4 Pierce	0	13	13	13	9
PS_Olympia	Arrival	T	N	L10		47° 10 OL_A_11 47° 0	3.8 Pierce	0	13	13	13	9
PS_Olympia	Arrival	Т	N	L11		47° 07 OL_A_12 47° 0	0.9 Pierce	0	13	13	13	9
PS_Olympia	Arrival	T	N	L12		47° 07 OL_A_13 47° 0	1.1 Pierce	0	13	13	13	9
PS_Olympia	Arrival	Т	N	L13		47° 07 OL_A_14 47° 0	0.7 Thurston	0	13	13	13	9
PS_Olympia	Arrival	T	N	L14		47° 07 OL_A_15 47° 0	1.3 Thurston	0	13	13	13	9
PS_Olympia	Arrival	T	N	L15		47° 08 OL_A_16 47° 0	0.8 Thurston	0	13	13	13	9
PS_Olympia	Arrival	Т	N	L16		47° 09 OL_A_17 47° 1	1.1 Pierce	0	13	13	13	9
PS_Olympia	Arrival	T	N	L17		47° 10 OL_A_18 47° 1	0.9 Thurston	0	13	13	13	9
PS_Olympia	Arrival	Т	N	L18		47° 10 OL_A_19 47° 1	0.8 Thurston	0	13	13	13	9
PS_Olympia	Arrival	M	Y	L19		47° 11 OL_A_20 47° 1	0.9 Thurston	0	9	9	9	9
PS_Olympia	Arrival	M	Y	L20		47° 10 OL_A_21 47° 1	0.7 Thurston	0	9	9	9	9
PS_Olympia	Arrival	M	Y	L21		47° 10 OL_A_22 47° 0	1.3 Mason	0	9	9	9	9
PS_Olympia	Arrival	M	Y	L22		47° 09 OL_A_23 47° 0	0.5 Mason	0	9	9	9	9
PS_Olympia	Arrival	M	Y	L23		47° 09 OL_A_24 47° 0	1.2 Thurston	0	8	8	8	8
PS_Olympia	Arrival	M	Y	L24		47° 08 OL_A_25 47° 0	2.2 Thurston	0	7	7	7	7
PS_Olympia	Arrival	M	Y	L25		47° 06 OL_A_26 47° 0	1.6 Thurston	0	6	6	6	6
PS_Olympia	Arrival	M	Y	L26		47° 05 OL_A_27 47° 0	1.1 Thurston	0	4	4	4	4
PS_Olympia	Arrival	M	Y	L27		47° 04 OL_A_28 47° 0	0.3 Thurston	0	4	4	4	4
PS_Olympia	Arrival	M	Y	L28	OL_A_28	47° 04 OL_A_29 47° 0	0.2 Thurston	0	4	4	4	4

Total Distance 183.9 nm

Puget Sound Emissions Inventory Speed by Link (knots) **OGV-Routing: OLYMPIA HARBOR Fast** Fast Medium Slow Very Slow Lat/Long in WGS84 Datum **Bulkers** Reefer Tankers DRAFT Container RO/RO Log Route To_Port To_Pier Arr/Dep Link ID Start WP wP L End WP appoin Dist. County Cruise Auto Fishing Fishing PS_Olympia **OLYMPIA** Arrival OL A 29 47° 03 Mode: Μ Thurston Olympia_PS **OLYMPIA** Departure OL_D_1 47° 03 NPE: Y Thurston NOTE: All ARRIVAL harbor transits branch from OL A 29 NOTE: All DEPARTURE harbor transits goto OL D 1 Olympia_PortDock1 OLYMPIA OL A 29 47° 03 OL B 1 47° 03 0.49 Thurston PORT DOCK 1 Arrival L1a 0 2 2 2 OL_B_1 47° 03 OL_D_1 47° 03 0.49 Thurston 2 2 2 Olympia_PortDock1 OLYMPIA PORT DOCK 1 Departure L1a 0 OL_A_29 47° 03 OL_B_2 47° 03 0.60 Thurston Olympia_PortDock2 OLYMPIA PORT DOCK 2 Arrival 2 2 0 2 Olympia PortDock2 OLYMPIA OL B 2 47° 03 OL D 1 47° 03 0.60 Thurston PORT DOCK 2 Departure 0 3 3 3 Olympia PortDock3 OLYMPIA PORT DOCK 3 Arrival OL A 29 47° 03 OL B 3 47° 03 0.71 Thurston 2 2 2 L1a 0 Olympia_PortDock3 **OLYMPIA** PORT DOCK 3 Departure L1a OL_B_3 47° 03 OL_D_1 47° 03 0.71 Thurston 0 3 3 3 OL A 29 47° 03 OL B 4 47° 05 1.35 Thurston Olympia_Anchorage **OLYMPIA** ANCHORAGE 0 3 3 Arrival L1a Olympia Anchorage **OLYMPIA** ANCHORAGE Arrival L2 OL B 4 47° 05 OL AN 1 47° 06 2.62 Thurston 0 3 3 3 OL AN 1 47° 06 OL A 29 47° 03 2.62 Thurston Olympia Anchorage OLYMPIA ANCHORAGE Departure L2 0 3 3 3 Olympia_Anchorage OLYMPIA ANCHORAGE Departure OL_A_29 47° 03 OL_B_4 47° 05 1.35 Thurston 0 3 3 3 L1a

Speed by Link (knots)
Fast Medium Slow

Fast Fast Medium Slow Very Slow

Bulkers Reefer Tankers

DD LET														
DRAFT	A /D	M. J.	NIDE	T :1- ID	Carra W/D	Carrier WD I at /I am	E 4 W/D	Ending Womening Log/Log	Dist. Country	C	Container		Log	Trans.
Route Olympia_PS	Arr/Dep	Mode	Y	Link ID		Starting WP Lat/Lon 47° 03′ 51′′ N 122° 54′ 29′′ W		Ending Waypoint Lat/Lon 47° 04′ 04′′ N 122° 54′ 37′′	Dist. County 0.2 Thurston	Cruise	Auto 4	Fishing 4	Fishing 4	Fishing 4
Olympia_PS Olympia_PS		M	Y	L1 L2		47° 04′ 04′′ N 122° 54′ 37′′ W		47° 04′ 20′′ N 122° 54′ 52′′	0.2 Thurston	0	5	5	5	5
Olympia_PS		M	Y	L3		47° 04′ 20′′ N 122° 54′ 52′′ W		47° 05′ 13′′ N 122° 55′ 42′′		0	5	5	5	5
Olympia_PS		M	Y	L4		47° 05′ 13′′ N 122° 55′ 42′′ W		47° 06′ 33′′ N 122° 54′ 30′′		0	7	7	7	7
Olympia_PS		M	Y	L5		47° 06′ 33′′ N 122° 54′ 30′′ W		47° 08′ 44′′ N 122° 54′ 40′′		0	7	7	7	7
Olympia_PS		M	Y	L6		47° 08′ 44′′ N 122° 54′ 40′′ W		47° 09′ 25′′ N 122° 53′ 15′′	1.18 Thurston	0	9	9	9	9
Olympia_PS		M	Y	L7		47° 09′ 25′′ N 122° 53′ 15′′ W		47° 09′ 35′′ N 122° 52′ 35′′		0	9	9	9	9
Olympia_PS		M	Y	L8		47° 09′ 35′′ N 122° 52′ 35′′ W		47° 10′ 24′′ N 122° 51′ 03′′	1.3 Mason	0	9	9	9	9
Olympia_PS		M	Y	L9		47° 10′ 24′′ N 122° 51′ 03′′ W		47° 10′ 53′′ N 122° 50′ 18′′	0.7 Thurston	0	9	9	9	9
Olympia_PS		M	Y	L10		47° 10′ 53′′ N 122° 50′ 18′′ W		47° 11′ 21′′ N 122° 49′ 12′′		0	13	13	13	9
Olympia_PS		T	N	L11		47° 11′ 21′′ N 122° 49′ 12′′ W		47° 10′ 53′′ N 122° 48′ 17′′		0	13	13	13	9
Olympia_PS		T	N	L12	OL_D_12	47° 10′ 53′′ N 122° 48′ 17′′ W	OL_D_13	47° 10′ 10′′ N 122° 47′ 23′′	0.9 Thurston	0	13	13	13	9
Olympia_PS		T	N	L13	OL_D_13	47° 10′ 10′′ N 122° 47′ 23′′ W	OL_D_14	47° 09′ 16′′ N 122° 46′ 29′′	1.1 Pierce	0	13	13	13	9
Olympia_PS	Departure	Т	N	L14	OL_D_14	47° 09′ 16′′ N 122° 46′ 29′′ W	OL_D_15	47° 08′ 37′′ N 122° 45′ 45′′	0.8 Thurston	0	13	13	13	9
Olympia_PS		T	N	L15	OL_D_15	47° 08′ 37′′ N 122° 45′ 45′′ W	OL_D_16	47° 07′ 34′′ N 122° 44′ 36′′	1.3 Thurston	0	13	13	13	9
Olympia_PS	Departure	T	N	L16	OL_D_16	47° 07′ 34′′ N 122° 44′ 36′′ W	OL_D_17	47° 07′ 23′′ N 122° 43′ 33′′	0.7 Thurston	0	13	13	13	9
Olympia_PS	Departure	T	N	L17	OL_D_17	47° 07′ 23′′ N 122° 43′ 33′′ W	OL_D_18	47° 07′ 07′′ N 122° 41′ 59′′	1.1 Pierce	0	13	13	13	9
Olympia_PS	Departure	T	N	L18	OL_D_18	47° 07′ 07′′ N 122° 41′ 59′′ W	OL_D_19	47° 07′ 47′′ N 122° 41′ 01′′	0.9 Pierce	0	13	13	13	9
Olympia_PS	Departure	T	N	L19	OL_D_19	47° 07′ 47′′ N 122° 41′ 01′′ W	OL_D_20	47° 10′ 52′′ N 122° 37′ 42′′	3.8 Pierce	0	13	13	13	9
Olympia_PS	Departure	T	N	L20	OL_D_20	47° 10′ 52′′ N 122° 37′ 42′′ W	OL_D_21	47° 11′ 45′′ N 122° 36′ 09′′	1.4 Pierce	0	13	13	13	9
Olympia_PS	Departure	T	N	L21	OL_D_21	47° 11′ 45′′ N 122° 36′ 09′′ W	OL_D_22	47° 14′ 52′′ N 122° 34′ 15′′	3.4 Pierce	0	13	13	13	9
Olympia_PS	Departure	T	N	L22	OL_D_22	47° 14′ 52′′ N 122° 34′ 15′′ W	OL_D_23	47° 16′ 51′′ N 122° 32′ 24′′	2.4 Pierce	0	13	13	13	9
Olympia_PS	Departure	T	N	L23	OL_D_23	47° 16′ 51′′ N 122° 32′ 24′′ W	OL_D_24	47° 17′ 23′′ N 122° 32′ 18′′	0.5 Pierce	0	13	13	13	9
Olympia_PS	Departure	Т	N	L24	OL_D_24	47° 17′ 23′′ N 122° 32′ 18′′ W	OL_D_25	47° 18′ 34′′ N 122° 33′ 08′′	1.3 Pierce	0	13	13	13	9
Olympia_PS	Departure	T	N	L25	OL_D_25	47° 18′ 34′′ N 122° 33′ 08′′ W	OL_D_26	47° 19′ 36′′ N 122° 33′ 14′′	1.0 Pierce	0	13	13	13	9
Olympia_PS	Departure	Т	N	L26a	OL_D_26	47° 19′ 36′′ N 122° 33′ 14′′ W	VW_D_1	47° 20′ 58′′ N 122° 32′ 29′′	1.4 Pierce	0	13	13	13	9
Olympia_Vas		T	N	L1		47° 20′ 58′′ N 122° 32′ 29′′ W		47° 22′ 29′′ N 122° 31′ 39′′	1.6 King	0	13	13	13	9
Olympia_Vas	sł Departure	Т	N	L2		47° 22′ 29′′ N 122° 31′ 39′′ W		47° 23′ 00′′ N 122° 31′ 53′′	0.5 Pierce	0	13	13	13	9
Olympia_Vas		Т	N	L3	VW_D_3	47° 23′ 00′′ N 122° 31′ 53′′ W	VW_D_4	47° 23′ 43′′ N 122° 32′ 19′′	0.8 King	0	13	13	13	9
Olympia_Vas		Т	N	L4		47° 23′ 43′′ N 122° 32′ 19′′ W		47° 24′ 32′′ N 122° 32′ 02′′	0.8 King	0	13	13	13	9
Olympia_Vas		Т	N	L5		47° 24′ 32′′ N 122° 32′ 02′′ W		47° 25′ 48′′ N 122° 31′ 25′′	1.3 Kitsap	0	13	13	13	9
Olympia_Vas		Т	N	L6		47° 25′ 48′′ N 122° 31′ 25′′ W		47° 27′ 35′′ N 122° 31′ 09′′	1.8 King	0	13	13	13	9
Olympia_Vas		Т	N	L7		47° 27′ 35′′ N 122° 31′ 09′′ W		47° 28′ 56′′ N 122° 30′ 17′′	1.5 King	0	13	13	13	9
Olympia_Vas		Т	N	L8		47° 28′ 56′′ N 122° 30′ 17′′ W		47° 30′ 38′′ N 122° 29′ 10′′	1.9 Kitsap	0	13	13	13	9
Olympia_Vas		Т	N	L9		47° 30′ 38′′ N 122° 29′ 10′′ W		47° 31′ 17′′ N 122° 28′ 45′′	0.7 King	0	13	13	13	9
Olympia_Vas	•	T	N	L10		47° 31′ 17′′ N 122° 28′ 45′′ W		47° 33′ 05′′ N 122° 27′ 36′′	2.0 Kitsap	0	13	13	13	9
Tacoma_Sea		X	N	L11a		47° 33′ 05′′ N 122° 27′ 36′′ W		47° 34′ 32′′ N 122° 26′ 30′′	1.5 King	0	13	13	13	9
Tacoma_Sea		T	N	L7		47° 34′ 32′′ N 122° 26′ 30′′ W		47° 35′ 55′′ N 122° 26′ 45′′	1.4 King	0	16	15	SS	SS
Tacoma_Sea		T	N	L8		47° 35′ 55′′ N 122° 26′ 45′′ W		47° 37′ 02′′ N 122° 26′ 56′′	1.1 Kitsap	0	18	17	SS	SS
Tacoma_Sea		T	N	L9		47° 37′ 02′′ N 122° 26′ 56′′ W		47° 39′ 42′′ N 122° 27′ 25′′	2.7 King	0	20	19	SS	SS
Tacoma_Sea	•	T	N	L10		47° 39′ 42′′ N 122° 27′ 25′′ W		47° 41′ 54′′ N 122° 26′ 47′′	2.3 King	0	22	SS	SS	SS
Tacoma_Sea		T	N	L11		47° 41′ 54′′ N 122° 26′ 47′′ W		47° 45′ 52′′ N 122° 25′ 49′′	4.0 Kitsap	0	SS	SS	SS	SS
Tacoma_Sea		T	N	L12		47° 45′ 52′′ N 122° 25′ 49′′ W		47° 46′ 40′′ N 122° 26′ 04′′	0.8 King	0	SS	SS	SS	SS
Tacoma_Sea		T	N	L13		47° 46′ 40′′ N 122° 26′ 04′′ W		47° 48′ 06′′ N 122° 26′ 29′′	1.5 Snohomish		SS	SS	SS	SS
Tacoma_Sea		T	N	L14		47° 48′ 06′′ N 122° 26′ 29′′ W		47° 52′ 36′′ N 122° 28′ 08′′	4.6 Kitsap	0	SS	SS	SS	SS
Tacoma_Sea		T	N	L15		47° 52′ 36″ N 122° 28′ 08″ W		47° 55′ 34′′ N 122° 29′ 11′′	3.1 Island		SS	SS	SS	SS
Tacoma_Sea		T	N N	L16 L17		47° 55′ 34′′ N 122° 29′ 11′′ W 47° 57′ 01′′ N 122° 32′ 03′′ W		47° 57′ 01′′ N 122° 32′ 03′′ 47° 58′ 07′′ N 122° 34′ 19′′	2.4 Island 1.9 Island	0	SS SS	SS SS	SS SS	SS SS
Tacoma_Sea		T T	N	L17		47° 58′ 07′′ N 122° 34′ 19′′ W		48° 02′ 01′′ N 122° 37′ 40′′		0	SS	SS	SS	SS
Tacoma_Sea		Т	N	L19		48° 02′ 01′′ N 122° 37′ 40′′ W		48° 04′ 48′′ N 122° 38′ 31′′		0	SS	SS	SS	SS
Tacoma_Sea		T	N	L19 L20		48° 04′ 48″ N 122° 38′ 31″ W		48° 06′ 58′′ N 122° 39′ 13′′	2.8 Island 2.2 Jefferson	0	SS	SS	SS	SS
Tacoma_Sea		T	N	L20 L21		48° 06′ 58″ N 122° 39′ 13″ W		48° 07′ 51′′ N 122° 40′ 43′′		0	SS	SS	SS	SS
Tacoma_Sea Tacoma_Sea		T	N	L21 L22		48° 07′ 51′′ N 122° 40′ 43′′ W		48° 11′ 20′′ N 122° 46′ 47′′	1.3 Jefferson 5.3 Island	0	SS	SS	SS	SS
Tacoma_Sea		T	N	L23		48° 11′ 20′′ N 122° 46′ 47′′ W		48° 11′ 44′′ N 122° 48′ 45′′	1.4 Island	0	SS	SS	SS	SS
Tacoma_Sea		T	N	L23		48° 11′ 44′′ N 122° 48′ 45′′ W		48° 11′ 57′′ N 122° 52′ 19′′		0	SS	SS	SS	SS
Tacoma_Sea		T	N	L24 L25		48° 11′ 57′′ N 122° 52′ 19′′ W		48° 12′ 45′′ N 123° 06′ 35′′		0	SS	SS	SS	SS
Tacoma_Sea		X	N	L25 L26		48° 12′ 45′′ N 123° 06′ 35′′ W		48° 10′ 33′′ N 123° 23′ 03′′		0	33 17	33 16	12	SS
Tacoma_Sea		M	N	L20 L27		48° 10′ 33″ N 123° 23′ 03″ W		48° 11′ 21′′ N 123° 23′ 02′′	0.8 Calallam	0	8	8	8	8
Tacoma_Sea Tacoma_Sea		X	N	L27 L28		48° 11′ 21′′ N 123° 23′ 02′′ W		48° 14′ 13′′ N 123° 28′ 57′′	4.9 Calallam	0	8 15	8 14	8 12	SS
Tacoma_Sea Tacoma_Sea		T	N	L28 L29		48° 14′ 13′′ N 123° 28′ 57′′ W		48° 15′ 21′′ N 123° 33′ 17′′		0	15 19	SS SS	SS	SS
Tacoma_Sea Tacoma_Sea		T	N	L29 L30		48° 15′ 21′′ N 123° 33′ 17′′ W		48° 17′ 36′′ N 123° 56′ 06′′		0	SS	SS	SS	SS
Tacoma_Sea Tacoma_Sea		T	N	L30 L31		48° 17′ 36″ N 123° 56′ 06″ W		48° 30′ 38′′ N 124° 43′ 36′′		0	SS	SS	SS	SS
Tacoma_Sea		T	IN NI	L31		40 1/ 30 IN 123 30 00 W		40 30 30 IN 124 43 30		0	ee ee	ee ee	ee ee	ee ee

M Y

PS_Olympia Arrival

Speed by Link (knots)
ast Fast Medium Slow Very Slow

Lat/Long in WGS84 Datum Bulkers Reefer Tankers DRAFT Container RO/RO Log Arr/Dep Mode NPE Link ID Start WP & WP L End WP Waypoint Dist. County Cruise Fishing Fishing Fishing Route Auto NBndry_AI AD_A_1 48° 40 AD_A_2 48° 34′ 50 5.2 San Juan 16 SS SS NBndry_AI AD_A_2 48° 34 AD_A_3 48° 29′ 20 5.9 San Juan SS SS SS Arrival SS NBndry_AI Arrival Т N L3 AD_A_3 48° 29 AD_A_4 48° 27′ 2′ 2.4 San Juan SS SS SS SS Т L4 AD_A_4 48° 27 AD_A_5 48° 25′ 0′ 3.6 San Juan SS SS SS SS NBndry_AI Arrival N AD_A_5 48° 25 AD_A_6 48° 22′ 30 3.3 San Juan T N L5 SS SS NBndry_AI Arrival SS SS AD_A_6 48° 22 AD_A_7 48° 20′ 00 2.9 San Juan T N 1.6 0 SS SS SS SS NBndry_AI Arrival L7 AD_A_7 48° 20 AD_A_8 48° 12′ 48 8.8 San Juan SS NBndry_AI Arrival T N 0 SS SS SS NBndry AI Arrival T N L8a AD A 8 48° 12 PS D 25 48° 11′ 5′ 0.9 Jefferson 0 SS SS SS SS Tacoma Sea Departure T N L25 PS D 25 48° 11 PS D 26 48° 12′ 4! 9.5 Calallam SS SS SS SS L26 PS_D_26 48° 12 PS_D_27 48° 10′ 3; 11.2 Calallam 16 12 SS Tacoma_Sea Departure X N SS Ν L27a PS_D_27 48° 10 PS_A_6 48° 09′ 58 0.8 Calallam 8 Tacoma_Sea Departure M 8 8 8 PS_A_6 48° 09 PS_A_7 48° 11′ 5t 11.4 Calallam Sea_Tacoma Arrival X Ν 12 L6 18 16 SS T N L7 PS_A_7 48° 11 PS_A_8 48° 11′ 1′ 9.5 Calallam Sea_Tacoma Arrival SS SS SS Sea_Tacoma Arrival N L8 PS_A_8 48° 11 PS_A_9 48° 10′ 5′ 2.9 Jefferson SS SS SS N L9 PS_A_9 48° 10 PS_A_10 48° 06′ 3! 6.8 Jefferson SS SS SS Sea_Tacoma Arrival L10 PS_A_10 48° 06 PS_A_11 48° 01′ 08 5.6 Jefferson N SS SS SS Sea_Tacoma Arrival L11 PS_A_11 48° 01 PS_A_12 47° 57′ 4′ 4.0 Island T N SS SS SS Sea Tacoma Arrival L12 PS_A_12 47° 57 PS_A_13 47° 56′ 31 1.8 Island N SS SS SS Sea Tacoma Arrival T N L13 PS_A_13 47° 56 PS_A_14 47° 55′ 1′ 2.3 Kitsap SS SS SS Sea_Tacoma Arrival SS Sea_Tacoma Arrival T N L14 PS_A_14 47° 55 PS_A_15 47° 45′ 54 9.7 Kitsap 20 SS SS SS T N L15 PS_A_15 47° 45 PS_A_16 47° 39′ 4′ 6.3 Kitsap 18 17 SS Sea_Tacoma Arrival SS 17 L16 PS_A_16 47° 39 PS_A_17 47° 34′ 3′ 5.2 Kitsap Sea_Tacoma Arrival T N 16 13 SS T N L17a PS_A_17 47° 34 VW_A_1 47° 33′ 0! 1.5 Kitsap 0 14 13 Sea_Tacoma Arrival 13 SS VW_A_1 47° 33 VW_A_2 47° 31′ 1′ 2.0 Kitsap Vash_Olympia Arrival L1 13 13 9 Vash_Olympia Arrival N L2 VW A 2 47° 31 VW A 3 47° 30′ 35 0.7 King 13 13 13 9 Vash_Olympia Arrival N L3 VW A 3 47° 30 VW A 4 47° 28′ 50 1.9 Kitsap 13 13 13 9 Ν L4 VW_A_4 47° 28 VW_A_5 47° 27′ 3! 1.5 King 0 13 13 13 9 Vash_Olympia Arrival N L5 VW_A_5 47° 27 VW_A_6 47° 25′ 48 1.8 King 0 13 13 13 9 Vash_Olympia Arrival 9 Ν L6 VW_A_6 47° 25 VW_A_7 47° 24′ 3′ 1.3 Kitsap 13 13 13 Vash_Olympia Arrival Vash_Olympia Arrival Ν L7 VW_A_7 47° 24 VW_A_8 47° 23′ 4′. 0.8 King 13 13 13 9 VW_A_8 47° 23 VW_A_9 47° 23′ 0(0.8 King 13 9 Vash_Olympia Arrival N L8 0 13 13 VW_A_9 47° 23VW_A_10 47° 22′ 2! 0.5 Pierce Vash_Olympia Arrival N L9 0 13 13 13 9 L10 VW_A_10 47° 22VW_A_11 47° 20′ 58 1.6 King 13 9 Vash_Olympia Arrival Т N 0 13 13 N L11a VW_A_11 47° 22 OL_A_4 47° 19′ 30 3.1 Pierce 13 13 13 Vash_Olympia Arrival N L4 OL_A_4 47° 19 OL_A_5 47° 18′ 34 1.0 Pierce 13 13 13 SS PS_Olympia Arrival T N L5 OL_A_5 47° 18 OL_A_6 47° 17′ 2; 1.3 Pierce 13 13 13 PS_Olympia Arrival Т SS OL_A_6 47° 17 OL_A_7 47° 16′ 5′ 0.5 Pierce PS_Olympia Arrival N L6 13 13 13 SS N L7 OL_A_7 47° 16 OL_A_8 47° 14′ 5′. 2.4 Pierce 13 13 13 PS_Olympia Arrival SS OL_A_8 47° 14 OL_A_9 47° 11′ 4! 3.4 Pierce N 13 PS_Olympia Arrival L8 13 13 SS OL_A_9 47° 11 OL_A_10 47° 10′ 5′ 1.4 Pierce N L9 13 13 13 SS PS_Olympia Arrival L10 OL_A_10 47° 10OL_A_11 47° 07′ 4′ 3.8 Pierce N 13 13 13 SS PS_Olympia Arrival PS_Olympia Arrival N L11 OL A 11 47° 07 OL A 12 47° 07′ 0° 0.9 Pierce 13 13 13 SS N L12 OL_A_12 47° 07 OL_A_13 47° 07′ 2′ 1.1 Pierce 13 13 13 PS_Olympia Arrival SS N L13 OL_A_13 47° 07 OL_A_14 47° 07′ 34 0.7 Thurston 0 13 13 13 SS PS_Olympia Arrival T N L14 OL_A_14 47° 07 OL_A_15 47° 08′ 3′ 1.3 Thurston 0 13 13 13 PS_Olympia Arrival SS L15 OL_A_15 47° 08OL_A_16 47° 09′ 10 0.8 Thurston T N 13 13 13 PS_Olympia Arrival SS T N L16 OL_A_16 47° 09 OL_A_17 47° 10′ 10 1.1 Pierce 13 PS_Olympia Arrival 13 13 SS PS_Olympia Arrival N L17 OL_A_17 47° 10 OL_A_18 47° 10′ 5′ 0.9 Thurston 13 13 13 SS T N L18 OL_A_18 47° 10OL_A_19 47° 11′ 2′ 0.8 Thurston 13 13 13 SS PS_Olympia Arrival M Y L19 OL A 19 47° 11 OL A 20 47° 10′ 5′. 0.9 Thurston 9 9 9 8 PS_Olympia Arrival L20 OL_A_20 47° 10OL_A_21 47° 10′ 24 0.7 Thurston 0 9 9 M Y PS_Olympia Arrival Y L21 OL_A_21 47° 10 OL_A_22 47° 09′ 3! 1.3 Mason 9 0 9 M PS_Olympia Arrival M Y L22 OL_A_22 47° 09 OL_A_23 47° 09′ 2! 0.5 Mason 9 0 9 PS_Olympia Arrival L23 OL_A_23 47° 09 OL_A_24 47° 08′ 4 1.2 Thurston PS_Olympia Arrival M Y 8 M Y L24 OL_A_24 47° 08OL_A_25 47° 06′ 3′. 2.2 Thurston PS_Olympia Arrival Y L25 OL_A_25 47° 06OL_A_26 47° 05′ 1; 1.6 Thurston PS_Olympia Arrival M L26 OL_A_26 47° 05 OL_A_27 47° 04′ 20 1.1 Thurston M Y PS_Olympia Arrival M Y L27 OL A 27 47° 04 OL A 28 47° 04′ 04 0.3 Thurston PS_Olympia Arrival

L28 OL_A_28 47° 04OL_A_29 47° 03′ 5′ 0.2 Thurston

Puget Sound Emissions Inventory OGV-Routing: OLYMPIA to SEATTLE

Lat/Long in WGS84 Datum

	Spe	ed by Link ((knots)	
Fast	Fast	Medium	Slow	Very Slow

Bulkers

Lat/Long in v	VO30+ Date	1111											Reefer	Tankers	
DRAFT												Containe		Log	
Route	Arr/Den	Mode	NPF	Link ID	Start W/P	αW/PI	a End WP	avnoint	Diet	County	Cruise	Auto	Fishing	Fishing	Fishing
Olympia_PS	Departure	M	Y	Liik 1D	OL D 1		OL_D_2	· .		Thurston	0	4	4	4	4
Olympia_PS	Departure	M	Y	L2			OL_D_3			Thurston	0	5	5	5	5
Olympia_PS	Departure	M	Y	L3			OL_D_4			Thurston	0	5	5	5	5
Olympia_PS	Departure		Y	L4	OL_D_4		OL_D_5			Thurston	0	7	7	7	7
Olympia_PS	Departure	M	Y	L5	OL D 5		OL_D_6			Thurston	0	7	7	7	7
Olympia_PS	Departure	M	Y	L6			OL_D_7			Thurston	0	9	9	9	9
Olympia_PS	Departure	M	Y	L7			OL_D_8			Mason	0	9	9	9	9
Olympia_PS	Departure	M	Y	L8			OL D 9			Mason	0	9	9	9	8
Olympia_PS	Departure	M	Y	L9			OL_D_10			Thurston	0	9	9	9	8
Olympia_PS	Departure	M	Y	L10			OL_D_11			Thurston	0	9	9	9	8
Olympia_PS	Departure	T	N	L11			OL_D_12			Thurston	0	13	13	13	SS
Olympia_PS	Departure	Т	N	L12			OL_D_13			Γhurston	0	13	13	13	SS
Olympia_PS	Departure	Т	N	L13			OL_D_14			Pierce	0	13	13	13	SS
Olympia_PS	Departure	Т	N	L14			OL_D_15		0.8 7	Γhurston	0	13	13	13	SS
Olympia_PS	Departure	Т	N	L15			OL_D_16			Γhurston	0	13	13	13	SS
Olympia_PS	Departure	Т	N	L16			OL_D_17		0.7 7	Γhurston	0	13	13	13	SS
Olympia_PS	Departure	Т	N	L17			OL_D_18		1.1 I	Pierce	0	13	13	13	SS
Olympia_PS	Departure	T	N	L18			OL_D_19		0.9 I	Pierce	0	13	13	13	SS
Olympia_PS	Departure	Т	N	L19	OL_D_19	47° 07′	OL_D_20	47° 10′	3.8 I	Pierce	0	13	13	13	SS
Olympia_PS	Departure	T	N	L20			OL_D_21		1.4 I	Pierce	0	13	13	13	SS
Olympia_PS	Departure	T	N	L21			OL_D_22		3.4 I	Pierce	0	13	13	13	SS
Olympia_PS	Departure	T	N	L22	OL_D_22	47° 14′	OL_D_23	47° 16′	2.4 I	Pierce	0	13	13	13	SS
Olympia_PS	Departure	T	N	L23	OL_D_23	47° 16′	OL_D_24	47° 17′	0.5 I	Pierce	0	13	13	13	SS
Olympia_PS	Departure	T	N	L24	OL_D_24	47° 17′	OL_D_25	47° 18′	1.3 I	Pierce	0	13	13	13	SS
Olympia_PS	Departure	T	N	L25	OL_D_25	47° 18′	OL_D_26	47° 19′	1.0 I	Pierce	0	13	13	13	SS
Olympia_PS	Departure	T	N	L26a	OL_D_26	47° 19′	VW_D_1	47° 20′	1.4 I	Pierce	0	13	13	13	9
Olympia_Vasl	h Departure	Т	N	L1	VW_D_1	47° 20′	VW_D_2	47° 22′	1.6 I	King	0	13	13	13	9
Olympia_Vasl	n Departure	Τ	N	L2	VW_D_2	47° 22′	VW_D_3	47° 23′	0.5 I	Pierce	0	13	13	13	9
Olympia_Vasl	n Departure	T	N	L3	VW_D_3	47° 23′	VW_D_4	47° 23′	0.8 I	King	0	13	13	13	9
Olympia_Vasl	n Departure	T	N	L4	VW_D_4	47° 23′	VW_D_5	47° 24′	0.8 I	King	0	13	13	13	9
Olympia_Vasl	n Departure	T	N	L5	VW_D_5	47° 24′	VW_D_6	47° 25′		Kitsap	0	13	13	13	9
Olympia_Vasl	n Departure	T	N	L6	VW_D_6	47° 25′	VW_D_7	47° 27′	1.8 I	King	0	13	13	13	9
Olympia_Vasl	n Departure	T	N	L7	VW_D_7	47° 27′	VW_D_8	47° 28′	1.5 I	King	0	13	13	13	9
Olympia_Vasl	n Departure	T	N	L8	VW_D_8	47° 28′	VW_D_9	47° 30′	1.9 I	Kitsap	0	13	13	13	9
Olympia_Vasl	n Departure	T	N	L9	VW_D_9	47° 30′	VW_D_10	47° 31′	0.7 I	King	0	13	13	13	9
Olympia_Vasl	n Departure	Т	N	L10	VW_D_10	47° 31′	VW_D_11	47° 33′	2.0 I	Kitsap	0	13	13	13	9
Tacoma_Sea		X	N	L11a	VW_D_11	47° 33′	PS_D_7	47° 34′	1.5 H	King	0	13	13	13	9
Tacoma_Sea	Departure	Τ	N	L6	PS_D_6	47° 26′	PS_D_7	47° 34′	7.8 I	King	0	20	17	SS	SS
Tacoma_Sea	Departure	Τ	Y	L7a	PS_D_7	47° 34′	EB_A_S1	47° 36′	2.2 I	King	0	20	17	SS	SS
Tacoma_Ellio	t Arrival	X	Y	L1	EB_A_S1	47° 36′	EB_A_4	47° 36′	1.3 I	King	0	15	13	10	10

Total Distance 58.5 nm

Note: SS - Service Speed

Speed by Link (knots) Fast Medium Slow Very Slow Fast Bulkers Reefer Tankers

Part											Reefer	Tankers	
Olympig 18 Departure M Y 11 OLD 1 47 03 OLD 2 47 04 OLD 3 47 04	DRAFT							n				Log	
Olympia PS Departure M		<u>, </u>											
Olympia_PS Departure M Y 14 OL_D_4 47° 05° OL_D_5 47° 06° OL_D_5		•											-
Olympia_PS Departure M													
Olympia_PS Departure M Y 15 OL_D.5 47° 06 OL_D.5 47° 06 Cl_D.5 47° 07	, , , –												
Olympia_IN Departure M		•											
Okympia_PS Departure M		•											
Olympia_IPS Departure													-
Olympia_PS Departure M V I_10 OL_D_10_47° 10′ O.T_D_10_47° 10′ O.7 Thurston 0 9 9 9 8 8 Olympia_PS Departure T N I_11 OL_D_11_47° 10′ OL_D_11_47° 10′ O.8 Thurston 0 13 13 13 13 SS Olympia_PS Departure T N I_12 OL_D_12_47° 10′ OL_D_13_47° 10′ O.8 Thurston 0 13 13 13 13 SS Olympia_PS Departure T N I_13 OL_D_14_47° 10′ OL_D_14_47° 00′ OL_D_15_47° 00′		•								-			
Olympia_PS Departure M Y Lilo Ol_D_10 47° 100 D_11 47° 101′ 0.9 Thurston 0 9 9 9 8 Nolympia_PS Departure T N Lil Ol_D_11 47° 101′ 0.9 Thurston 0 13 13 13 13 85 Nolympia_PS Departure T N Lil Ol_D_12 47° 100 Ol_D_14 47° 100′ 0.9 Thurston 0 13 13 13 13 85 Nolympia_PS Departure T N Lil Ol_D_13 47° 100′ Ol_D_14 47° 100′ 0.9 Thurston 0 13 13 13 13 85 Nolympia_PS Departure T N Lil Ol_D_14 47° 100′ Ol_D_14 47° 10° O		•											
Olympia_PS Departure T		•											
Olympia_PS Departure T N L12 Ol_D_12 479 10 Ol_D_13 479 107 Olympia_PS Departure T N L13 Ol_D_13 479 100 Olympia_PS Departure T N L14 Ol_D_14 479 00 Olympia_PS Departure T N L14 Ol_D_15 479 00 Olympia_PS Olympia_PS Departure T N L14 Ol_D_15 479 00 Olympia_PS Olympia_PS Departure T N L15 Olympia_PS Departure T N L16 Olympia_PS Olympia_PS Departure T N L16 Olympia_PS Olympia_PS Departure T N L17 Olympia_PS Olympia_PS Departure T N L18 Olympia_PS Olympia_PS Departure T N L18 Olympia_PS Olympia_PS Departure T N L18 Olympia_PS Olympia_PS Departure T N L19 Olympia_PS Olympia_PS Departure T N L19 Olympia_PS Olympia_PS Departure T N L19 Olympia_PS Olympia_PS Departure T N L20 Olympia_PS Olympia_PS Departure T N L20 Olympia_PS Olympia_PS Departure T N L21 Olympia_PS Olympia_PS Departure T N L22 Olympia_PS Olympia_PS Departure T N L22 Olympia_PS Olympia_PS Olympia_PS Departure T N L22 Olympia_PS Olympia_PS Olympia_PS Departure T N L22 Olympia_PS Olymp	, , , –												
Olympia_PS Departure T N L13 Ol_D_13 47° 100 D_14 47° 00° 1.1 Energy 0.1 December 0.13 13 13 13 13 13 13 13	Olympia_PS	Departure											
Olympia_PS Departure T N L14 Ol_D_14 47º 09 Ol_D_15 47º 08' Ol_B Therston O 13 13 13 13 SS	Olympia_PS	Departure		N	L12	OL_D_12	47° 10°OL_D_13 47° 10′	0.9 Thurston	0	13	13	13	SS
Olympia_PS Departure T N L15 OL_D_15 47° 08 OL_D_16 47° 07′ 1.3 Thurston 0 13 13 13 13 SS Olympia_PS Departure T N L16 OL_D_16 47° 07′ OL_D_17 47° 07′ 1.1 Pierce 0 13 13 13 13 SS Olympia_PS Departure T N L16 OL_D_18 47° 07′ OL_D_19 47° 07	Olympia_PS	Departure	Т	N	L13	OL_D_13	47° 10 OL_D_14 47° 09′	1.1 Pierce	0	13	13	13	SS
Olympia_PS Departure T N L16 Ol_D_16 47° 07 Ol_D_17 47° 07 0.7 Thurston 0 13 13 13 13 SS Olympia_PS Departure T N L17 Ol_D_18 47° 07 0.1 D_18 47° 07 0.9 Pierce 0 13 13 13 SS Olympia_PS Departure T N L18 Ol_D_18 47° 07 0.1 D_19 47° 07 0.9 Pierce 0 13 13 13 SS Olympia_PS Departure T N L19 Ol_D_19 47° 07 0.1 D_19 47° 07 0.9 Pierce 0 13 13 13 SS Olympia_PS Departure T N L19 Ol_D_19 47° 107 0.1 D_19 47° 107 0.9 Pierce 0 13 13 13 SS Olympia_PS Departure T N L19 Ol_D_19 47° 107 0.1 D_20 47° 107 0.9 Pierce 0 13 13 13 SS Olympia_PS Departure T N L20 Ol_D_20 47° 107 0.1 D_20 47° 107 0.9 Pierce 0 13 13 13 SS Olympia_PS Departure T N L21 Ol_D_10_21 47° 107 0.0 D_20 47° 107 0.0 Pierce 0 13 13 13 SS Olympia_PS Departure T N L22 Ol_D_20 47° 107 0.0 D_20 47° 107 0.5 Pierce 0 13 13 13 SS Olympia_PS Departure T N L25 Ol_D_20 47° 107 0.0 D_20 47° 107 0.5 Pierce 0 13 13 13 SS Olympia_PS Departure T N L25 Ol_D_20 47° 107 0.0 D_20 47° 107 0.5 Pierce 0 13 13 13 SS Olympia_PS Departure T N L25 Ol_D_20 47° 107 0.0 D_20 47° 107 0.0 Pierce 0 13 13 13 13 SS Olympia_PS Departure T N L26 Ol_D_20 47° 107 0.0 Pierce 0 13 13 13 13 13 13 13	Olympia_PS	Departure	Т	N	L14	OL_D_14	47° 09 OL_D_15 47° 08′	0.8 Thurston	0	13	13	13	SS
Olympia_PS Departure T N L18 Ol_D_18 479 07 Ol_D_1 8479 07. Olympia_PS Departure T N L18 Ol_D_18 479 07 Ol_D_19 479 07. N L18 Ol_D_19 479 07 Ol_D_19 479 07. N L18 Ol_D_19 479 07 Ol_D_20 479 107 0. N Pierce 0 13 13 13 13 SS Olympia_PS Departure T N L19 Ol_D_19 479 07 Ol_D_20 479 107 0. N L19 Ol_D_19 479 07 Ol_D_20 479 107 0. N L19 Ol_D_20 479 107 0. N L10 Ol_D_0 20 479 107 0. N L10	Olympia_PS	Departure	T	N	L15	OL_D_15	47° 08°OL_D_16 47° 07′	1.3 Thurston	0	13	13	13	SS
Olympia_PS Departure T N I.18 OL_D_18 47° 07′ OL_D_19 47° 07′ ol_P Pierce 0 13 13 13 13 SS Olympia_PS Departure T N I.19 OL_D_19 47° 07′ OL_D_20 47° 10′ ol_S Pierce 0 13 13 13 13 SS Olympia_PS Departure T N I.20 OL_D_20 47° 10′ OL_D_21 47° 11′ 1.4 Pierce 0 13 13 13 13 SS Olympia_PS Departure T N I.21 OL_D_20 47° 10′ OL_D_22 47° 14′ ol_Free 0 13 13 13 13 SS Olympia_PS Departure T N I.22 OL_D_22 47° 16′ OL_D_22 47° 14′ ol_S Pierce 0 13 13 13 13 SS Olympia_PS Departure T N I.22 OL_D_22 47° 16′ OL_D_23 47° 16′ ol_D_23 47° 16′ OL_D_23 47° 16′ OL_D_33 47° 16′ OL_D_24 47° 17′ ol_D 5 Pierce 0 13 13 13 13 SS Olympia_PS Departure T N I.23 OL_D_23 47° 16′ OL_D_24 47° 17′ ol_D 5 Pierce 0 13 13 13 13 SS Olympia_PS Departure T N I.24 OL_D_D_2 47° 12′ Ol_D_D 25 47° 18′ Ol_D_D 26 47° 19′ ol_D 60′ ol_D 10′ ol_D 13	Olympia_PS	Departure	T	N	L16	OL_D_16	47° 07′ OL_D_17 47° 07′	0.7 Thurston	0	13	13	13	SS
Olympia_PS Departure	Olympia_PS	Departure	Τ	N	L17	OL_D_17	47° 07 OL_D_18 47° 07′	1.1 Pierce	0	13	13	13	SS
Olympia_PS Departure T N 1.20 Ol_D_20 47° 10 OL_D_21 47° 11' 1.4 Pierce 0 13 13 13 13 SS Olympia_PS Departure T N 1.21 Ol_D_21 47° 11' OL_D_22 47° 14' O.A Pierce 0 13 13 13 13 SS Olympia_PS Departure T N 1.22 Ol_D_22 47° 14' Ol_D_22 47° 16' OL_D_23 47° 16' OL_D_24 47° 17' O.5 Pierce 0 13 13 13 13 SS Olympia_PS Departure T N 1.23 Ol_D_25 47° 18' OL_D_26 47° 19' Olympia_PS Departure T N 1.25 Ol_D_25 47° 18' OL_D_26 47° 19' Olympia_PS Departure T N 1.25 Ol_D_25 47° 18' OL_D_26 47° 19' Olympia_PS Departure T N 1.25 Ol_D_25 47° 18' OL_D_26 47° 19' Olympia_PS Departure T N 1.25 Ol_D_25 47° 18' OL_D_26 47° 19' Olympia_VS Departure T N 1.25 Ol_D_25 47° 18' OL_D_26 47° 19' Olympia_VS Departure T N 1.25 Ol_D_25 47° 18' OL_D_26 47° 19' Olympia_VS Departure T N 1.25 Ol_D_25 47° 18' OL_D_26 47° 19' Olympia_VS Olympia_VS Departure T N 1.25 VW_D_2 47° 20' VW_D_2 47° 20' Olympia_VS Olympia	Olympia_PS	Departure	T	N	L18	OL_D_18	47° 07′ OL_D_19 47° 07′	0.9 Pierce	0	13	13	13	SS
Olympia_PS Departure	Olympia_PS	Departure	T	N	L19	OL_D_19	47° 07 OL_D_20 47° 10′	3.8 Pierce	0	13	13	13	SS
Olympia_PS Departure T N 1.22 OL_D_22 47° 14 OL_D_23 47° 16' 2.4 Pierce 0 13 13 13 13 SS Olympia_PS Departure T N 1.23 OL_D_22 47° 16' OL_D_24 47° 17' 18' 1.5 Pierce 0 13 13 13 13 SS Olympia_PS Departure T N 1.24 OL_D_24 47° 16' OL_D_25 47° 19' 10. Pierce 0 13 13 13 13 SS Olympia_PS Departure T N 1.25 OL_D_25 47° 18' OL_D_26 47° 19' 10. Pierce 0 13 13 13 13 SS Olympia_PS Departure T N 1.25 OL_D_25 47° 18' OL_D_26 47° 19' 10. Pierce 0 13 13 13 13 SS Olympia_PS Departure T N 1.25 OL_D_25 47° 18' OL_D_26 47° 19' 10. Pierce 0 13 13 13 13 9. Olympia_PS Departure T N 1.26a OL_D_26 47° 19' NW_D_1 47° 20' VW_D_2 47° 22' VD_D 13 13 13 13 9. Olympia_Vasl Departure T N 1.26a OL_D_26 47° 19' NW_D_1 47° 20' VW_D_2 47° 22' VD_D 13 13 13 13 9. Olympia_Vasl Departure T N 1.2 VW_D_2 47° 22' VW_D_2 47° 22' 16. King 0 13 13 13 13 9. Olympia_Vasl Departure T N 1.2 VW_D_2 47° 23' VW_D_6 47° 23' 0.8 King 0 13 13 13 13 9. Olympia_Vasl Departure T N 1.4 VW_D_4 47° 23' VW_D_6 47° 22' VW_D_6 47° 25' 0.5 Pierce 0 13 13 13 13 9. Olympia_Vasl Departure T N 1.6 VW_D_6 47° 25' VW_D_6 47° 25' 1.8 King 0 13 13 13 13 9. Olympia_Vasl Departure T N 1.6 VW_D_6 47° 25' VW_D_6 47° 25' 1.8 King 0 13 13 13 13 9. Olympia_Vasl Departure T N 1.6 VW_D_6 47° 25' VW_D_6 47° 25' 1.8 King 0 13 13 13 13 9. Olympia_Vasl Departure T N 1.6 VW_D_6 47° 25' VW_D_6 47° 25' 1.8 King 0 13 13 13 13 9. Olympia_Vasl Departure T N 1.6 VW_D_6 47° 25' VW_D_6 47° 25' 1.8 King 0 13 13 13 13 9. Olympia_Vasl Departure T N 1.6 VW_D_9 47° 30' VW_D_9 4	Olympia_PS	Departure	T	N	L20			1.4 Pierce	0	13	13	13	SS
Olympia_PS Departure T N 1.23 Ol_D_22 47° 14 Ol_D_23 47° 16′ 0.4 Pierce 0 13 13 13 13 SS Olympia_PS Departure T N 1.23 Ol_D_23 47° 16′ Ol_D_24 47° 17′ 0.5 Pierce 0 13 13 13 13 SS Olympia_PS Departure T N 1.24 Ol_D_2 47° 17′ Ol_D_25 47° 18′ 1.5 Pierce 0 13 13 13 13 SS Olympia_PS Departure T N 1.25 Ol_D_2 5 47° 18′ Ol_D_2 6 47° 19′ 1.0 Pierce 0 13 13 13 13 SS Olympia_PS Departure T N 1.25 Ol_D_2 5 47° 18′ Ol_D_2 6 47° 19′ 1.0 Pierce 0 13 13 13 13 SS Olympia_PS Departure T N 1.25 Ol_D_2 6 47° 18′ Ol_D_2 6 47° 19′ 1.0 Pierce 0 13 13 13 13 9 Olympia_PS Departure T N 1.26 Ol_D_2 6 47° 19′ 0.0 Pierce 0 13 13 13 13 9 Olympia_Vssl Departure T N 1.26 Ol_D_2 6 47° 19′ 0.0 Pierce 0 13 13 13 13 9 Olympia_Vssl Departure T N 1.2 VW_D_2 47° 22 VW_D_3 47° 23′ 0.5 Pierce 0 13 13 13 13 9 Olympia_Vssl Departure T N 1.2 VW_D_2 47° 22 VW_D_3 47° 23′ 0.5 Pierce 0 13 13 13 13 9 Olympia_Vssl Departure T N 1.3 VW_D_3 47° 23′ VW_D_3 47° 23′ 0.5 Pierce 0 13 13 13 13 9 Olympia_Vssl Departure T N 1.4 VW_D_4 47° 23′ VW_D_5 47° 24′ 0.8 King 0 13 13 13 13 9 Olympia_Vssl Departure T N 1.5 VW_D_5 47° 24′ VW_D_6 47° 25′ 1.3 Kitsap 0 13 13 13 13 9 Olympia_Vssl Departure T N 1.6 VW_D_6 47° 25′ VW_D_6 47° 25′ 1.8 King 0 13 13 13 13 9 Olympia_Vssl Departure T N 1.6 VW_D_6 47° 25′ VW_D_6 47° 25′ 1.8 King 0 13 13 13 13 9 Olympia_Vssl Departure T N 1.8 VW_D_6 47° 25′ VW_D_6 47° 25′ 1.8 King 0 13 13 13 13 9 Olympia_Vssl Departure T N 1.8 VW_D_9 47° 30′ VW_D_9 47° 30		•	T	N	L21	OL D 21	47° 11 OL D 22 47° 14′	3.4 Pierce	0	13	13	13	SS
Olympia_PS	, , , –		T	N	L22			2.4 Pierce	0	13	13	13	SS
Olympia_PS Departure		•			L23				0	13	13	13	
Olympia_PS Departure		•											
Olympia_PS Departure T N L25 Ol_D_25 47° 18 Ol_D_26 47° 19' L0 Pierce O 13 13 13 13 9		•											
Olympia_Vasl Departure		•											
Olympia_Vasl Departure		•											
Olympia Vasl Departure	, , , –												-
Olympia_Vasl Departure								U					
Olympia_Vasl Departure T N L5 VW_D_4 47° 23 VW_D_5 47° 24′ 0.8 King 0 13 13 13 13 9 Olympia_Vasl Departure T N L5 VW_D_5 47° 24′ VW_D_6 47° 25′ 1.3 Kitsap 0 13 13 13 13 9 Olympia_Vasl Departure T N L6 VW_D_6 47° 25′ VW_D_7 47° 27′ VW_D_8 47° 25′ VW_D_1 47° 27′ VW_D_8 47° 25′ VW_D_9 47° 27′ VW_D_8 47° 28′ VW_D_9 47° 30′ V_D_9 47° 31′ 0.7 King 0 13 13 13 13 9 Olympia_Vasl Departure T N L10 VW_D_1 47° 31′ VW_D_1 47° 31′ 0.7 King 0 13 13 13 13 9 Olympia_Vasl Departure T N L10 VW_D_1 47° 31′ VW_D_1 47° 33′ 2.0 Kitsap 0 13 13 13 13 9 Olympia_Vasl Departure T N L7 PS_D_7 47° 34′ PS_D_8 47° 35′ 2.0 Kitsap 0 13 13 13 13 9 Olympia_Vasl Departure T N L7 PS_D_7 47° 34′ PS_D_8 47° 35′ 1.4 King 0 16′ 15′ SS SS Tacoma_Sea Departure T N L8 PS_D_8 47° 37′ PS_D_1 47° 37′ 1.1 Kitsap 0 18 17′ SS SS Tacoma_Sea Departure T N L9 PS_D_9 47° 37′ PS_D_1 47° 39′ V_S_D_1 14° 47′ 1.1 Kitsap 0 18 17′ SS SS Tacoma_Sea Departure T N L10 PS_D_1 47° 41′ PS_D_1 14° 47′ 41′ 2.3 King 0 20 19 SS SS Tacoma_Sea Departure T N L11 PS_D_1 147° 41′ PS_D_1 147° 41′ 2.3 King 0 20 19 SS													
Olympia_Vasl Departure T N L5 VW_D_5 47° 24′ VW_D_6 47° 25′ 1.3 Kitsap 0 13 13 13 13 9 Olympia_Vasl Departure T N L6 VW_D_6 47° 25′ VW_D_7 47° 27′ L8 King 0 13 13 13 13 9 Olympia_Vasl Departure T N L7 VW_D_7 47° 27′ VW_D_8 47° 28′ 1.5 King 0 13 13 13 13 9 Olympia_Vasl Departure T N L8 VW_D_8 47° 28′ VW_D_9 47° 30′ 1.9 Kitsap 0 13 13 13 13 9 Olympia_Vasl Departure T N L9 VW_D_9 47° 30′ VW_D_11 47° 31′ 0.7 King 0 13 13 13 13 9 Olympia_Vasl Departure T N L9 VW_D_10 47° 31′ VW_D_11 47° 33′ 2.0 Kitsap 0 13 13 13 13 9 Olympia_Vasl Departure T N L10 VW_D_10 47° 31′ VW_D_11 47° 33′ 2.0 Kitsap 0 13 13 13 13 9 Olympia_Vasl Departure T N L10 VW_D_10 47° 31′ VW_D_11 47° 33′ 2.0 Kitsap 0 13 13 13 13 9 Tacoma_Sea Departure T N L7 PS_D_7 47° 34′ PS_D_8 47° 35′ 1.4 King 0 16 15 SS SS Tacoma_Sea Departure T N L8 PS_D_8 47° 35′ PS_D_9 47° 37′ 1.1 Kitsap 0 16 15 SS SS Tacoma_Sea Departure T N L9 PS_D_9 47° 37′ PS_D_10 47° 39′ 2.7 King 0 20 19 SS SS Tacoma_Sea Departure T N L10 PS_D_10 47° 39′ PS_D_11 47° 41′ 2.3 King 0 20 19 SS SS Tacoma_Sea Departure T N L10 PS_D_10 47° 39′ PS_D_11 47° 41′ 2.3 King 0 20 19 SS SS Tacoma_Sea Departure T N L11 PS_D_11 47° 41′ PS_D_12 47° 45′ 40 Kitsap 0 SS S		-						U					
Olympia_Vasl Departure T N L6 VW_D_6 47° 25 VW_D_7 47° 27′ 1.8 King 0 13 13 13 13 9 Olympia_Vasl Departure T N L7 VW_D_7 47° 27 VW_D_8 47° 28′ 1.5 King 0 13 13 13 13 9 Olympia_Vasl Departure T N L8 VW_D_8 47° 28 VW_D_9 47° 30′ 1.9 Kitsap 0 13 13 13 13 9 Olympia_Vasl Departure T N L9 VW_D_9 47° 30′ VW_D_10 47° 31′ 0.7 King 0 13 13 13 13 9 Olympia_Vasl Departure T N L10 VW_D_10 47° 31 VW_D_11 47° 33′ 2.0 Kitsap 0 13 13 13 13 9 Olympia_Vasl Departure T N L110 VW_D_11 47° 31′ VW_D_11 47° 33′ 2.0 Kitsap 0 13 13 13 13 9 Tacoma_Sea Departure T N L111 VW_D_11 47° 33′ PS_D_7 47° 34′ 1.5 King 0 13 13 13 13 9 Tacoma_Sea Departure T N L8 PS_D_7 47° 34′ PS_D_8 47° 35′ 1.4 King 0 16 15 SS SS Tacoma_Sea Departure T N L8 PS_D_8 47° 35′ PS_D_9 47° 37′ 1.1 Kitsap 0 16 15 SS SS Tacoma_Sea Departure T N L9 PS_D_9 47° 37′ PS_D_10 47° 39′ 2.7 King 0 20 19 SS SS Tacoma_Sea Departure T N L10 PS_D_10 47° 39′ PS_D_11 47° 41′ 2.3 King 0 20 19 SS SS Tacoma_Sea Departure T N L10 PS_D_10 47° 39′ PS_D_11 47° 41′ 2.3 King 0 22 SS SS SS Tacoma_Sea Departure T N L11 PS_D_11 47° 41′ PS_D_12 47° 45′ 40′ 0.8 King 0 SS S	, , , –							U					
Olympia_Vasl Departure T N L8 VW_D_7 47° 27 VW_D_8 47° 28′ 1.5 King 0 13 13 13 13 9 Olympia_Vasl Departure T N L8 VW_D_8 47° 28′ VW_D_9 47° 30′ 1.9 Kitsap 0 13 13 13 13 9 Olympia_Vasl Departure T N L9 VW_D_9 47° 30′ VW_D_10 47° 31′ 0.7 King 0 13 13 13 13 9 Olympia_Vasl Departure T N L10 VW_D_10 47° 31′ VW_D_11 47° 33′ 2.0 Kitsap 0 13 13 13 13 9 Olympia_Vasl Departure T N L10 VW_D_110 47° 31′ VW_D_11 47° 33′ 2.0 Kitsap 0 13 13 13 13 9 Olympia_Vasl Departure T N L11 VW_D_11 47° 31′ VW_D_1 147° 33′ 2.0 Kitsap 0 13 13 13 13 9 Olympia_Vasl Departure T N L11 VW_D_11 47° 31′ VW_D_1 147° 33′ S.D_7 47° 34′ 1.5 King 0 13 13 13 13 9 Olympia_Vasl Departure T N L7 PS_D_7 47° 34′ PS_D_8 47° 35′ 1.4 King 0 16 15 SS SS Tacoma_Sea Departure T N L8 PS_D_8 47° 35′ PS_D_9 47° 37′ 1.1 Kitsap 0 16 15 SS SS Tacoma_Sea Departure T N L9 PS_D_9 47° 37′ PS_D_10 47° 39′ 2.7 King 0 20 19 SS SS Tacoma_Sea Departure T N L10 PS_D_10 47° 39′ PS_D_11 47° 41′ 2.3 King 0 20 19 SS SS Tacoma_Sea Departure T N L11 PS_D_11 47° 41′ PS_D_11 47° 41′ 2.3 King 0 22 SS SS SS SS Tacoma_Sea Departure T N L11 PS_D_11 47° 41′ PS_D_12 47° 45′ 4.0 Kitsap 0 SS S													-
Olympia_Vasl Departure T N L8 VW_D_8 47° 28′ VW_D_9 47° 30′ 1.9 Kitsap 0 13 13 13 13 9 Olympia_Vasl Departure T N L9 VW_D_9 47° 30′ VW_D_10 47° 31′ 0.7 King 0 13 13 13 13 9 Olympia_Vasl Departure T N L10 VW_D_10 47° 31′ VW_D_11 47° 33′ 2.0 Kitsap 0 13 13 13 13 9 Olympia_Vasl Departure X N L11a VW_D_11 47° 33′ PS_D_7 47° 34′ 1.5 King 0 13 13 13 13 9 Olympia_Vasl Departure T N L7 PS_D_7 47° 34′ PS_D_8 47° 35′ PS_D_9 47° 37′ 1.4 King 0 16 15 SS SS Tacoma_Sea Departure T N L8 PS_D_8 47° 35′ PS_D_9 47° 37′ 1.1 Kitsap 0 16 15 SS SS Tacoma_Sea Departure T N L9 PS_D_9 47° 37′ PS_D_10 47° 39′ PS_D_10 47° 39′ PS_D_10 47° 39′ PS_D_11 47° 41′ 2.3 King 0 20 19 SS SS Tacoma_Sea Departure T N L10 PS_D_10 47° 39′ PS_D_11 47° 41′ 2.3 King 0 22 SS SS SS SS Tacoma_Sea Departure T N L11 PS_D_11 47° 41′ PS_D_12 47° 45′ 4.0 Kitsap 0 SS S		•						_					-
Olympia_Vasl Departure T N L9 VW_D_9 47° 30 VW_D_10 47° 31′ 0.7 King 0 13 13 13 13 9 Olympia_Vasl Departure T N L10 VW_D_10 47° 31′ VW_D_11 47° 33′ 2.0 Kitsap 0 13 13 13 9 Tacoma_Sea Departure X N L11a VW_D_11 47° 33′ PS_D_7 47° 34′ 1.5 King 0 13 13 13 9 Tacoma_Sea Departure T N L7 PS_D_7 47° 34′ PS_D_8 47° 35′ 1.4 King 0 16 15 SS SS Tacoma_Sea Departure T N L8 PS_D_B 47° 37′ PS_D_10 47° 39′ 2.7 King 0 16 15 SS SS Tacoma_Sea Departure T N L10 PS_D_D 9 47° 37′ PS_D_D 10 47° 39′ 2.7 King 0 20 18 17 SS SS SS Tacoma_Sea Departure T N L10 PS_D_D 11								U					
Olympia_Vasl Departure T N L10 VW_D_10 47° 31 VW_D_11 47° 33′ 2.0 Kitsap 0 13 13 13 9 Tacoma_Sea Departure X N L11a VW_D_11 47° 31 VW_D_11 47° 33′ 2.0 Kitsap 0 13 13 13 9 Tacoma_Sea Departure T N L7 PS_D_7 47° 34′ PS_D_8 47° 35′ 1.4 King 0 16 15 SS SS Tacoma_Sea Departure T N L8 PS_D_8 47° 35′ PS_D_9 47° 37′ 1.1 Kitsap 0 16 15 SS SS Tacoma_Sea Departure T N L9 PS_D_9 47° 37′ PS_D_10 47° 39′ 2.7 King 0 20 19 SS SS Tacoma_Sea Departure T N L10 PS_D_10 47° 39′ PS_D_11 47° 41′ PS_D_12 47° 45′ 4.0 Kitsap 0 SS SS SS SS SS													
Tacoma_Sea Departure X N L11a VW_D_11 47° 33 PS_D_7 47° 34′ 1.5 King 0 13 13 13 9 Tacoma_Sea Departure T N L7 PS_D_7 47° 34′ PS_D_8 47° 35′ 1.4 King 0 16 15 SS SS Tacoma_Sea Departure T N L8 PS_D_8 47° 35′ PS_D_9 47° 37′ 1.1 Kitsap 0 18 17 SS SS Tacoma_Sea Departure T N L9 PS_D_9 47° 37′ PS_D_10 47° 39′ 2.7 King 0 20 19 SS SS Tacoma_Sea Departure T N L10 PS_D_10 47° 39′ PS_D_11 47° 41′ ES_D_12 47° 41′ ES_D_12<		-						_					-
Tacoma_Sea Departure T N L7 PS_D_7 47° 34' PS_D_8 47° 35' 1.4 King 0 16 15 SS SS Tacoma_Sea Departure T N L8 PS_D_8 47° 35' PS_D_9 47° 37' 1.1 Kitsap 0 18 17 SS SS Tacoma_Sea Departure T N L9 PS_D_9 47° 37' PS_D_10 47° 39' 2.7 King 0 20 19 SS SS Tacoma_Sea Departure T N L10 PS_D_10 47° 39' PS_D_11 47° 41' 2.3 King 0 20 19 SS SS Tacoma_Sea Departure T N L11 PS_D_11 47° 41' PS_D_12 47° 45' 4.0 Kitsap 0 SS S		•											
Tacoma_Sea Departure T N L8 PS_D_8 47° 35' PS_D_9 47° 37' 1.1 Kitsap 0 18 17 SS SS Tacoma_Sea Departure T N L9 PS_D_9 47° 37' PS_D_10 47° 39' 2.7 King 0 20 19 SS SS Tacoma_Sea Departure T N L10 PS_D_10 47° 39' PS_D_11 47° 41' 2.3 King 0 22 SS SS SS Tacoma_Sea Departure T N L11 PS_D_11 47° 41' PS_D_12 47° 45' 4.0 Kitsap 0 SS SS <td< td=""><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td>U</td><td></td><td></td><td></td><td></td><td></td></td<>		•						U					
Tacoma_Sea Departure T N L9 PS_D_9 47° 37 PS_D_10 47° 39′ 2.7 King 0 20 19 SS SS Tacoma_Sea Departure T N L10 PS_D_10 47° 39′ PS_D_11 47° 41′ 2.3 King 0 22 SS SS SS Tacoma_Sea Departure T N L11 PS_D_11 47° 41′ PS_D_12 47° 45′ 4.0 Kitsap 0 SS		•						U					
Tacoma_Sea Departure T N L10 PS_D_10 47° 39' PS_D_11 47° 41' 2.3 King 0 22 SS SS SS Tacoma_Sea Departure T N L11 PS_D_11 47° 45' 4.0 Kitsap 0 SS		•						•					
Tacoma_Sea Departure T N L11 PS_D_11 47° 41 PS_D_12 47° 45′ 4.0 Kitsap 0 SS SS SS SS Tacoma_Sea Departure T N L12a PS_D_12 47° 45′ ET_A_1 47° 46′ 0.8 King 0 SS		•						U					
Tacoma_Sea Departure T N L12a PS_D_12 47° 45' ET_A_1 47° 46' 0.8 King 0 SS SS SS SS Tacoma_Ever Departure T N L1 ET_A_1 47° 46' ET_A_2 47° 48' 1.6 Snohomish 0 SS SS SS SS Tacoma_Ever Departure T N L2a ET_A_2 47° 48' EV_A_5 47° 52' 4.1 Snohomish 0 SS SS SS SS PS_Everett Arrival T N L5 EV_A_5 47° 52' EV_A_6 47° 54' 2.4 Snohomish 0 19 SS		•						U					
Tacoma_Ever Departure T N L1 ET_A_1 47° 46' ET_A_2 47° 48' 1.6 Snohomish 0 SS SS SS SS Tacoma_Ever Departure T N L2a ET_A_2 47° 48' EV_A_5 47° 52' 4.1 Snohomish 0 SS SS SS SS PS_Everett Arrival T N L5 EV_A_5 47° 52' EV_A_6 47° 54' 2.4 Snohomish 0 19 SS SS SS PS_Everett Arrival X Y L6 EV_A_6 47° 54' EV_A_7 47° 56' 2.5 Snohomish 0 18 SS SS SS PS_Everett Arrival X Y L7 EV_A_7 47° 56' EV_A_8 47° 57' 1.1 Snohomish 0 14 14 12 SS PS_Everett Arrival M Y L8 EV_A_8 47° 57' EV_A_9 47° 58' 2.0 Snohomish 0 10 10 10 10 PS_E		•						•					
Tacoma_Ever Departure T N L2a ET_A_2 47° 48 EV_A_5 47° 52′ 4.1 Snohomish 0 SS SS SS PS_Everett Arrival T N L5 EV_A_5 47° 52′ EV_A_6 47° 54′ 2.4 Snohomish 0 19 SS SS SS PS_Everett Arrival X Y L6 EV_A_6 47° 54′ EV_A_7 47° 56′ 2.5 Snohomish 0 18 SS SS SS PS_Everett Arrival X Y L7 EV_A_7 47° 56′ EV_A_8 47° 57′ 1.1 Snohomish 0 14 14 12 SS PS_Everett Arrival M Y L8 EV_A_8 47° 57′ EV_A_9 47° 58′ 2.0 Snohomish 0 10 10 10 10 PS_Everett Arrival M Y L9 EV_A_9 47° 58′ EV_A_10 47° 58′ 1.3 Snohomish 0 7 7 6 6													
PS_Everett Arrival T N L5 EV_A_5 47° 52′ EV_A_6 47° 54′ 2.4 Snohomish 0 19 SS SS SS PS_Everett Arrival X Y L6 EV_A_6 47° 54′ EV_A_7 47° 56′ 2.5 Snohomish 0 18 SS SS SS PS_Everett Arrival X Y L7 EV_A_7 47° 56′ EV_A_8 47° 57′ 1.1 Snohomish 0 14 14 12 SS PS_Everett Arrival M Y L8 EV_A_8 47° 57′ EV_A_9 47° 58′ 2.0 Snohomish 0 10 10 10 10 PS_Everett Arrival M Y L9 EV_A_9 47° 58′ EV_A_10 47° 58′ 1.3 Snohomish 0 7 7 6 6		•											
PS_Everett Arrival X Y L6 EV_A_6 47° 54′ EV_A_7 47° 56′ 2.5 Snohomish 0 18 SS SS SS PS_Everett Arrival X Y L7 EV_A_7 47° 56′ EV_A_8 47° 57′ 1.1 Snohomish 0 14 14 12 SS PS_Everett Arrival M Y L8 EV_A_8 47° 57′ EV_A_9 47° 58′ 2.0 Snohomish 0 10 10 10 10 PS_Everett Arrival M Y L9 EV_A_9 47° 58′ EV_A_10 47° 58′ 1.3 Snohomish 0 7 7 6 6	_	1											
PS_Everett Arrival X Y L7 EV_A_7 47° 56′ EV_A_8 47° 57′ 1.1 Snohomish 0 14 14 12 SS PS_Everett Arrival M Y L8 EV_A_8 47° 57′ EV_A_9 47° 58′ 2.0 Snohomish 0 10 10 10 10 PS_Everett Arrival M Y L9 EV_A_9 47° 58′ EV_A_10 47° 58′ 1.3 Snohomish 0 7 7 6 6	_												
PS_Everett Arrival M Y L8 EV_A_8 47° 57′ EV_A_9 47° 58′ 2.0 Snohomish 0 10 10 10 10 PS_Everett Arrival M Y L9 EV_A_9 47° 58′ EV_A_10 47° 58′ 1.3 Snohomish 0 7 7 6 6													
PS_Everett Arrival M Y L9 EV_A_9 47° 58′ EV_A_10 47° 58′ 1.3 Snohomish 0 7 7 6 6	_					EV_A_7							
	_												
	PS_Everett	Arrival	M	Y	L9	EV_A_9	47° 58 EV_A_10 47° 58′		0	7	7	6	6

Total Dietance 75.5 am Notes 22 Service Speed

Puget Sound Emissions Inventory OGV-Routing: SEA to PORT TOWNSEND/INDIAN ISLAND

Puget Sound	Emissio	ns Inv	ento	ry						Spec	ed by Link	(knots)	
OGV-Routing: Sl	EA to POF	OT TS	WNSE	ND/IND	IAN ISLA	ND			Fast	Fast	Medium	Slow	Very Slow
Lat/Long in WGS8	34 Datum											Bulkers	
											Reefer	Tankers	
DRAFT										Containe	r RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	WP 1 End WP	, i	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
Sea_Tacoma	Arrival	Т	N	L1	PS_A_1	48° 2 PS_A_2	48° 2	10.7 Calallam	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L2	PS_A_2	48° 2 PS_A_3	48° 1.	35.9 Calallam	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L3	PS_A_3	48° 1 PS_A_4	48° 1.	15.4 Calallam	0	20	SS	SS	SS
Sea_Tacoma	Arrival	X	N	L4	PS_A_4	48° 1 PS_A_5	48° 0!	6.9 Calallam	0	16	15	12	SS
Sea_Tacoma	Arrival	M	N	L5	PS_A_5	48° (PS_A_6	48° 0!	0.6 Calallam	0	8	8	8	8
Sea_Tacoma	Arrival	X	N	L6	PS_A_6	48° (PS_A_7	48° 1	11.4 Calallam	0	18	16	12	SS
Sea_Tacoma	Arrival	Τ	N	L7	PS_A_7	48° 1 PS_A_8	48° 1	9.5 Calallam	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L8	PS_A_8	48° 1 PS_A_9	48° 10	2.9 Jefferson	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	X	N	L1a	PS_A_9	48° 1 PT_A_1	48° 0	3.6 Jefferson	0	16	14	10	SS
SJ_PortTownsend	Arrival	X	N	L2	PT_A_1	48° (PT_A_2	48° 0′	1.7 Jefferson	0	10	8	6	6

Total Distance 98.6 nm

Puget Sound En	nissions Inv	entory										Spee	d by Link	(knots)	
OGV-Routing: POR	T TOWNSEN	ND/INDIAN ISLA	ND HAR	BOR							Fast	Fast	Medium	Slow	Very Slow
Lat/Long in WGS84 I	Datum													Bulkers	
_													Reefer	Tankers	
DRAFT												Containe	r RO/RO	Log	
Route	To_Port	To_Pier	Arr/Dep	Link ID	Start WP	g WP L	End WP	ypoi 1	Dist.	County	Cruise	Auto	Fishing	Fishing	Fishing
SJ_PortTownsend	PORT TOWN	ISEND	Arrival	L2	PT_A_2	48° 07	Mode:	M		·				Ŭ	Ü
PortTownsend_SJ	PORT TOWN	NSEND	Departure	L1	PT_D_1	48° 07	NPE:	Y							
NOTE: All ARRIVAI	L harbor transits	s branch from PT_A	1_2												
NOTE: All DEPART															
		0 – –													
PortTownsend_Ancho	1 PORT TOWN	NS! ANCHORAGE	Arrival	L1a	PT_A_2	48° 07	PT B 1	N 12	1.3 Je	fferson	0	3	3	3	3
Anchorage_PortTowns				L1a	PT_B_1	N 123	PT D 1	48°	1.3 Je	fferson	0	3	3	3	3
0 -			1						<u> </u>						
IndianIsland_Ammo	INDIAN ISLA	ANAMMO	Arrival	L1a	PT_A_2	48° 07	II A 1	N 12	2.28 Je	fferson	0	4	4	4	4
IndianIsland_Ammo	INDIAN ISLA	AN AMMO	Arrival	L2	II_A_1				0.52 Je		0	2	2	2	2
							Total Dis		5.4 nr						
Ammo IndianIsland	INDIAN ISLA	ANAMMO	Departure	L1	II_B_1	48° 04	II_D_1	N 12	0.52 Je	fferson	0	2	2	2	2
_	INDIAN ISLA		Departure		II D 1						0	5	5	5	5
							Total Dis		J						
PORT TOWNSEND	TO INDIAN I	SLAND					- 0 000 10		-0.0	-					
PortTownsend Indian			Arrival	L1	PT_A_2	48° 07	II A 1	N 12	1.88 Ie	fferson	0	4	4	4	4
IndianIsland_Ammo			Arrival	L2	II_A_1				0.52 Je		0		2	2	2
	11 (1017)		11111111		-11		Total Dis		2.4 nr						
INDIAN ISLAND TO	D PORT TOWA	NSEND					10tai Dis	, carree	2. 1 111						
IndianIsland_PortTow			Departure	L1	II_B_1	48° 04	II_A_1	N 12	1 88 Je	fferson	0	2	2.	2	_2
IndianIsland_PortTow			1		II_B_1 II_A_1				-		0	_	5		
indiamisiand_1 oft10w	II OKI IOWI	VOLUME TO REACH	Departure	112	11_/1_1	14 122	1 1_/1/	70	0.32 Je	11013011	U				

Total Distance 2.4 nm

Puget Sound Emissions Inventory OGV-Routing: PORT TOWNSEND/INDIAN ISLAND to SEA Lat/Long in WGS84 Datum

Arr/Dep Mode NPE Link ID

Y

Y

Y

Y

N

N

Ν

N

N

N

N

Ν

N

N

L1

L2

L3

L4a

L23

L24

L25

L26

L27

L28

L29

L30

L31

L32

PT D 1

PT_D_2

PT_D_3

PT D 4

PS_D_23

PS_D_24

PS D 25

PS D 26

PS_D_27

PS_D_28

PS D 29

PS D 30

PS_D_31

PS D 32

Χ

Χ

Χ

Χ

Τ

Τ

Τ

Χ

Μ

X

Τ

Τ

Τ

Arrival

Arrival

Arrival

Arrival

Departure

DRAFT

PortTownsend_SJ

PortTownsend_SJ

PortTownsend SI

PortTownsend SI

Tacoma_Sea

Tacoma_Sea

Tacoma Sea

Tacoma Sea

Tacoma_Sea

Tacoma_Sea

Tacoma Sea

Tacoma Sea

Tacoma_Sea

Tacoma_Sea

Route

Medium Slow Very Slow Fast Fast **Bulkers** Reefer **Tankers** Container RO/RO Log **Fishing** Cruise Auto **Fishing** County Fishing 1.7 Jefferson 0 12 10 8 6 2.1 Jefferson 0 15 13 10 8 0.7 Island 17 15 SS 0 SS SS 2.6 Island 0 20 18 SS SS SS 1.4 Island 0 SS SS SS SS SS SS 2.4 Jefferson 0 SS 9.5 Calallam 0 SS SS SS 11.2 Calallam 0 17 SS 16 12 8 8 0.8 Calallam 0 8 8

14

SS

SS

SS

SS

12

SS

SS

SS

SS

SS

SS

SS

SS

SS

Speed by Link (knots)

Total Distance 100.6 nm Note: SS - Service Speed

0

0

0

0

0

15

19

SS

SS

SS

4.9 Calallam

3.1 Calallam

15.4 Calallam

34.1 Calallam

10.9 Calallam

Start WP WP 1 End WP aypoir Dist.

48° 0

48° 0

48° 0

48° 1

48° 1

48° 1

48° 1

48° 1

48° 1

48° 1

48° 1

48° 1

48° 3

48° 3

48° (PT D 2

48° (PT_D_3

48° (PT D 4

48° (PS_D_23

48° 1PS_D_24

48° 1PS D 25

48° 1PS_D_26

48° 1PS D 27

48° 1PS_D_28

48° 1PS_D_29

48° 1PS D 30

48° 1PS D 31

48° 1PS_D_32

48° (PS_D_33

Puget Sound	Emissi	ons Ir	vent	ory							Spee	d by Link	(knots)	
OGV-Routing:	PORT AN	GELE	S to PO	ORT TOV	WNSEND	/INDIA	N ISLANI	D		Fast	Fast	Medium	Slow	Very Slow
Lat/Long in WGS	S84 Datum												Bulkers	_
												Reefer	Tankers	
DRAFT											Containe	r RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	ıg WP L	a End WP	Waypoint 11	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
PortAngeles_Sea	Departure	M	Y	L1	PA_D_1	48° 08′	(PA_D_2	48° 08′ 18	1.2 Calallam	0	6	6	6	6
PortAngeles_Sea	Departure	M	Y	L2	PA_D_2	48° 08′	(PA_D_3	48° 09′ 36	1.5 Calallam	0	8	8	8	8
PortAngeles_Sea	Departure	M	Y	L3a	PA_D_3	48° 09′	PS_A_6	48° 09′ 58	0.5 Calallam	0	8	8	8	8
Sea_Tacoma	Arrival	X	Y	L6	PS_A_6	48° 09′	! PS_A_7	48° 11′ 56	11.4 Calallam	0	19	17	12	SS
Sea_Tacoma	Arrival	Τ	N	L7	PS_A_7	48° 11′	! PS_A_8	48° 11′ 11	9.5 Calallam	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L8	PS_A_8	48° 11′	: PS_A_9	48° 10′ 57	2.9 Jefferson	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	X	Y	L1a	PS_A_9	48° 10′	PT_A_1	48° 08′ 40	3.6 Jefferson	0	16	14	10	SS
SJ_PortTownsend	d Arrival	Μ	Y	L2	PT_A_1	48° 08′	² PT_A_2	48° 07′ 00	1.7 Jefferson	0	10	8	6	6

Total Distance 32.2 nm

Puget Sound Emissions Inventory Speed by Link (knots) OGV-Routing: PORT TOWNSEND/INDIAN ISLAND to BREMERTON Fast Medium Slow Very Slow Fast Lat/Long in WGS84 Datum **Bulkers** Reefer Tankers **DRAFT** Container RO/RO Log Arr/Dep Mode NPE Link ID Start WP WP I End WP aypoin Dist. County Fishing Fishing Route Cruise Auto Fishing PTII_Bremerton Departure Χ Y 48° 0′ PI D 2 48° 07 0.7 Jefferson 12 10 L1 PI D 1 0 8 6 X Y PTII Bremerton Departure L2 PI D 2 48° 0′ PI D 3 48° 07 0 12 9 7 0.6 Jefferson 14 PTII Bremerton Departure PI D 3 48° 0' PS A 10 48° 06 Χ Y 10 L3a 2.3 Jefferson 0 18 16 9 Y SS SS Sea_Tacoma Arrival Χ L10 PS A 10 48° 0 PS A 11 48° 01 5.6 Jefferson 0 20 SS Sea_Tacoma Arrival Τ N PS_A_11 48° 0 PS_A_12 47° 57 4.0 Island 0 SS SS SS SS L11 SS SS SS Sea_Tacoma Arrival Τ N L12 PS_A_12 47° 5′ PS_A_13 47° 56 1.8 Island 0 SS SS Sea_Tacoma Arrival Τ N PS_A_13 47° 5(PS_A_14 47° 55 0 SS SS SS L13 2.3 Kitsap Τ 9.7 Kitsap 0 SS SS SS SS Sea Tacoma Arrival N L14 PS A 14 47° 5. PS A 15 47° 45 Sea_Tacoma Τ PS_A_15 47° 4 PS_A_16 47° 39 Arrival N L15 6.3 Kitsap 0 SS SS SS SS Τ SS SS SS SS Sea_Tacoma Arrival N PS_A_16 47° 3! PS_A_17 47° 34 L16 5.2 Kitsap Τ N 0 SS SS SS SS Sea Tacoma Arrival L17a PS A 17 47° 3 BR A 1 47° 3 2.1 Kitsap

Total Distance 48 nm Note: SS - Service Speed

OGV-Routing: BREMERTON to PORT TOWNSEND/INDIAN ISLAND
Lat/Long in WGS84 Datum

Lat/Long in WGS	S84 Datum											Reefer	Bulkers Tankers	
DRAFT											Containe	RO/RO	Log	
Route	Arr/Dep	Mod	e NPE	Link ID	Start WP	Starting WP Lat/Lon	End WP	Ending Waypoint Lat/Lon	Dist. County	Cruise	Auto	Fishing	U	Fishing
Bremerton_PS	Departure	Μ	Y	L1	BR_B_1	47° 33′ 21′′ N 122° 38′ 32′′ W	BR_D_1	47° 33′ 09′′ N 122° 38′ 06′′ W	0.4 Kitsap	0	10	10	9	9
Bremerton_PS														9
Bremerton_PS														9
Bremerton_PS														8
Bremerton_PS														8
Bremerton_PS														8
Bremerton_PS														SS
Bremerton_PS							BR_D_8	47° 33′ 58′′ N 122° 30′ 31′′ W						SS
Bremerton_PS	Departure	X	Y	L9a	BR_D_8	47° 33′ 58′′ N 122° 30′ 31′′ W	PS_A_17	47° 34′ 32′′ N 122° 27′ 32′′ W	2.1 Kitsap	0	20	SS	SS	SS
PSCross_Brem	Departure	T	N	L10a	PS_A_17	47° 34′ 32′′ N 122° 27′ 32′′ W	PS_D_8	47° 35′ 55′′ N 122° 26′ 45′′ W	1.5 Kitsap	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L8	PS_D_8	47° 35′ 55′′ N 122° 26′ 45′′ W	PS_D_9	47° 37′ 02′′ N 122° 26′ 56′′ W	1.1 Kitsap	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L9	PS_D_9	47° 37′ 02′′ N 122° 26′ 56′′ W	PS_D_10	47° 39′ 42′′ N 122° 27′ 25′′ W	2.7 King	0	SS	SS	SS	SS
Tacoma_Sea	Departure		N	L10	PS_D_10	47° 39′ 42′′ N 122° 27′ 25′′ W	PS_D_11	47° 41′ 54′′ N 122° 26′ 47′′ W	2.3 King	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L11	PS_D_11	47° 41′ 54′′ N 122° 26′ 47′′ W	PS_D_12	47° 45′ 52′′ N 122° 25′ 49′′ W	4.0 Kitsap	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L12	PS_D_12	47° 45′ 52′′ N 122° 25′ 49′′ W	PS_D_13	47° 46′ 40′′ N 122° 26′ 04′′ W	0.8 King	0	SS	SS	SS	SS
Tacoma_Sea	Departure		N	L13		47° 46′ 40′′ N 122° 26′ 04′′ W			1.5 Snohomish	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L14		47° 48′ 06′′ N 122° 26′ 29′′ W			4.6 Kitsap	0	SS	SS	SS	SS
Tacoma_Sea	Departure		N	L15		47° 52′ 36′′ N 122° 28′ 08′′ W			3.1 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure		N	L16		47° 55′ 34′′ N 122° 29′ 11′′ W			2.4 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L17		47° 57′ 01′′ N 122° 32′ 03′′ W			1.9 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure		N	L18		47° 58′ 07′′ N 122° 34′ 19′′ W			4.5 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure		N	L19		48° 02′ 01′′ N 122° 37′ 40′′ W			2.8 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure		N	L20		48° 04′ 48′′ N 122° 38′ 31′′ W			2.2 Jefferson	0	SS	SS	SS	SS
Tacoma_Sea	Departure		Y	L21		48° 06′ 58′′ N 122° 39′ 13′′ W			1.3 Jefferson	0	20	18	SS	SS
Tacoma_Sea	Departure		Y	L22a		48° 07′ 51′′ N 122° 40′ 43′′ W		48° 08′ 08′′ N 122° 41′ 34′′ W	0.6 Island	0	19	17	10	SS
Bremerton_PTII	Arrival	X	Y	L1		48° 08′ 08′′ N 122° 41′ 34′′ W		48° 08′ 03′′ N 122° 42′ 10′′ W	0.4 Island	0	18	16	10	SS
Bremerton_PTII	Arrival	X	Y	L2		48° 08′ 03′′ N 122° 42′ 10′′ W		48° 07′ 48′′ N 122° 44′ 03′′ W	1.3 Jefferson	0	14	12	8	8
Bremerton_PTII	Arrival	X	Y	L3	PI_A_3	48° 07′ 48′′ N 122° 44′ 03′′ W	PI_A_4	48° 07′ 00′′ N 122° 44′ 13′′ W	0.8 Jefferson	0	12	10	8	8

Total Distance 49.2 nm Note: SS - Service Speed

Speed by Link (knots)

Fast

Fast Medium Slow Very Slow

OGV-Routing: SEATTLE to PORT TOWNSEND/INDIAN ISLAND

Lat/Long in W	VGS84 Dat	tum			·							D C	Bulkers	, <u>,</u>
DRAFT											Container	Reefer RO/RO	Tankers Log	
Route	Arr/De l	Mode	NPE	Link ID	Start WP	WP	End WP Vay	ypoint Dist.	County	Cruise	Auto	Fishing	Fishing	Fishing
ElliottB_PS	Departu	X	Y	L1	EB_D_1	47°	EB_D_2 47	7° 38′ 2.6	King	0	12	9	8	6
ElliottB_PS	Departu	X	Y	L2a	EB_D_2	47°	PS_D_10 47	7° 39′ 1.5	King	0	16	SS	SS	7
Tacoma_Sea	Departu	Τ	N	L10	PS_D_10	47°	PS_D_11 47	7° 41′ 2.3	King	0	SS	SS	SS	SS
Tacoma_Sea	Departu	Τ	N	L11	PS_D_11	47°	PS_D_12 47	7° 45′ 4.0	Kitsap	0	SS	SS	SS	SS
Tacoma_Sea	Departu	Τ	N	L12	PS_D_12	47°	PS_D_13 47	7° 46′ 0.8	King	0	SS	SS	SS	SS
Tacoma_Sea	Departu	Τ	N	L13			PS_D_14 47		Snohomish	0	SS	SS	SS	SS
Tacoma_Sea	Departur	Τ	N	L14	PS_D_14	47°	PS_D_15 47	7° 52′ 4.6	Kitsap	0	SS	SS	SS	SS
Tacoma_Sea	Departur	Τ	N	L15	PS_D_15	47°	PS_D_16 47	7° 55′ 3.1	Island	0	SS	SS	SS	SS
Tacoma_Sea	Departur	Τ	N	L16	PS_D_16	47°	PS_D_17 47	7° 57′ 2.4	Island	0	SS	SS	SS	SS
Tacoma_Sea	Departur	Τ	N	L17	PS_D_17	47°	PS_D_18 47	7° 58′ 1.9	Island	0	SS	SS	SS	SS
Tacoma_Sea	Departur	Τ	N	L18	PS_D_18	47°	PS_D_19 48	8° 02′ 4.5	Island	0	SS	SS	SS	SS
Tacoma_Sea	Departur	Τ	N	L19	PS_D_19	48°	PS_D_20 48	8° 04′ 2.8	Island	0	SS	SS	SS	SS
Tacoma_Sea	Departur	Τ	N	L20	PS_D_20	48°	PS_D_21 48	8° 06′ 2.2	Jefferson	0	SS	SS	SS	SS
Tacoma_Sea	Departur	Τ	N	L21	PS_D_21	48°	PS_D_22 48	8° 07′ 1.3	Jefferson	0	20	18	SS	SS
Tacoma_Sea		X	Y	L22a	PS_D_22	48°	PI_A_1 48	8° 08′ 0.6	Island	0	19	17	10	SS
Bremerton_PT	^T Arrival	X	Y	L1	PI_A_1	48°	PI_A_2 48	8° 08′ 0.4	Island	0	18	16	10	SS
Bremerton_PT	Arrival	X	Y	L2	PI_A_2	48°	PI_A_3 48	8° 07′ 1.3	Jefferson	0	14	12	8	8
Bremerton_PT	^T Arrival	X	Y	L3	PI_A_3	48°	PI_A_4 48	8° 07′ 0.8	Jefferson	0	12	10	8	8

Speed by Link (knots)

Slow

Very Slow

Fast Medium

Fast

Total Distance 38.6 nm

Puget Sound Emissions Inventory OGV-Routing: SEA to BREMERTON Lat/Long in WGS84 Datum

Speed by Link (knots)

Slow

Bulkers

Very Slow

Fast Medium

Fast

DDAET												C 1 - 1	Reefer	Tankers	
DRAFT Route	Arr/Den	Mode	NDF	Link ID	Start W/D	αW/DI	Fnd W/P	Waypoint	Diet	County	Cruise	Containe: Auto	Fishing	Log Fishing	Fishing
Sea_Tacoma	Arrival	Т	N	Liik 1D				48° 28′ 38			0	SS	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L1 L2	PS_A_2		PS_A_3	48° 13′ 22		Calallam	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	X	N	L3	PS_A_3	48° 13′		48° 13′ 20		Calallam	0	20	SS	SS	SS
Sea_Tacoma	Arrival	X	N	L3 L4	PS_A_4		PS_A_5	48° 09′ 20		Calallam	0	16	15	12	SS
Sea_Tacoma	Arrival	X	N	L4 L5	PS_A_5	48° 09′				Calallam	0	8	8	8	8
Sea_Tacoma	Arrival	T	N	L5 L6	PS A 6	48° 09′		48° 11′ 50		Calallam	0	18	6 16	12	SS
Sea_Tacoma	Arrival	T	N	Lo L7	PS_A_7		PS_A_8	48° 11′ 1′.		Calallam	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L8	PS A 8		PS_A_9	48° 10′ 5″		Jefferson	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	T	N	Lo L9	PS_A_9			48° 06′ 3!			0	SS	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L10				48° 01′ 08		Jefferson Jefferson	0	SS	SS	SS	SS
-	Arrival	T	N	L10 L11						Island	0	SS SS	SS SS	SS SS	SS SS
Sea_Tacoma								47° 57′ 4′.					SS		
Sea_Tacoma	Arrival	T T	N	L12				47° 56′ 38		Island	0	SS SS	SS SS	SS	SS
Sea_Tacoma	Arrival		N	L13				47° 55′ 1′.		Kitsap	0			SS	SS
Sea_Tacoma	Arrival	T	N	L14				47° 45′ 5 ²		Kitsap	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L15				47° 39′ 42		Kitsap	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L16				47° 34′ 32		Kitsap	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L17a	PS_A_17			47° 33′ 58		Kitsap	0	SS	SS	SS	SS
PS_Bremerton															SS
PS_Bremerton															SS
PS_Bremerton															8
PS_Bremerton															8
PS_Bremerton															8
PS_Bremerton															9
PS_Bremerton															9
PS_Bremerton	Arrival	Μ	Y	L8	BR_A_8	47° 33′		47° 33′ 2′.	0.4	Kitsap	0	10	10	9	9

Total Distance 144.4 nm

Note: SS - Service Speed

Puget Sound Emissions Inventory OGV-Routing: BREMERTON to SEA

Lat/Long in WGS84 Datum

DRAFT											Containe	Reefer	Tankers Log	
Route	Arr/Dep	Mod	de NPE	Link ID	Start WP	Starting WP Lat/Lon	End WP	Ending Waypoint Lat/Lon	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
Bremerton_PS			Y	L1	BR_B_1	47° 33′ 21′′ N 122° 38′ 32′′ W	BR_D_1	47° 33′ 09′′ N 122° 38′ 06′′ W	0.4 Kitsap	0	10	10	9	9
Bremerton_PS														9
Bremerton_PS														9
Bremerton_PS														8
Bremerton_PS														8
Bremerton_PS														8
Bremerton_PS														SS
Bremerton_PS														SS
Bremerton_PS							PS_A_17	47° 34′ 32′′ N 122° 27′ 32′′ W	2.1 Kitsap					SS
PSCross_Brem	Departure	Т	N	L10a	PS_A_17	47° 34′ 32′′ N 122° 27′ 32′′ W	PS_D_8	47° 35′ 55′′ N 122° 26′ 45′′ W	1.5 Kitsap	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L8	PS_D_8	47° 35′ 55′′ N 122° 26′ 45′′ W	PS_D_9	47° 37′ 02′′ N 122° 26′ 56′′ W	1.1 Kitsap	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L9	PS_D_9	47° 37′ 02′′ N 122° 26′ 56′′ W	PS_D_10	47° 39′ 42′′ N 122° 27′ 25′′ W	2.7 King	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L10	PS_D_10	47° 39′ 42′′ N 122° 27′ 25′′ W	PS_D_11	47° 41′ 54′′ N 122° 26′ 47′′ W	2.3 King	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L11	PS_D_11	47° 41′ 54′′ N 122° 26′ 47′′ W	PS_D_12	47° 45′ 52′′ N 122° 25′ 49′′ W	4.0 Kitsap	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L12	PS_D_12	47° 45′ 52′′ N 122° 25′ 49′′ W	PS_D_13	47° 46′ 40′′ N 122° 26′ 04′′ W	0.8 King	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L13	PS_D_13	47° 46′ 40′′ N 122° 26′ 04′′ W	PS_D_14	47° 48′ 06′′ N 122° 26′ 29′′ W	1.5 Snohomish	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L14	PS_D_14	47° 48′ 06′′ N 122° 26′ 29′′ W	PS_D_15	47° 52′ 36′′ N 122° 28′ 08′′ W	4.6 Kitsap	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L15	PS_D_15	47° 52′ 36′′ N 122° 28′ 08′′ W	PS_D_16	47° 55′ 34′′ N 122° 29′ 11′′ W	3.1 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L16	PS_D_16	47° 55′ 34′′ N 122° 29′ 11′′ W	PS_D_17	47° 57′ 01′′ N 122° 32′ 03′′ W	2.4 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L17	PS_D_17	47° 57′ 01′′ N 122° 32′ 03′′ W	PS_D_18	47° 58′ 07′′ N 122° 34′ 19′′ W	1.9 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L18	PS_D_18	47° 58′ 07′′ N 122° 34′ 19′′ W	PS_D_19	48° 02′ 01′′ N 122° 37′ 40′′ W	4.5 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L19	PS_D_19	48° 02′ 01′′ N 122° 37′ 40′′ W	PS_D_20	48° 04′ 48′′ N 122° 38′ 31′′ W	2.8 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L20	PS_D_20	48° 04′ 48′′ N 122° 38′ 31′′ W	PS_D_21	48° 06′ 58′′ N 122° 39′ 13′′ W	2.2 Jefferson	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L21	PS_D_21	48° 06′ 58′′ N 122° 39′ 13′′ W	PS_D_22	48° 07′ 51′′ N 122° 40′ 43′′ W	1.3 Jefferson	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L22	PS_D_22	48° 07′ 51′′ N 122° 40′ 43′′ W	PS_D_23	48° 11′ 20′′ N 122° 46′ 47′′ W	5.3 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L23	PS_D_23	48° 11′ 20′′ N 122° 46′ 47′′ W	PS_D_24	48° 11′ 44′′ N 122° 48′ 45′′ W	1.4 Island	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L24	PS_D_24	48° 11′ 44′′ N 122° 48′ 45′′ W	PS_D_25	48° 11′ 57′′ N 122° 52′ 19′′ W	2.4 Jefferson	0	SS	SS	SS	SS
Tacoma_Sea	Departure	T	N	L25	PS_D_25	48° 11′ 57′′ N 122° 52′ 19′′ W	PS_D_26	48° 12′ 45′′ N 123° 06′ 35′′ W	9.5 Calallam	0	SS	SS	SS	SS
Tacoma_Sea	Departure	X	N	L26	PS_D_26	48° 12′ 45′′ N 123° 06′ 35′′ W	PS_D_27	48° 10′ 33′′ N 123° 23′ 03′′ W	11.2 Calallam	0	17	16	12	SS
Tacoma_Sea	Departure	X	N	L27	PS_D_27	48° 10′ 33′′ N 123° 23′ 03′′ W	PS_D_28	48° 11′ 21′′ N 123° 23′ 02′′ W	0.8 Calallam	0	8	8	8	8
Tacoma_Sea	Departure	X	N	L28	PS_D_28	48° 11′ 21′′ N 123° 23′ 02′′ W	PS_D_29	48° 14′ 13′′ N 123° 28′ 57′′ W	4.9 Calallam	0	15	14	12	SS
Tacoma_Sea	Departure	X	N	L29	PS_D_29	48° 14′ 13′′ N 123° 28′ 57′′ W	PS_D_30	48° 15′ 21′′ N 123° 33′ 17′′ W	3.1 Calallam	0	19	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L30	PS_D_30	48° 15′ 21′′ N 123° 33′ 17′′ W	PS_D_31	48° 17′ 36′′ N 123° 56′ 06′′ W	15.4 Calallam	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L31	PS_D_31	48° 17′ 36′′ N 123° 56′ 06′′ W	PS_D_32	48° 30′ 38′′ N 124° 43′ 36′′ W	34.1 Calallam	0	SS	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L32	PS_D_32	48° 30′ 38′′ N 124° 43′ 36′′ W	PS_D_33	48° 30′ 43′′ N 125° 00′ 00′′ W	10.9 Calallam	0	SS	SS	SS	SS

Total Distance 145.0 nm Note: SS - Service Speed

Speed by Link (knots)

Slow

Bulkers

Very Slow

Fast Medium

Puget Sound Emissions Inventory OGV-Routing: BREMERTON to SEATTLE

Puget Sound Em	issions Ir	nvent	tory								Spe	ed by Link	(knots)	
OGV-Routing: BRE	MERTON to	o SEA	TTLE	;						Fast	Fast	Medium	Slow	Very Slow
Lat/Long in WGS84 D	atum												Bulkers	
												Reefer	Tankers	
DRAFT											Containe	ı RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	Starting WP Lat/Lon	End WP	Ending Waypoint Lat/Lon	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
Bremerton_PS														9
Bremerton_PS														9
Bremerton_PS														9
Bremerton_PS														8
Bremerton_PS														8
Bremerton_PS														8
Bremerton_PS														SS
Bremerton_PS														SS
Bremerton_PS							PS_A_17	47° 34′ 32′′ N 122° 27′ 32′′ W	2.1 Kitsap					SS
PSCross_Brem	Departure	Т	N	L10a	PS_A_17	47° 34′ 32′′ N 122° 27′ 32′′ W	PS_X_8	47° 34′ 55′′ N 122° 26′ 58′′ W	0.5 Kitsap	0	SS	SS	SS	SS
BremCross_ElliottBay	Arrival	X	Y	L8a	PS_X_8	47° 34′ 55′′ N 122° 26′ 58′′ W	EB_A_S1	47° 36′ 28′′ N 122° 25′ 05′′ W	2.0 Kitsap	0	17	SS	SS	SS
Tacoma_ElliottBay	Arrival	X	Y	L1	EB_A_S1	47° 36′ 28′′ N 122° 25′ 05′′ W	EB_A_4	47° 36′ 52′′ N 122° 23′ 21′′ W	1.3 King	0	15	13	10	10

Total Distance 13.2 nm

Note: SS - Service Speed

Puget Sound Emissions Inventory OGV-Routing: SEA to MANCHESTER

Lat/Long in WGS8	4 Datum												Reefer	Bulkers Tankers	
DRAFT												Container	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	WP I	End WP	aypoin [Dist.	County	Cruise	Auto	Fishing	Fishing	Fishing
Sea_Tacoma	Arrival	Т	N	L1	PS_A_1	48° 2	PS_A_2	48° 28	10.7	Calallam	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L2	PS_A_2	48° 2	PS_A_3	48° 13	35.9	Calallam	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L3	PS_A_3	48° 1	PS_A_4	48° 13	15.4	Calallam	0	0	SS	SS	SS
Sea_Tacoma	Arrival	X	N	L4	PS_A_4	48° 1	PS_A_5	48° 09	6.9	Calallam	0	0	15	12	SS
Sea_Tacoma	Arrival	X	N	L5	PS_A_5	48° 0	PS_A_6	48° 09	0.6	Calallam	0	0	8	8	8
Sea_Tacoma	Arrival	X	N	L6	PS_A_6	48° 0	PS_A_7	48° 11	11.4	Calallam	0	0	16	12	SS
Sea_Tacoma	Arrival	Τ	N	L7	PS_A_7	48° 1	PS_A_8	48° 11	9.5	Calallam	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L8	PS_A_8	48° 1	PS_A_9	48° 10	2.9	Jefferson	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L9	PS_A_9	48° 1	PS_A_10	48° 06	6.8	Jefferson	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L10	PS_A_10	48° 0	PS_A_11	48° 01	5.6	Jefferson	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L11	PS_A_11	48° 0	PS_A_12	47° 57	4.0	Island	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L12	PS_A_12	47° 5	PS_A_13	47° 56	1.8	Island	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L13	PS_A_13	47° 5	PS_A_14	47° 55	2.3	Kitsap	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L14	PS_A_14	47° 5	PS_A_15	47° 45	9.7	Kitsap	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L15	PS_A_15	47° 4	PS_A_16	47° 39	6.3	Kitsap	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L16	PS_A_16	47° 3	PS_A_17	47° 34	5.2	Kitsap	0	0	SS	SS	SS
Sea_Tacoma	Arrival	X	Y	L17a	PS_A_17	47° 3	BR_A_1	47° 33	2.1	Kitsap	0	0	16	10	SS
PS_Bremerton	Arrival	X	Y	L1a	BR_A_1	47° 3	MU_A_1	47° 33	1.0	Kitsap	0	0	12	9	8
Brem_Manchester	Arrival	X	Y	L2a	MU_A_1	47° 3	MU_B_1	47° 33	0.2	Kitsap	0	0	11	8	8

Total Distance 138.3 nm Note: SS - Service Speed

Speed by Link (knots)

Slow

Very Slow

Medium

Fast

Puget Sound Emissions Inventory OGV-Routing: MANCHESTER to SEA

Tacoma_Sea

Tacoma_Sea

Departure

Departure

Τ

N

N

L31

L32

00, 110001115, 1			, , , , ,						-	1 000	2 400 4	1120010111	010 11	1 019 010 11
Lat/Long in WGS	84 Datum											Reefer	Bulkers Tankers	
DRAFT												•	Log	
Route									Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
Manchester_Brem	1		Y	L1			4 MU_D_2		0.2 Kitsap	0	0	11	8	8
Manchester_Brem	Departure		Y	L2a			3 BR_D_7		1.0 Kitsap	0	0	12	9	8
Bremerton_PS							0 BR_D_8							8
Bremerton_PS	Departure		Y	L9a	BR_D_8		5 PS_A_17		2.1 Kitsap	0	0	15	SS	SS
PSCross_Brem	Departure		Y	L10a			3 PS_D_8		1.5 Kitsap	0	0	17	SS	SS
Tacoma_Sea	Departure	Т	N	L8			5 PS_D_9		1.1 Kitsap	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L9			0 PS_D_10		2.7 King	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L10			4 PS_D_11		2.3 King	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L11	PS_D_11	47° 41′	5 PS_D_12	47°	4.0 Kitsap	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L12	PS_D_12	47° 45′	5 PS_D_13	47°	0.8 King	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L13	PS_D_13	47° 46′	4 PS_D_14	47°	1.5 Snohomish	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L14	PS_D_14	47° 48′	0 PS_D_15	47°	4.6 Kitsap	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L15	PS_D_15	47° 52′	3 PS_D_16	47°	3.1 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L16	PS_D_16	47° 55′	3 PS_D_17	47°	2.4 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L17	PS_D_17	47° 57′	0 PS_D_18	47°	1.9 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L18	PS_D_18	47° 58′	0 PS_D_19	48°	4.5 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L19	PS_D_19	48° 02′	0 PS_D_20	48°	2.8 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L20	PS_D_20	48° 04′	4 PS_D_21	48°	2.2 Jefferson	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L21	PS_D_21	48° 06′	5 PS_D_22	48°	1.3 Jefferson	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L22	PS_D_22	48° 07′	5 PS_D_23	48°	5.3 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L23	PS_D_23	48° 11′	2 PS_D_24	48°	1.4 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L24	PS_D_24	48° 11′	4 PS_D_25	48°	2.4 Jefferson	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L25	PS_D_25	48° 11′	5 PS_D_26	48°	9.5 Calallam	0	0	SS	SS	SS
Tacoma_Sea	Departure	X	N	L26	PS_D_26	48° 12′	4 PS_D_27	48°	11.2 Calallam	0	0	16	12	SS
Tacoma_Sea	Departure	X	N	L27	PS_D_27	48° 10′	3PS_D_28	48°	0.8 Calallam	0	0	8	8	8
Tacoma_Sea	Departure	X	N	L28	PS_D_28	48° 11′	2 PS_D_29	48°	4.9 Calallam	0	0	14	12	SS
Tacoma_Sea	Departure	Т	N	L29	PS_D_29	48° 14′	1PS_D_30	48°	3.1 Calallam	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L30	PS_D_30	48° 15′	2 PS_D_31	48°	15.4 Calallam	0	0	SS	SS	SS

PS_D_31 48° 17′ 3 PS_D_32 48° 34.1 Calallam

PS_D_32 48° 30′ 3PS_D_33 48° 10.9 Calallam

Total Distance 139 nm Note: SS - Service Speed

0

0

SS

SS

SS

SS

SS

SS

Speed by Link (knots)

Medium Slow

Very Slow

Fast

Puget Sound Emissions Inventory OGV-Routing: MANCHESTER to CHERRY POINT/FERNDALE

Lat/Long in WGS8		LIC	CILLI	XIXI I OI	IVI/ILIKI	DALL					1 ast	1 451	Miculain	Bulkers	very slow
Lat/ Long III w G30	7 Datum												Reefer	Tankers	
DRAFT												Container		Log	
Route	Arr/Den	Mode	NPF	Link ID	Start WP	Starting	wP Lat/Lon	End WP	Ending Waypoint Lat/Lon	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
Manchester_Brem			Y	Liik 1D			,		47° 33′ 39′′ N 122° 31′ 51′′ W	0.2 Kitsap	0	0	11	8	8 8
Manchester_Brem	1		Y	L2a			N 122° 31′ 51′′ W			1.0 Kitsap	0	0	12	9	8
Bremerton_PS	Departure		V	L8			N 122° 31′ 31′ W			0.6 Kitsap	0	0	13	9	8
Bremerton_PS									47° 34′ 32′′ N 122° 27′ 32′′ W	2.1 Kitsap					SS
PSCross_Brem	Departure		Y	L10a			N 122° 27′ 32′′ W		47° 35′ 55′′ N 122° 26′ 45′′ W	1.5 Kitsap	0	0	17	SS	SS
Tacoma_Sea	Departure		N	L8			N 122° 26′ 45′′ W		47° 37′ 02′′ N 122° 26′ 56′′ W	1.1 Kitsap	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L9			N 122° 26′ 56′′ W		47° 39′ 42′′ N 122° 27′ 25′′ W	2.7 King	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L10			N 122° 27′ 25′′ W		47° 41′ 54′′ N 122° 26′ 47′′ W	2.3 King	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L11					47° 45′ 52′′ N 122° 25′ 49′′ W	4.0 Kitsap	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L12					47° 46′ 40′′ N 122° 26′ 04′′ W	0.8 King	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L13					47° 48′ 06′′ N 122° 26′ 29′′ W	1.5 Snohomish	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L14					47° 52′ 36′′ N 122° 28′ 08′′ W	4.6 Kitsap	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L15					47° 55′ 34′′ N 122° 29′ 11′′ W	3.1 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L16					47° 57′ 01′′ N 122° 32′ 03′′ W	2.4 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L17					47° 58′ 07′′ N 122° 34′ 19′′ W	1.9 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L18					48° 02′ 01′′ N 122° 37′ 40′′ W	4.5 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L19	PS_D_19	48° 02′ 01′′	N 122° 37′ 40′′ W	PS_D_20	48° 04′ 48′′ N 122° 38′ 31′′ W	2.8 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L20	PS_D_20	48° 04′ 48′′	N 122° 38′ 31′′ W	PS_D_21	48° 06′ 58′′ N 122° 39′ 13′′ W	2.2 Jefferson	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L21	PS_D_21	48° 06′ 58′′	N 122° 39′ 13′′ W	PS_D_22	48° 07′ 51′′ N 122° 40′ 43′′ W	1.3 Jefferson	0	0	SS	SS	SS
Tacoma_Sea	Departure	T	N	L22	PS_D_22	48° 07′ 51′′	N 122° 40′ 43′′ W	PS_D_23	48° 11′ 20′′ N 122° 46′ 47′′ W	5.3 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	T	N	L23	PS_D_23	48° 11′ 20′′	N 122° 46′ 47′′ W	PS_D_24	48° 11′ 44′′ N 122° 48′ 45′′ W	1.4 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	T	N	L24a	PS_D_24	48° 11′ 44′′	N 122° 48′ 45′′ W	AA_A_1	48° 13′ 14′′ N 122° 48′ 23′′ W	2.2 Island	0	0	SS	SS	SS
Admr_Anacortes	Arrival	X	N	L1	AA_A_1	48° 13′ 14′′	N 122° 48′ 23′′ W	AA_A_2	48° 24′ 06′′ N 122° 43′ 42′′ W	11.3 Island	0	0	18	SS	SS
Admr_Anacortes	Arrival	X	N	L2	AA_A_2	48° 24′ 06′′	N 122° 43′ 42′′ W	AA_A_3	48° 24′ 50′′ N 122° 43′ 44′′ W	0.7 Island	0	0	16	12	SS
Admr_Anacortes	Arrival	X	N	L3a	AA_A_3	48° 24′ 50′′	N 122° 43′ 44′′ W	RS_A_6	48° 28′ 00′′ N 122° 43′ 53′′ W	3.2 Skagit	0	0	15	11	SS
PA_CherryPT	Arrival	Т	N	L6	RS_A_6	48° 28′ 00′′	N 122° 43′ 53′′ W	RS_A_7	48° 30′ 01′′ N 122° 44′ 12′′ W	2.0 Skagit	0	0	15	12	SS
PA_CherryPT	Arrival	T	N	L7	RS_A_7	48° 30′ 01′′	N 122° 44′ 12′′ W	RS_A_8	48° 31′ 00′′ N 122° 44′ 21′′ W	1.0 San Juan	0	0	15	11	SS
PA_CherryPT	Arrival	Τ	N	L8	RS_A_8	48° 31′ 00′′	N 122° 44′ 21′′ W	RS_A_9	48° 36′ 04′′ N 122° 45′ 07′′ W	5.1 Skagit	0	0	15	11	SS
PA_CherryPT	Arrival	Τ	N	L9	RS_A_9	48° 36′ 04′′	N 122° 45′ 07′′ W	RS_A_10	48° 37′ 59′′ N 122° 43′ 52′′ W	2.1 Skagit	0	0	15	11	SS
PA_CherryPT	Arrival	T	N	L10	RS_A_10	48° 37′ 59′′	N 122° 43′ 52′′ W	RS_A_11	48° 40′ 15′′ N 122° 42′ 24′′ W	2.5 San Juan	0	0	15	11	SS
PA_CherryPT	Arrival	Τ	N	L11	RS_A_11	48° 40′ 15′′	N 122° 42′ 24′′ W	RS_A_12	48° 40′ 35′′ N 122° 42′ 10′′ W	0.4 Whatcom	0	0	15	11	SS
PA_CherryPT	Arrival	T	N	L12	RS_A_12	48° 40′ 35′′	N 122° 42′ 10′′ W	RS_A_13	48° 45′ 17′′ N 122° 45′ 50′′ W	5.3 Whatcom	0	0	15	11	SS

Total Distance 82.9 nm Note: SS - Service Speed

Speed by Link (knots)

Very Slow

Fast Medium Slow

OGV-Routing: CHERRY POINT/FERNDALE to MANCHESTER

Lat/Long in WGS8		,			y 14211 (O11						1 401	Reefer	Bulkers Tankers	very blow
DRAFT											Container	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link II	Start WP	Starting WP Lat/Lon	End WP	Ending Waypoint Lat/Lon	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
CherryPT_PA	Departure	Т	N	L1	RS_D_2	48° 45′ 16′′ N 122° 47′ 14′′ W	RS_D_3	48° 40′ 34′′ N 122° 43′ 28′′ W	5.3 San Juan	0	0	15	11	SS
CherryPT_PA	Departure	T	N	L2	RS_D_3	48° 40′ 34′′ N 122° 43′ 28′′ W	RS_D_4	48° 38′ 22′′ N 122° 43′ 58′′ W	2.2 San Juan	0	0	15	11	SS
CherryPT_PA	Departure	T	N	L3	RS_D_4	48° 38′ 22′′ N 122° 43′ 58′′ W	RS_D_5	48° 37′ 43′′ N 122° 44′ 25′′ W	0.7 Skagit	0	0	15	11	SS
CherryPT_PA	Departure	T	N	L4	RS_D_5	48° 37′ 43′′ N 122° 44′ 25′′ W	RS_D_6	48° 36′ 06′′ N 122° 45′ 32′′ W	1.8 Skagit	0	0	15	11	SS
CherryPT_PA	Departure	T	N	L5	RS_D_6	48° 36′ 06′′ N 122° 45′ 32′′ W	RS_D_7	48° 33′ 58′′ N 122° 45′ 14′′ W	2.2 Skagit	0	0	15	11	SS
CherryPT_PA	Departure	T	N	L6	RS_D_7	48° 33′ 58′′ N 122° 45′ 14′′ W	RS_D_8	48° 32′ 48′′ N 122° 45′ 04′′ W	1.2 San Juan	0	0	15	11	SS
CherryPT_PA	Departure	T	N	L7	RS_D_8	48° 32′ 48′′ N 122° 45′ 04′′ W	RS_D_9	48° 31′ 41′′ N 122° 44′ 54′′ W	1.1 Skagit	0	0	15	11	SS
CherryPT_PA	Departure	T	N	L8	RS_D_9	48° 31′ 41′′ N 122° 44′ 54′′ W	RS_D_10	48° 29′ 33′′ N 122° 44′ 36′′ W	2.1 San Juan	0	0	15	11	SS
CherryPT_PA	Departure	T	N	L9	RS_D_10	48° 29′ 33′′ N 122° 44′ 36′′ W	RS_D_11	48° 28′ 53′′ N 122° 44′ 31′′ W	0.7 Skagit	0	0	16	12	SS
CherryPT_PA	Departure	T	N	L10a	RS_D_14	48° 28′ 53′′ N 122° 44′ 31′′ W	AA_D_1	48° 26′ 04′′ N 122° 44′ 43′′ W	2.8 Skagit	0	0	15	11	SS
Anacortes_Admr	Departure	T	N	L1	AA_D_1	48° 26′ 04′′ N 122° 44′ 43′′ W	AA_D_2	48° 24′ 08′′ N 122° 44′ 50′′ W	1.9 San Juan	0	0	15	11	SS
Anacortes_Admr	Departure	X	N	L2	AA_D_2	48° 24′ 08′′ N 122° 44′ 50′′ W	AA_D_3	48° 22′ 25′′ N 122° 45′ 34′′ W	1.8 San Juan	0	0	16	12	SS
Anacortes_Admr	Departure	X	N	L3	AA_D_3	48° 22′ 25′′ N 122° 45′ 34′′ W	AA_D_4	48° 13′ 29′′ N 122° 49′ 22′′ W	9.3 Island	0	0	17	13	SS
Anacortes_Admr	Departure	T	N	L4	AA_D_4	48° 13′ 29′′ N 122° 49′ 22′′ W		48° 11′ 32′′ N 122° 48′ 21′′ W	2.1 Island	0	0	SS	SS	SS
Anacortes_Admr	Departure	T	N	L5a	AA_D_5	48° 11′ 32′′ N 122° 48′ 21′′ W	PS_A_9	48° 10′ 57′′ N 122° 48′ 01′′ W	0.6 Jefferson	0	0	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L9	PS_A_9	48° 10′ 57′′ N 122° 48′ 01′′ W	PS_A_10	48° 06′ 35′′ N 122° 40′ 10′′ W	6.8 Jefferson	0	0	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L10	PS_A_10	48° 06′ 35′′ N 122° 40′ 10′′ W	PS_A_11	48° 01′ 08′′ N 122° 38′ 08′′ W	5.6 Jefferson	0	0	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L11	PS_A_11	48° 01′ 08′′ N 122° 38′ 08′′ W	PS_A_12	47° 57′ 41′′ N 122° 35′ 10′′ W	4.0 Island	0	0	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L12	PS_A_12	47° 57′ 41′′ N 122° 35′ 10′′ W	PS_A_13	47° 56′ 38′′ N 122° 32′ 57′′ W	1.8 Island	0	0	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L13	PS_A_13	47° 56′ 38′′ N 122° 32′ 57′′ W	PS_A_14	47° 55′ 17′′ N 122° 30′ 06′′ W	2.3 Kitsap	0	0	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L14	PS_A_14	47° 55′ 17′′ N 122° 30′ 06′′ W	PS_A_15	47° 45′ 54′′ N 122° 26′ 45′′ W	9.7 Kitsap	0	0	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L15	PS_A_15	47° 45′ 54′′ N 122° 26′ 45′′ W	PS_A_16	47° 39′ 42′′ N 122° 28′ 24′′ W	6.3 Kitsap	0	0	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L16	PS_A_16	47° 39′ 42′′ N 122° 28′ 24′′ W	PS_A_17	47° 34′ 32′′ N 122° 27′ 32′′ W	5.2 Kitsap	0	0	SS	SS	SS
Sea_Tacoma	Arrival	X	Y	L17a	PS_A_17	47° 34′ 32′′ N 122° 27′ 32′′ W	BR_A_1	47° 33′ 58′′ N 122° 30′ 31′′ W	2.1 Kitsap	0	0	16	10	SS
PS_Bremerton	Arrival	Х	Y	L1a	BR_A_1	47° 33′ 58′′ N 122° 30′ 31′′ W	MU_A_1	47° 33′ 39′′ N 122° 31′ 51′′ W	1.0 Kitsap	0	0	12	9	8
Brem_Manchester	Arrival	X	Y	L2a	MU_A_1	47° 33′ 39′′ N 122° 31′ 51′′ W	MU_B_1	47° 33′ 42′′ N 122° 32′ 10′′ W	0.2 Kitsap	0	0	11	8	8

Note: SS - Service Speed Total Distance 80.8 nm

Speed by Link (knots)

Fast

Fast Medium Slow Very Slow

Puget Sound Emissions Inventory Speed by Link (knots) **OGV-Routing: MANCHESTER to SEATTLE** Fast **Fast** Medium Slow Very Slow Lat/Long in WGS84 Datum **Bulkers** Reefer **Tankers** DRAFT Container RO/RO Log Route Arr/Dep Mode NPE Link ID Start WP 1g WP La End WP 7aypoint Dist. County Cruise Auto Fishing Fishing Fishing Manchester_Brem Departure Μ Y L1 MU_D_1 47° 33′ 4MU_D_2 47° 33′ 0.2 Kitsap 0 0 11 8 8 Χ MU_D_2 47° 33′ 3 BR_D_7 47° 34′ Departure 1.0 Kitsap 0 0 9 Manchester Brem Y L2a 12 8 BR D 8 47° 33′ PS A 17 47° 34′ Bremerton_PS PSCross_Brem Departure Τ Ν PS A 17 47° 34′; PS X 8 47° 34′ 0.5 Kitsap 0 0 17 SS SS L10a Y BremCross_ElliottBa Arrival PS_X_8 47° 34′ EB_A_S1 47° 36′ 2.0 Kitsap 0 X L8a 0 17 SS SS Tacoma_ElliottBay Y EB_A_S1 47° 36′ 2 EB_A_4 47° 36′ 0 0 13 Arrival 1.3 King 10 10 L1

Total Distance

7.6 nm

Note: SS - Service Speed

Puget Sound Emissions Inventory Speed by Link (knots) **OGV-Routing: SEATTLE to MANCHESTER** Medium Slow **Fast Fast** Very Slow Lat/Long in WGS84 Datum Bulkers Reefer **Tankers** DRAFT Container RO/RO Log Arr/Dep Mode NPE Link ID Start WP WP | End WP sypoi Dist. County Fishing Fishing **Fishing** Route Cruise Auto ElliotBay_Manchester Departure Y EB_D_1 47° (EB_D_B1 47° 1.7 King Μ L1 0 0 8 6 Y Μ L2 EB_D_B1 47° (EB_D_B2 47° ElliotBay_Manchester Departure 1.5 King 0 0 8 8 8 ElliotBay_Manchester Departure EB_D_B2 47° (PS_A_17 47° 9 9 9 Μ Y L3a 0.7 Kitsap 0 0 Sea_Tacoma Arrival Τ N PS_A_17 47°; BR_A_1 47° 2.1 Kitsap 0 16 10 SS L17a 0 MU_A_1 47° Brem_Manchester Χ MU_A_1 47° (MU_B_1 47° 11 Arrival Y L2a 0.2 Kitsap 0 0 8 8

Note: SS - Service Speed

OGV-Routing: SEAT	ITLE to B	LAKE 1	ISLAN	D (ANC	HORAGE)		Fast	Fast	Medium	Slow	Very Slow
Lat/Long in WGS84 D	atum									Bulkers	
									Reefer	Tankers	
DRAFT								Container	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP g WP L End WP aypoin Dis	t. County	Cruise	Auto	Fishing	Fishing	Fishing
ElliotBay_Manchester	Departure	M	Y	L1	EB_D_1 47° 36 EB_D_B1 47° 36 1	.7 King	0	0	8	6	7
ElliotBay_Manchester	Departure	M	Y	L2	EB_D_B1 47° 36 EB_D_B2 47° 35 1	.5 King	0	0	8	8	8
ElliotBay_Manchester	Departure	M	Y	L3a	EB_D_B2 47° 35 PS_A_17 47° 34 0	.7 Kitsap	0	0	9	9	9
Sea_Tacoma	Arrival	Т	N	L17a	PS_A_17 47° 34 BR_A_1 47° 31 2	.1 Kitsap	0	0	9	8	SS
PS_BlakeIsland	Arrival	Μ	Y	L1a	BR_A_1 47° 33 BI_AN_1 47° 33 0	.7 Kitsap	0	0	4	4	4

Total Distance 6.6 nm Note: SS - Service Speed

Speed by Link (knots)

Puget Sound Emissions Inventory OGV-Routing: MANCHESTER to PORT TOWNSEND/INDIAN ISLAND

Lat/Long in WGS84 Datum

Spe	ed by Link	(knots)
Fast	Medium	Slow

Fast

Very Slow

Bulkers

DRAFT											Container	Reefer RO/RO	Tankers Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	ng WP I	Lat End WP	ng Waypoint La I	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
Manchester_Brem	Departure		Y	L1		_		47° 33′ 39′′ N	0.2 Kitsap	0	0	11	8	8
Manchester_Brem	Departure	X	Y	L2a	MU_D_2	47° 33′	39 BR_D_7	47° 34′ 04′′ N	1.0 Kitsap	0	0	12	9	8
Bremerton_PS	Departure	X	Y	L8	BR_D_7	47° 34′	04 BR_D_8	47° 33′ 58′′ N	0.6 Kitsap	0	0	13	9	8
Bremerton_PS							58 PS_A_17	47° 34′ 32′′ N						SS
PSCross_Brem	Departure	X	Y	L10a	PS_A_17	47° 34′	32 PS_D_8	47° 35′ 55′′ N	1.5 Kitsap	0	0	17	SS	SS
Tacoma_Sea	Departure	Т	N	L8	PS_D_8	47° 35′	55 PS_D_9	47° 37′ 02′′ N	1.1 Kitsap	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L9	PS_D_9	47° 37′	02 PS_D_10	47° 39′ 42′′ N	2.7 King	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L10	PS_D_10	47° 39′	42 PS_D_11	47° 41′ 54′′ N	2.3 King	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L11	PS_D_11	47° 41′	54 PS_D_12	47° 45′ 52′′ N	4.0 Kitsap	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L12	PS_D_12	47° 45′	52 PS_D_13	47° 46′ 40′′ N	0.8 King	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L13	PS_D_13	47° 46′	40 PS_D_14	47° 48′ 06′′ N	1.5 Snohomish	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L14	PS_D_14	47° 48′	06 PS_D_15	47° 52′ 36′′ N	4.6 Kitsap	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L15	PS_D_15	47° 52′	36 PS_D_16	47° 55′ 34′′ N	3.1 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L16	PS_D_16	47° 55′	34 PS_D_17	47° 57′ 01′′ N	2.4 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L17	PS_D_17	47° 57′	01 PS_D_18	47° 58′ 07′′ N	1.9 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L18	PS_D_18	47° 58′	07 PS_D_19	48° 02′ 01′′ N	4.5 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L19	PS_D_19	48° 02′	01 PS_D_20	48° 04′ 48′′ N	2.8 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L20	PS_D_20	48° 04′	48 PS_D_21	48° 06′ 58′′ N	2.2 Jefferson	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L21	PS_D_21	48° 06′	58 PS_D_22	48° 07′ 51′′ N	1.3 Jefferson	0	0	18	SS	SS
Tacoma_Sea	Departure	X	Y	L22a	PS_D_22	48° 07′	51 PI_A_1	48° 08′ 08′′ N	0.6 Island	0	0	17	10	SS
Bremerton_PTII	Arrival	X	Y	L1	PI_A_1	48° 08′	08 PI_A_2	48° 08′ 03′′ N	0.4 Island	0	0	16	10	SS
Bremerton_PTII	Arrival	X	Y	L2	PI_A_2	48° 08′	03 PI_A_3	48° 07′ 48′′ N	1.3 Jefferson	0	0	12	8	8
Bremerton_PTII	Arrival	M	Y	L3	PI_A_3	48° 07′	48 PI_A_4	48° 07′ 00′′ N	0.8 Jefferson	0	0	10	8	8

Total Distance 43.7 nm

OGV-Routing: MANCHESTER to MARCH POINT

Lat/Long in WGS	S84 Datum							·				Bulkers	
											Reefer	Tankers	
DRAFT										Container	RO/RO	Log	
Route						g WP L End WP			Cruise	Auto	Fishing	Fishing	Fishing
Manchester_Brem	•		Y			47° 33 MU_D_2		*	0	0	11	8	8
Manchester_Bren			Y			47° 33 BR_D_7		1.0 Kitsap	0	0	12	9	8
Bremerton_PS						47° 34 BR_D_8							8
Bremerton_PS	Departure		Y	L9a		47° 33 PS_A_17		2.1 Kitsap	0	0	15	SS	SS
PSCross_Brem	Departure		Y	L10a		47° 34 PS_D_8		1.5 Kitsap	0	0	17	SS	SS
Tacoma_Sea	Departure	Т	N	L8		47° 35 PS_D_9		1.1 Kitsap	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L9		47° 37 PS_D_10		2.7 King	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L10		47° 39 PS_D_11		2.3 King	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L11	PS_D_11	47° 41 PS_D_12	47° 45′ 52	4.0 Kitsap	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L12	PS_D_12	47° 45 PS_D_13	47° 46′ 40	0.8 King	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L13	PS_D_13	47° 46 PS_D_14	47° 48′ 0€	1.5 Snohomish	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L14	PS_D_14	47° 48 PS_D_15	47° 52′ 3€	4.6 Kitsap	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L15	PS_D_15	47° 52 PS_D_16	47° 55′ 34	3.1 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L16	PS_D_16	47° 55 PS_D_17	47° 57′ 01	2.4 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L17	PS_D_17	47° 57 PS_D_18	47° 58′ 07	1.9 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L18	PS_D_18	47° 58 PS_D_19	48° 02′ 01	4.5 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L19	PS_D_19	48° 02 PS_D_20	48° 04′ 48	2.8 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L20	PS_D_20	48° 04 PS_D_21	48° 06′ 58	2.2 Jefferson	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L21	PS_D_21	48° 06 PS_D_22	48° 07′ 51	1.3 Jefferson	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L22	PS_D_22	48° 07 PS_D_23	48° 11′ 20	5.3 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L23	PS_D_23	48° 11 PS_D_24	48° 11′ 44	1.4 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L24a	PS_D_24	48° 11 AA_A_1	48° 13′ 14	2.2 Island	0	0	SS	SS	SS
Admr_Anacortes	Arrival	X	N	L1	AA_A_1	48° 13 AA_A_2	48° 24′ 06 1	1.3 Island	0	0	18	SS	SS
Admr_Anacortes	Arrival	Τ	N	L2	AA_A_2	48° 24 AA_A_3	48° 24′ 50	0.7 Island	0	0	16	12	SS
Admr_Anacortes	Arrival	Т	N	L3a	AA_A_3	48° 24 RS_A_6	48° 28′ 00	3.2 Skagit	0	0	15	11	SS
PA_CherryPT	Arrival	X	Y	L6	RS_A_6	48° 28 RS_A_7	48° 30′ 01	2.0 Skagit	0	0	15	11	SS
RS_MarchPT	Arrival	X	Y	L1a	RS_A_7	48° 30 MP_A_2		1.6 Skagit	0	0	14	11	SS
RS_MarchPT	Arrival	X	Y	L2	MP_A_2	48° 31 MP_A_3		0.7 Skagit	0	0	14	11	SS
RS_MarchPT	Arrival	M	Y	L3		48° 31 MP_A_4		3.1 Skagit	0	0	11	8	SS
RS_MarchPT	Arrival	M	Y	L4		48° 31 MP_A_5		1.1 Skagit	0	0	9	7	6

Total Distance 73.2 nm Note: SS - Service Speed

Speed by Link (knots)

Slow

Very Slow

Medium

Fast

Puget Sound Emissions Inventory OGV-Routing: BLAKE ISLAND (ANCHORAGE) to PORT ANGELES

OGV-Routing: BLAKE ISLAND (ANCHORAGE) to PORT ANGELES	Fast	Fast	Medium	Slow	Very Slow
Lat/Long in WGS84 Datum				Bulkers	
			Reefer	Tankers	
DD A FEE		.	DO /DO	•	

DRAFT											Container	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	Starting WP Lat/Lon	End WP	Ending Waypoint Lat/Lon	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
BlakeIsland_PS	Departure	M	Y	L1a	BI_AN_1	47° 33′ 42′′ N 122° 32′ 10′′ W	BR_D_8	47° 33′ 58′′ N 122° 30′ 31′′ W	0.7 Kitsap	0	0	6	3	3
Bremerton_PS	Departure	X	Y	L9a	BR_D_8	47° 33′ 58′′ N 122° 30′ 31′′ W	PS_A_17	47° 34′ 32′′ N 122° 27′ 32′′ W	2.1 Kitsap	0	0	15	9	SS
PSCross_Brem	Departure	X	Y	L10a	PS_A_17	47° 34′ 32′′ N 122° 27′ 32′′ W	PS_D_8	47° 35′ 55′′ N 122° 26′ 45′′ W	1.5 Kitsap	0	0	17	SS	SS
Tacoma_Sea	Departure	Т	N	L8	PS_D_8	47° 35′ 55′′ N 122° 26′ 45′′ W	PS_D_9	47° 37′ 02′′ N 122° 26′ 56′′ W	1.1 Kitsap	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L9	PS_D_9	47° 37′ 02′′ N 122° 26′ 56′′ W	PS_D_10	47° 39′ 42′′ N 122° 27′ 25′′ W	2.7 King	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L10	PS_D_10	47° 39′ 42′′ N 122° 27′ 25′′ W	PS_D_11	47° 41′ 54′′ N 122° 26′ 47′′ W	2.3 King	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L11	PS_D_11	47° 41′ 54′′ N 122° 26′ 47′′ W	PS_D_12	47° 45′ 52′′ N 122° 25′ 49′′ W	4.0 Kitsap	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L12	PS_D_12	47° 45′ 52′′ N 122° 25′ 49′′ W	PS_D_13	47° 46′ 40′′ N 122° 26′ 04′′ W	0.8 King	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L13	PS_D_13	47° 46′ 40′′ N 122° 26′ 04′′ W	PS_D_14	47° 48′ 06′′ N 122° 26′ 29′′ W	1.5 Snohomish	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L14	PS_D_14	47° 48′ 06′′ N 122° 26′ 29′′ W	PS_D_15	47° 52′ 36′′ N 122° 28′ 08′′ W	4.6 Kitsap	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L15	PS_D_15	47° 52′ 36′′ N 122° 28′ 08′′ W	PS_D_16	47° 55′ 34′′ N 122° 29′ 11′′ W	3.1 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	T	N	L16	PS_D_16	47° 55′ 34′′ N 122° 29′ 11′′ W	PS_D_17	47° 57′ 01′′ N 122° 32′ 03′′ W	2.4 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L17	PS_D_17	47° 57′ 01′′ N 122° 32′ 03′′ W	PS_D_18	47° 58′ 07′′ N 122° 34′ 19′′ W	1.9 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	T	N	L18	PS_D_18	47° 58′ 07′′ N 122° 34′ 19′′ W	PS_D_19	48° 02′ 01′′ N 122° 37′ 40′′ W	4.5 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L19	PS_D_19	48° 02′ 01′′ N 122° 37′ 40′′ W	PS_D_20	48° 04′ 48′′ N 122° 38′ 31′′ W	2.8 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L20	PS_D_20	48° 04′ 48′′ N 122° 38′ 31′′ W	PS_D_21	48° 06′ 58′′ N 122° 39′ 13′′ W	2.2 Jefferson	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L21	PS_D_21	48° 06′ 58′′ N 122° 39′ 13′′ W	PS_D_22	48° 07′ 51′′ N 122° 40′ 43′′ W	1.3 Jefferson	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L22	PS_D_22	48° 07′ 51′′ N 122° 40′ 43′′ W	PS_D_23	48° 11′ 20′′ N 122° 46′ 47′′ W	5.3 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L23	PS_D_23	48° 11′ 20′′ N 122° 46′ 47′′ W	PS_D_24	48° 11′ 44′′ N 122° 48′ 45′′ W	1.4 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L24	PS_D_24	48° 11′ 44′′ N 122° 48′ 45′′ W	PS_D_25	48° 11′ 57′′ N 122° 52′ 19′′ W	2.4 Jefferson	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L25	PS_D_25	48° 11′ 57′′ N 122° 52′ 19′′ W	PS_D_26	48° 12′ 45′′ N 123° 06′ 35′′ W	9.5 Calallam	0	0	SS	SS	SS
Tacoma_Sea	Departure	X	Y	L26	PS_D_26	48° 12′ 45′′ N 123° 06′ 35′′ W	PS_D_27	48° 10′ 33′′ N 123° 23′ 03′′ W	11.2 Calallam	0	0	16	12	SS
Tacoma_Sea	Departure	M	Y	L27a	PS_D_27	48° 10′ 33′′ N 123° 23′ 03′′ W	PA_A_2	48° 09′ 45′′ N 123° 23′ 25′′ W	0.6 Calallam	0	0	8	8	8
Sea_PortAngeles	Arrival	M	Y	L1	PA_A_2	48° 09′ 45′′ N 123° 23′ 25′′ W	PA_A_3	48° 08′ 21′′ N 123° 22′ 25′′ W	1.6 Calallam	0	0	8	8	8
Sea_PortAngeles	Arrival	M	Y	L2	PA_A_3	48° 08′ 21′′ N 123° 22′ 25′′ W	PA_A_4	48° 08′ 00′′ N 123° 23′ 48′′ W	1.0 Calallam	0	0	6	6	6

Total Distance 72.5 nm Note: SS - Service Speed

Speed by Link (knots)

OGV-Routing: MANCHESTER to PORT ANGELES
Lat/Long in WGS84 Datum

Lat/Long in WGS8	4 Datum											Bulkers	
										0	Reefer	Tankers	
DRAFT	A / D	Mada	NIDE	I :1- ID	Cana W/D	. W/D I E ad W/I) a !: T	Viat Carret	Commission	Container	RO/RO	Log	Eighing.
Route Manahastan Buana			Y	Link ID		47° 33 MU_D_2			Cruise	Auto	Fishing	Fishing	Fishing
Manchester_Brem	Departure								~	0	11 12	8	8
Manchester_Brem	Departure		Y	L2a L8		47° 33 BR_D_3		1.0 Kitsap	0	0	13	9	8
Bremerton_PS													SS
Bremerton_PS	Departure		Y	L9a		47° 33 PS_A_1		2.1 Kitsap	0	0	15	SS SS	SS
PSCross_Brem	Departure		N	L10a		47° 34 PS_D_8	_	1.5 Kitsap	0	0	17 SS	SS	SS
Tacoma_Sea	Departure			L8		47° 35 PS_D_9		1.1 Kitsap	0	0	SS SS	SS SS	SS SS
Tacoma_Sea	Departure		N	L9				2.7 King	0	· ·			
Tacoma_Sea	Departure		N	L10		47° 39 PS_D_1		2.3 King	0	0	SS SS	SS SS	SS SS
Tacoma_Sea	Departure		N	L11		47° 41 PS_D_1		4.0 Kitsap	0	0			
Tacoma_Sea	Departure		N	L12		47° 45 PS_D_1		0.8 King	0	0	SS SS	SS SS	SS SS
Tacoma_Sea	Departure		N	L13		47° 46 PS_D_1		1.5 Snohomish		0			
Tacoma_Sea	Departure		N	L14		47° 48 PS_D_1		4.6 Kitsap	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L15		47° 52 PS_D_1		3.1 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L16		47° 55 PS_D_1		2.4 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L17		47° 57 PS_D_1		1.9 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L18		47° 58 PS_D_1		4.5 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L19		48° 02 PS_D_2		2.8 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L20		48° 04 PS_D_2		2.2 Jefferson	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L21		48° 06 PS_D_2		1.3 Jefferson	0	0	SS	SS	SS
Tacoma_Sea	Departure	T	N	L22		48° 07 PS_D_23		5.3 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	T	N	L23		48° 11 PS_D_24		1.4 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	T	N	L24		48° 11 PS_D_2		2.4 Jefferson	0	0	SS	SS	SS
Tacoma_Sea	Departure	T	N	L25		48° 11 PS_D_20		9.5 Calallam	0	0	SS	SS	SS
Tacoma_Sea	Departure	X	Y	L26		48° 12 PS_D_2		11.2 Calallam	0	0	16	12	SS
Tacoma_Sea	Departure	M	Y	L27a		48° 10 PA_A_2		0.6 Calallam	0	0	8	8	8
Sea_PortAngeles	Arrival	M	Y	L1	PA_A_2			1.6 Calallam	0	0	8	8	8
Sea_PortAngeles	Arrival	M	Y	L2	PA_A_3	48° 08 PA_A_4	48° (1.0 Calallam	0	0	6	6	6

Note: SS - Service Speed Total Distance 73.5 nm

Speed by Link (knots)

Fast

Fast

Medium Slow

Very Slow

Puget Sour	uget Sound Emissions Inventory											Speed by Link (knots)						
OGV-Routing	: SEA to	CHERE	RY PO	INT/FE	RNDALE					Fast	Fast	Medium	Slow	Very Slow				
Lat/Long in W	GS84 Datu	ım											Bulkers					
												Reefer	Tankers					
DRAFT											Container	RO/RO	Log					
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	g WP L	End WP	Waypoint I1	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing				
Sea_Tacoma	Arrival	Т	N	L1	PS_A_1	48° 28	PS_A_2	48° 28′ 38′	10.7 Calallam	0	0	SS	SS	SS				
Sea_Tacoma	Arrival	Τ	N	L2	PS_A_2	48° 28	PS_A_3	48° 13′ 22′	35.9 Calallam	0	0	SS	SS	SS				
Sea_Tacoma	Arrival	X	N	L3	PS_A_3	48° 13	PS_A_4	48° 13′ 20′	15.4 Calallam	0	0	SS	SS	SS				
Sea_Tacoma	Arrival	M	N	L4	PS_A_4	48° 13	PS_A_5	48° 09′ 20′	6.9 Calallam	0	0	15	12	SS				
Sea_Tacoma	Arrival	X	N	L5	PS_A_5	48° 09	PS_A_6	48° 09′ 58′	0.6 Calallam	0	0	8	8	8				
PA_CherryPT	Arrival	X	N	L1a	PS_A_6	48° 09	RS_A_2	48° 16′ 08′	13.1 Calallam	0	0	15	13.5	SS				
PA_CherryPT	Arrival	Τ	N	L2	RS_A_2	48° 16	RS_A_3	48° 19′ 40′	6.6 San Juan	0	0	13	13	SS				
PA_CherryPT	Arrival	X	N	L3	RS_A_3	48° 19	RS_A_4	48° 24′ 06′	8.3 San Juan	0	0	11	11	SS				
PA_CherryPT	Arrival	Τ	N	L4	RS_A_4	48° 24	RS_A_5	48° 26′ 13′	2.7 San Juan	0	0	11	11	SS				
PA_CherryPT	Arrival	Τ	N	L5	RS_A_5	48° 26	RS_A_6	48° 28′ 00′	1.9 Skagit	0	0	11	11	SS				
PA_CherryPT	Arrival	Τ	N	L6	RS_A_6	48° 28	RS_A_7	48° 30′ 01′	2.0 Skagit	0	0	11	11	SS				
PA_CherryPT	Arrival	Τ	N	L7	RS_A_7	48° 30°	RS_A_8	48° 31′ 00′	1.0 San Juan	0	0	11	11	SS				
PA_CherryPT	Arrival	Τ	N	L8	RS_A_8	48° 31	RS_A_9	48° 36′ 04′	5.1 Skagit	0	0	11	11	SS				
PA_CherryPT	Arrival	Τ	N	L9	RS_A_9	48° 36	RS_A_10	48° 37′ 59′	2.1 Skagit	0	0	11	11	SS				
PA_CherryPT	Arrival	Τ	N	L10	RS_A_10	48° 37	RS_A_11	48° 40′ 15′	2.5 San Juan	0	0	11	11	SS				
PA_CherryPT	Arrival	Τ	N	L11	RS_A_11	48° 40	RS_A_12	48° 40′ 35′	0.4 Whatcom	0	0	11	11	SS				
PA_CherryPT	Arrival	Т	N	L12				48° 45′ 17′	5.3 Whatcom	0	0	11	11	SS				

Total Distance 120.3 nm Note: SS - Service Speed

Puget Sound Emissions Inventory Speed by Link (knots) OGV-Routing: CHERRY POINT/FERNDALE HARBOR Medium Slow Fast Fast Very Slow Lat/Long in WGS84 Datum Bulkers Reefer **Tankers** DRAFT Container RO/RO Log Route Arr/Dep Link ID Start WP ng WP Lat End WP 7aypoint Dist. County Cruise Auto Fishing Fishing Fishing PA CherryPT RS A 13 ' N 122° 45′ 5 Whatcom Arrival CherryPT PT Departure RS D 2 "N 122° 47′ 14" W Whatcom NOTE: All ARRIVAL harbor transits branch from RS A 13 NOTE: All DEPARTURE harbor transits goto RS D 1 Ferndale Route to Ferndale_Intalco Ferndale Intalco Arrival L1a RS A 13 "N 122° FI B 1 'N 122' 5.38 Whatcom 0 4 0 4 FI_B_1 '' N 122° RS_D_2 ' N 122' 5.76 Whatcom 0 Ferndale Intalco Departure L1a 0 6 Ferndale_Intalco to SandyPoint Anchorage FI_B_1 '' N 122° FA_AN_3' N 122' 2.59 Whatcom Ferndale_Intalco_SandyPoint L1a 0 0 4 SandyPoint Ferndale Intalco Departure L1a FA_AN_3." N 122° FI_B_1 'N 122' 2.59 Whatcom 0 0 6 6 RS_A_13 '' N 122° FP_B_2 ' N 122' 4.61 Whatcom Ferndale_Phillips Arrival L1a 0 0 4 FP_B_2 '' N 122° RS_D_2 ' N 122' 5.04 Whatcom Ferndale Phillips Departure L1a 0 0 6 Ferndale_Phillips to SandyPoint Anchorage Ferndale Phillips SandyPoint Arrival L1a FP B 2 "N 122° FA AN 3' N 122' 2.19 Whatcom 0 0 4 4 SandyPoint_Ferndale_Phillips Departure L1a FA_AN_3′′ N 122° FP_B_2 ′ N 122° 2.19 Whatcom 0 0 6 6 CherryPT BP Arrival L1a RS A 13 "N 122° FC A 1 'N 122' 3.28 Whatcom 0 CherryPT_BP Arrival FC_A_1 "N 122° FC_B_3 'N 122° 3.23 Whatcom 6 Total Distance 6.51 nm CherryPT_BP FC B 3 "N 122° FC D 2 'N 122' 3.23 Whatcom Departure L1 0 0 4 4 CherryPT BP Departure L2a FC D 2 "N 122° RS D 2 'N 122° 3.39 Whatcom 0 0 6 6 Total Distance 6.62 nm CherryPT_BP to SandyPoint Anchorage FC B 3 "N 122° FA AN 3' N 122' 3.14 Whatcom CherryPT BP SandyPoint Departure L1a 0 0 4 4 0 SandyPoint_CherryPT_BP Arrival L1a FA_AN_3." N 122° FC_B_3 ' N 122° 3.14 Whatcom 0 6 6 PA_CherryPT_SandyPoint Anchorage PA_CherryPT_SandyPoint RS_A_13 '' N 122° FA_AN_3' N 122' 3.24 Whatcom Arrival 0 4 4 SandyPT_CherryPT_PA L1a FA_AN_3." N 122° RS_D_2 'N 122' 3.24 Whatcom 0 0 6 6 Departure

Puget Sound Emissions Inventory OGV-Routing: CHERRY POINT/FERNDALE to SEA

Lat/Long in W	GS84 Datum	ì								•				Bulkers	
													Reefer	Tankers	
DRAFT												Container	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	Starting WP Lat/Lon	End WP	8 71 ,	Dist. C	County	Cruise	Auto	Fishing	Fishing	Fishing
CherryPT_PA	Departure	Т	N	L1	RS_D_2	48° 45′ 16′′ N 122° 47′ 14′′ W	RS_D_3	48° 40′ 34′′ N 122° 43′ 28′′ W	5.3 Sa	n Juan	0	0	15	13	SS
CherryPT_PA	Departure	Т	N	L2	RS_D_3	48° 40′ 34′′ N 122° 43′ 28′′ W	RS_D_4	48° 38′ 22′′ N 122° 43′ 58′′ W	2.2 Sa	n Juan	0	0	15	13	SS
CherryPT_PA	Departure	Т	N	L3	RS_D_4	48° 38′ 22′′ N 122° 43′ 58′′ W	RS_D_5	48° 37′ 43′′ N 122° 44′ 25′′ W	0.7 Sk	agit	0	0	15	13	SS
CherryPT_PA	Departure	T	N	L4	RS_D_5	48° 37′ 43′′ N 122° 44′ 25′′ W	RS_D_6	48° 36′ 06′′ N 122° 45′ 32′′ W	1.8 Sk	agit	0	0	15	13	SS
CherryPT_PA	Departure	T	N	L5	RS_D_6	48° 36′ 06′′ N 122° 45′ 32′′ W	RS_D_7	48° 33′ 58′′ N 122° 45′ 14′′ W	2.2 Sk	agit	0	0	15	13	SS
CherryPT_PA	Departure	T	N	L6	RS_D_7	48° 33′ 58′′ N 122° 45′ 14′′ W	RS_D_8	48° 32′ 48′′ N 122° 45′ 04′′ W	1.2 Sa	n Juan	0	0	15	13	SS
CherryPT_PA	Departure	Τ	N	L7	RS_D_8	48° 32′ 48′′ N 122° 45′ 04′′ W	RS_D_9	48° 31′ 41′′ N 122° 44′ 54′′ W	1.1 Sk	agit	0	0	15	13	SS
CherryPT_PA	Departure	T	N	L8	RS_D_9	48° 31′ 41′′ N 122° 44′ 54′′ W	RS_D_10	48° 29′ 33′′ N 122° 44′ 36′′ W	2.1 Sa	n Juan	0	0	15	13	SS
CherryPT_PA	Departure	Т	N	L9	RS_D_10	48° 29′ 33′′ N 122° 44′ 36′′ W	RS_D_11	48° 28′ 53′′ N 122° 44′ 31′′ W	0.7 Sk	agit	0	0	15	13	SS
CherryPT_PA	Departure	Τ	N	L10	RS_D_11	48° 28′ 53′′ N 122° 44′ 31′′ W	RS_D_12	48° 27′ 12′′ N 122° 45′ 18′′ W	1.8 Sk	agit	0	0	15	13	SS
CherryPT_PA	Departure	Τ	N	L11	RS_D_12	48° 27′ 12′′ N 122° 45′ 18′′ W	RS_D_13	48° 26′ 10′′ N 122° 45′ 48′′ W	1.1 Sa	n Juan	0	0	15	13	SS
CherryPT_PA	Departure	T	N	L12	RS_D_13	48° 26′ 10′′ N 122° 45′ 48′′ W	RS_D_14	48° 24′ 37′′ N 122° 48′ 09′′ W	2.2 Sa	n Juan	0	0	15	13	SS
CherryPT_PA	Departure	Τ	N	L13	RS_D_14	48° 24′ 37′′ N 122° 48′ 09′′ W	RS_D_15	48° 20′ 13′′ N 122° 58′ 21′′ W	8.1 Sa	n Juan	0	0	SS	SS	SS
CherryPT_PA	Departure	X	N	L14a	RS_D_15	48° 20′ 13′′ N 122° 58′ 21′′ W	PS_D_27	48° 10′ 33′′ N 123° 23′ 03′′ W	19.0 Ca	alallam	0	0	SS	SS	SS
Tacoma_Sea	Departure	M	N	L27	PS_D_27	48° 10′ 33′′ N 123° 23′ 03′′ W	PS_D_28	48° 11′ 21′′ N 123° 23′ 02′′ W	0.8 Ca	alallam	0	0	8	8	8
Tacoma_Sea	Departure	X	N	L28	PS_D_28	48° 11′ 21′′ N 123° 23′ 02′′ W	PS_D_29	48° 14′ 13′′ N 123° 28′ 57′′ W	4.9 Ca	alallam	0	0	14	12	SS
Tacoma_Sea	Departure	Τ	N	L29	PS_D_29	48° 14′ 13′′ N 123° 28′ 57′′ W	PS_D_30	48° 15′ 21′′ N 123° 33′ 17′′ W	3.1 Ca	alallam	0	0	SS	SS	SS
Tacoma_Sea	Departure	T	N	L30	PS_D_30	48° 15′ 21′′ N 123° 33′ 17′′ W	PS_D_31	48° 17′ 36′′ N 123° 56′ 06′′ W	15.4 Ca	alallam	0	0	SS	SS	SS
Tacoma_Sea	Departure	T	N	L31	PS_D_31	48° 17′ 36′′ N 123° 56′ 06′′ W	PS_D_32	48° 30′ 38′′ N 124° 43′ 36′′ W	34.1 Ca	alallam	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L32	PS_D_32	48° 30′ 38′′ N 124° 43′ 36′′ W	PS_D_33	48° 30′ 43′′ N 125° 00′ 00′′ W	10.9 Ca		0	0	SS	SS	SS

Total Distance 118.6 nm Note: SS - Service Speed

Speed by Link (knots)

Slow

Very Slow

Medium

Fast

Puget Sound OGV-Routing: C				•	VENDO	VI ISLAND (ANCHORAGE)			_	Fast	Spee Fast	d by Link Medium	` ,	Very Slow
Lat/Long in WGS	84 Datum												Bulkers	
												Reefer	Tankers	
DRAFT											Container	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	Starting WP Lat/Lon	End WP	Ending Waypoint Lat/Lon	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
CherryPT_PA	Departure	Т	N	L1	RS_D_2	48° 45′ 16′′ N 122° 47′ 14′′ W	RS_D_3	48° 40′ 34′′ N 122° 43′ 28′′ W	5.3 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	X	Y	L2a	RS_D_3	48° 40′ 34′′ N 122° 43′ 28′′ W	SG_A_1	48° 39′ 27′′ N 122° 41′ 37′′ W	1.7 San Juan	0	0	13	9	SS
GStght_Vendovi	Arrival	X	Y	L1	SG_A_1	48° 39′ 27′′ N 122° 41′ 37′′ W	SG_A_2	48° 38′ 43′′ N 122° 40′ 24′′ W	1.1 Whatcom	0	0	12	8	SS
GStght_Vendovi	Arrival	M	Y	L2	SG_A_2	48° 38′ 43′′ N 122° 40′ 24′′ W	VI_AN_3	48° 37′ 16′′ N 122° 37′ 59′′ W	2.2 Skagit	0	0	6	4	SS

Total Distance 10.2 nm

Puget Sound	W-Routing: VENDOVI ISLAND (ANCHORAGE) to CHERRY POINT/FERNDALE Fa /Long in WGS84 Datum													Speed by Link (knots)						
OGV-Routing: V	ENDOVI I	SLANI) (AN(CHORAG	GE) to CHE	ERRY	POINT/	FERNDALE			Fast	Fast	Medium	Slow	Very Slow					
Lat/Long in WGS	84 Datum									_				Bulkers						
													Reefer	Tankers						
DRAFT												Container	RO/RO	Log						
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	WP I	End WP	g Waypoint La	a Dist.	County	Cruise	Auto	Fishing	Fishing	Fishing					
Vendovi_GStght	Departure	M	Y	L1	VI_AN_3	48° 3	LI_D_2	48° 38′ 43′′ N	1.9	Skagit	0	0	10	8	SS					
Vendovi_GStght	Departure	X	Y	L2a	LI_D_2	48° 3	RS_A_12	48° 40′ 35′′ N	2.4	Whatcom	0	0	12	10	SS					
PA_CherryPT	Arrival	X	Y	L12a	RS_A_12	$48^{\circ}\ 4$	RS_A_13	48° 45′ 17′′ N	5.3	Whatcom	0	0	15	11	SS					

Total Distance 9.6 nm Note: SS - Service Speed

OGV-Routing: SEATTLE to VENDOVI ISLAND (ANCHORAGE)

Lat/Long in WC	SS84 Datun	ı										Bulkers	
DDAE'T										C	Reefer	Tankers	
DRAFT	A /D	N 1	NIDE	T · 1 ID	C. W/D	W/DIE 1W/D		N: 4 C 4	.	Container	RO/RO	Log	E: 1:
Route						WP I End WP	* *		Cruise	Auto	Fishing	Fishing	Fishing
ElliottB_PS	Departure		Y	L1		47° 3(EB_D_2		2.6 King	0	0	9	8	6
	Departure		Y	L2a		47° 38 PS_D_10		1.5 King	0	0	SS	SS	7
Tacoma_Sea	Departure		N	L10		47° 3! PS_D_11		2.3 King	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L11	PS_D_11	47° 4′ PS_D_12	47° 4	4.0 Kitsap	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L12	PS_D_12	47° 4! PS_D_13	47° 4	0.8 King	0	0	SS	SS	SS
Tacoma_Sea	Departure	T	N	L13	PS_D_13	47° 4(PS_D_14	47° 4	1.5 Snohomish	0	0	SS	SS	SS
Tacoma_Sea	Departure	T	N	L14	PS_D_14	47° 48 PS_D_15	47° 5	4.6 Kitsap	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L15	PS_D_15	47° 52PS_D_16	47° 5	3.1 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L16	PS_D_16	47° 5! PS_D_17	47° 5	2.4 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	T	N	L17	PS_D_17	47° 5′ PS_D_18	47° 5	1.9 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L18	PS_D_18	47° 58 PS_D_19	48° 0	4.5 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	T	N	L19	PS_D_19	48° 02 PS_D_20	48° 0	2.8 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	T	N	L20	PS_D_20	48° 04 PS_D_21	48° 0	2.2 Jefferson	0	0	SS	SS	SS
Tacoma_Sea	Departure	T	N	L21	PS_D_21	48° 0(PS_D_22	48° 0	1.3 Jefferson	0	0	SS	SS	SS
	Departure		N	L22	PS D 22	48° 0′ PS_D_23	48° 1	5.3 Island	0	0	SS	SS	SS
	Departure		N	L23	PS D 23	48° 11PS_D_24	48° 1	1.4 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L24a		48° 11 AA_A_1		2.2 Island	0	0	SS	SS	SS
Admr Anacortes	1	X	Y	L1		48° 1; AA A 2		11.3 Island	0	0	18	SS	SS
Admr_Anacortes	Arrival	X	Y	L2	AA A 2	48° 24 AA_A_3	48° 2	0.7 Island	0	0	16	12	SS
Admr_Anacortes		X	Y	L3a		48° 24 RS_A_6		3.2 Skagit	0	0	15	11	SS
RS_Bellingham	Arrival	X	Y	L1a		48° 28 BH_A_2		2.2 Skagit	0	0	14	11	SS
RS_Bellingham	Arrival	X	Y	L2			48° 3	3.7 Skagit	0	0	12	10	SS
RS_Bellingham	Arrival	M	Y	L3		48° 3′ BH_A_4		2.9 Skagit	0	0	8	6	6
RS_Bellingham	Arrival	M	Y	L4		48° 3(VI_AN_3		1.5 Skagit	0	0	4	3	3

Total Distance 69.9 nm Note: SS - Service Speed

Speed by Link (knots)

Slow

Very Slow

Medium

Fast

OGV-Routing: CHERRY POINT/FERNDALE to SEATTLE

Lat/Long in WGS84 Datum

												Reefer	Tankers	
DRAFT											Container	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	Starting WP Lat/Lon	End WP	Ending Waypoint Lat/Lon	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
CherryPT_PA	Departure	Т	N	L1	RS_D_2	48° 45′ 16′′ N 122° 47′ 14′′ W	RS_D_3	48° 40′ 34′′ N 122° 43′ 28′′ W	5.3 San Juan	0	0	15	11	SS
CherryPT_PA	Departure	Т	N	L2	RS_D_3	48° 40′ 34′′ N 122° 43′ 28′′ W	RS_D_4	48° 38′ 22′′ N 122° 43′ 58′′ W	2.2 San Juan	0	0	15	11	SS
CherryPT_PA	Departure	Т	N	L3	RS_D_4	48° 38′ 22′′ N 122° 43′ 58′′ W	RS_D_5	48° 37′ 43′′ N 122° 44′ 25′′ W	0.7 Skagit	0	0	15	11	SS
CherryPT_PA	Departure	Т	N	L4	RS_D_5	48° 37′ 43′′ N 122° 44′ 25′′ W	RS_D_6	48° 36′ 06′′ N 122° 45′ 32′′ W	1.8 Skagit	0	0	15	11	SS
CherryPT_PA	Departure	Т	N	L5	RS_D_6	48° 36′ 06′′ N 122° 45′ 32′′ W	RS_D_7	48° 33′ 58′′ N 122° 45′ 14′′ W	2.2 Skagit	0	0	15	11	SS
CherryPT_PA	Departure	Т	N	L6	RS_D_7	48° 33′ 58′′ N 122° 45′ 14′′ W	RS_D_8	48° 32′ 48′′ N 122° 45′ 04′′ W	1.2 San Juan	0	0	15	11	SS
CherryPT_PA	Departure	Т	N	L7	RS_D_8	48° 32′ 48′′ N 122° 45′ 04′′ W	RS_D_9	48° 31′ 41′′ N 122° 44′ 54′′ W	1.1 Skagit	0	0	15	11	SS
CherryPT_PA	Departure	Т	N	L8	RS_D_9	48° 31′ 41′′ N 122° 44′ 54′′ W	RS_D_10	48° 29′ 33′′ N 122° 44′ 36′′ W	2.1 San Juan	0	0	15	11	SS
CherryPT_PA	Departure	Т	N	L9	RS_D_10	48° 29′ 33′′ N 122° 44′ 36′′ W		48° 28′ 53′′ N 122° 44′ 31′′ W	0.7 Skagit	0	0	16	12	SS
CherryPT_PA	Departure	Т	N	L10a	RS_D_14	48° 28′ 53′′ N 122° 44′ 31′′ W	AA_D_1	48° 26′ 04′′ N 122° 44′ 43′′ W	2.8 Skagit	0	0	15	11	SS
Anacortes_Admr	Departure	Т	N	L1	AA_D_1	48° 26′ 04′′ N 122° 44′ 43′′ W	AA_D_2	48° 24′ 08′′ N 122° 44′ 50′′ W	1.9 San Juan	0	0	15	11	SS
Anacortes_Admr	Departure	X	N	L2	AA_D_2	48° 24′ 08′′ N 122° 44′ 50′′ W	AA_D_3	48° 22′ 25′′ N 122° 45′ 34′′ W	1.8 San Juan	0	0	16	12	SS
Anacortes_Admr	Departure	X	N	L3	AA_D_3	48° 22′ 25′′ N 122° 45′ 34′′ W	AA_D_4	48° 13′ 29′′ N 122° 49′ 22′′ W	9.3 Island	0	0	17	13	SS
Anacortes_Admr	Departure	Т	N	L4	AA_D_4	48° 13′ 29′′ N 122° 49′ 22′′ W	AA_D_5	48° 11′ 32′′ N 122° 48′ 21′′ W	2.1 Island	0	0	SS	SS	SS
Anacortes_Admr	Departure	Т	N	L5a	AA_D_5	48° 11′ 32′′ N 122° 48′ 21′′ W	PS_A_9	48° 10′ 57′′ N 122° 48′ 01′′ W	0.6 Jefferson	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L9	PS_A_9	48° 10′ 57′′ N 122° 48′ 01′′ W	PS_A_10	48° 06′ 35′′ N 122° 40′ 10′′ W	6.8 Jefferson	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L10	PS_A_10	48° 06′ 35′′ N 122° 40′ 10′′ W	PS_A_11	48° 01′ 08′′ N 122° 38′ 08′′ W	5.6 Jefferson	0	0	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L11	PS_A_11	48° 01′ 08′′ N 122° 38′ 08′′ W	PS_A_12	47° 57′ 41′′ N 122° 35′ 10′′ W	4.0 Island	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L12	PS_A_12	47° 57′ 41′′ N 122° 35′ 10′′ W	PS_A_13	47° 56′ 38′′ N 122° 32′ 57′′ W	1.8 Island	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L13	PS_A_13	47° 56′ 38′′ N 122° 32′ 57′′ W	PS_A_14	47° 55′ 17′′ N 122° 30′ 06′′ W	2.3 Kitsap	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L14	PS_A_14	47° 55′ 17′′ N 122° 30′ 06′′ W	PS_A_15	47° 45′ 54′′ N 122° 26′ 45′′ W	9.7 Kitsap	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L15	PS_A_15	47° 45′ 54′′ N 122° 26′ 45′′ W	PS_A_16	47° 39′ 42′′ N 122° 28′ 24′′ W	6.3 Kitsap	0	0	13	SS	SS
PS_ElliottB	Arrival	X	Y	L1a	PS_A_16	47° 39′ 42′′ N 122° 28′ 24′′ W	EB_A_2	47° 39′ 21′′ N 122° 28′ 02′′ W	0.4 Kitsap	0	0	13	9	8
PS_ElliottB	Arrival	X	Y	L2	EB_A_2	47° 39′ 21′′ N 122° 28′ 02′′ W	EB_A_3	47° 38′ 16′′ N 122° 26′ 36′′ W	1.5 King	0	0	12	8	7
PS_ElliottB	Arrival	M	Y	L3	EB_A_3	47° 38′ 16′′ N 122° 26′ 36′′ W	EB_A_4	47° 36′ 52′′ N 122° 23′ 21′′ W	2.6 King	0	0	11	6	6

Total Distance 76.8 nm Note: SS - Service Speed

Speed by Link (knots)

Slow Very Slow

Bulkers

Medium

Fast

OGV-Routing: SEATTLE to CHERRY POINT/FERNDALE

Lat/Long in WG	S84 Datum												Bulkers	
												Reefer	Tankers	
DRAFT											Container	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP V	WP	End WP	Vaypoint I	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
ElliottB_PS	Departure	X	Y	L1	EB_D_1	47°]	EB_D_2	47° 38′ 2	2.6 King	0	0	9	8	6
ElliottB_PS	Departure	X	Y	L2a	EB_D_2	47°	PS_D_10	47° 39′ 4	1.5 King	0	0	SS	SS	7
Tacoma_Sea	Departure	Τ	N	L10	PS_D_10	47°]	PS_D_11	47° 41′ !	2.3 King	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L11	PS_D_11	47°]	PS_D_12	47° 45′ !	4.0 Kitsap	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L12	PS_D_12	47°]	PS_D_13	47° 46′ 4	0.8 King	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L13	PS_D_13	47°]	PS_D_14	47° 48′ (1.5 Snohomisl	n 0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L14	PS_D_14	47°]	PS_D_15	47° 52′ 3	4.6 Kitsap	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L15	PS_D_15	47°]	PS_D_16	47° 55′ 3	3.1 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L16	PS_D_16	47°]	PS_D_17	47° 57′ (2.4 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L17	PS_D_17	47°]	PS_D_18	47° 58′ (1.9 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L18	PS_D_18	47°]	PS_D_19	48° 02′ (4.5 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L19	PS_D_19	48°]	PS_D_20	48° 04′ 4	2.8 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L20	PS_D_20	48°]	PS_D_21	48° 06′ !	2.2 Jefferson	0	0	SS	SS	SS
Tacoma_Sea	Departure	T	N	L21	PS_D_21	48°]	PS_D_22	48° 07′ !	1.3 Jefferson	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L22	PS_D_22	48°]	PS_D_23	48° 11′ 2	5.3 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L23	PS_D_23	48°]	PS_D_24	48° 11′ 4	1.4 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L24a	PS_D_24	48°	AA_A_1	48° 13′ 1	2.2 Island	0	0	SS	SS	SS
Admr_Anacortes	Arrival	X	N	L1	AA_A_1	48°	AA_A_2	48° 24′ (11.3 Island	0	0	18	SS	SS
Admr_Anacortes	Arrival	X	N	L2	AA_A_2	48°	AA_A_3	48° 24′ !	0.7 Island	0	0	16	12	SS
Admr_Anacortes	Arrival	X	N	L3a	AA_A_3	48°	RS_A_6	48° 28′ (3.2 Skagit	0	0	15	11	SS
PA_CherryPT	Arrival	Т	N	L6	RS_A_6	48°	RS_A_7	48° 30′ (2.0 Skagit	0	0	15	11	SS
PA_CherryPT	Arrival	Τ	N	L7	RS_A_7	48°	RS_A_8	48° 31′ (1.0 San Juan	0	0	15	11	SS
PA_CherryPT	Arrival	Τ	N	L8	RS_A_8	48°	RS_A_9	48° 36′ (5.1 Skagit	0	0	15	11	SS
PA_CherryPT	Arrival	T	N	L9	RS_A_9	48°	RS_A_10	48° 37′ !	2.1 Skagit	0	0	15	11	SS
PA_CherryPT	Arrival	T	N	L10	RS_A_10	48°	RS_A_11	48° 40′ 1	2.5 San Juan	0	0	15	11	SS
PA_CherryPT	Arrival	T	N	L11	RS_A_11	48°	RS_A_12	48° 40′ 3	0.4 Whatcom	0	0	15	11	SS
PA_CherryPT	Arrival	T	N	L12	RS_A_12	48°	RS_A_13	48° 45′ 1	5.3 Whatcom	0	0	15	11	SS

Total Distance 77.9 nm Note: SS - Service Speed

Speed by Link (knots)

Medium

Fast

Fast

Slow

Very Slow

OGV-Routing: CHERRY POINT/FERNDALE to TACOMA

Lat/Long in WGS84 Datum

DRAFT											Container	Reefer RO/RO	Tankers Log	
Route	Arr/Dep	Mada	NIDE	Link ID	Start W/D	Starting WP Lat/Lon	End WP	Ending Waypoint Lat/Lon	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
CherryPT_PA	Departure	T	N	Lilik ID		48° 45′ 16′′ N 122° 47′ 14′′ W		48° 40′ 34′′ N 122° 43′ 28′′ W	5.3 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	Т	N	L2		48° 40′ 34′′ N 122° 43′ 28′′ W		48° 38′ 22′′ N 122° 43′ 58′′ W	2.2 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	Т	N	L3		48° 38′ 22′′ N 122° 43′ 58′′ W		48° 37′ 43′′ N 122° 44′ 25′′ W	0.7 Skagit	0	0	15	13	SS
CherryPT_PA	Departure	Т	N	L3 L4		48° 37′ 43′′ N 122° 44′ 25′′ W		48° 36′ 06′′ N 122° 45′ 32′′ W	1.8 Skagit	0	0	15	13	SS
CherryPT_PA	Departure	Т	N	L5		48° 36′ 06′′ N 122° 45′ 32′′ W		48° 33′ 58′′ N 122° 45′ 14′′ W	2.2 Skagit	0	0	15	13	SS
CherryPT_PA	Departure	Т	N	L6		48° 33′ 58′′ N 122° 45′ 14′′ W		48° 32′ 48′′ N 122° 45′ 04′′ W	1.2 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	T	N	L7		48° 32′ 48″ N 122° 45′ 04″ W		48° 31′ 41′′ N 122° 44′ 54′′ W	1.1 Skagit	0	0	15	13	SS
CherryPT_PA	Departure	T	N	L8		48° 31′ 41′′ N 122° 44′ 54′′ W			2.1 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	Т	N	L9		48° 29′ 33′′ N 122° 44′ 36′′ W			0.7 Skagit	0	0	15	13	SS
CherryPT_PA	Departure	T	N	L10a		48° 28′ 53′′ N 122° 44′ 31′′ W			2.8 Skagit	0	0	15	13	SS
Anacortes_Admr	1	Т	N	L1		48° 26′ 04′′ N 122° 44′ 43′′ W			1.9 San Juan	0	0	15	13	SS
Anacortes_Admr		T	N	L2		48° 24′ 08′′ N 122° 44′ 50′′ W			1.8 San Juan	0	0	16	13	SS
Anacortes_Admr		X	N	L3		48° 22′ 25′′ N 122° 45′ 34′′ W			9.3 Island	0	0	17	13	SS
Anacortes_Admr		Т	N	L4				48° 11′ 32′′ N 122° 48′ 21′′ W	2.1 Island	0	0	SS	SS	SS
Anacortes_Admr		T	N	L5a				48° 10′ 57′′ N 122° 48′ 01′′ W	0.6 Jefferson	0	0	SS	SS	SS
Sea Tacoma	Arrival	Т	N	L9		48° 10′ 57′′ N 122° 48′ 01′′ W			6.8 Jefferson	0	0	SS	SS	SS
Sea Tacoma	Arrival	T	N	L10		48° 06′ 35′′ N 122° 40′ 10′′ W			5.6 Jefferson	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L11		48° 01′ 08′′ N 122° 38′ 08′′ W			4.0 Island	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L12		47° 57′ 41′′ N 122° 35′ 10′′ W			1.8 Island	0	0	SS	SS	SS
Sea Tacoma	Arrival	Т	N	L13		47° 56′ 38′′ N 122° 32′ 57′′ W			2.3 Kitsap	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L14	PS_A_14	47° 55′ 17′′ N 122° 30′ 06′′ W	PS_A_15	47° 45′ 54′′ N 122° 26′ 45′′ W	9.7 Kitsap	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L15	PS_A_15	47° 45′ 54′′ N 122° 26′ 45′′ W	PS_A_16	47° 39′ 42′′ N 122° 28′ 24′′ W	6.3 Kitsap	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L16	PS_A_16	47° 39′ 42′′ N 122° 28′ 24′′ W	PS_A_17	47° 34′ 32′′ N 122° 27′ 32′′ W	5.2 Kitsap	0	0	16	13	SS
Sea_Tacoma	Arrival	Т	N	L17	PS_A_17	47° 34′ 32′′ N 122° 27′ 32′′ W	PS_A_18	47° 31′ 51′′ N 122° 26′ 34′′ W	2.8 Kitsap	0	0	16	13	SS
Sea_Tacoma	Arrival	X	Y	L18	PS_A_18	47° 31′ 51′′ N 122° 26′ 34′′ W	PS_A_19	47° 26′ 44′′ N 122° 24′ 45′′ W	5.3 King	0	0	16	13	SS
Sea_Tacoma	Arrival	X	Y	L19	PS_A_19	47° 26′ 44′′ N 122° 24′ 45′′ W	PS_A_20	47° 23′ 09′′ N 122° 21′ 56′′ W	4.1 King	0	0	17	13	SS
Sea_Tacoma	Arrival	X	Y	L20	PS_A_20	47° 23′ 09′′ N 122° 21′ 56′′ W	PS_A_21	47° 19′ 39′′ N 122° 27′ 52′′ W	5.3 King	0	0	13	12	SS
Sea_Tacoma	Arrival	M	Y	L21	PS_A_21	47° 19′ 39′′ N 122° 27′ 52′′ W	PS_A_22	47° 19′ 10′′ N 122° 28′ 05′′ W	0.5 King	0	0	10	10	9
Sea_Tacoma	Arrival	M	Y	L22		47° 19′ 10′′ N 122° 28′ 05′′ W			1.1 Pierce	0	0	10	10	8

Total Distance 96.5 nm Note: SS - Service Speed

Speed by Link (knots)

Slow Very Slow

Bulkers

Medium

Fast

OGV-Routing: TACOMA to CHERRY POINT/FERNDALE

Lat/Long in WGS84 Datum

Speed	by :	Link	(knots))

Fast

Fast Medium Slow Very Slow

Bulkers

										Reefer	Tankers	
DRAFT									Containe	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP; WP I End WP	Waypoint 1D	ist. County	Cruise	Auto	Fishing	Fishing	Fishing
Tacoma_Sea	Departure	M	Y	L2	PS_D_2 47° 1{PS_D_3	47° 19′ 20	1.3 Pierce	0	0	10	10	9
Tacoma_Sea	Departure	X	Y	L3	PS_D_3 47° 1!PS_D_4	47° 19′ 54	0.9 Pierce	0	0	12	12	SS
Tacoma_Sea	Departure	X	Y	L4	PS_D_4 47° 1!PS_D_5	47° 23′ 04	4.8 King	0	0	14	SS	SS
Tacoma_Sea	Departure	X	Y	L5	PS_D_5 47° 2; PS_D_6	47° 26′ 56	4.4 King	0	0	16	SS	SS
Tacoma_Sea	Departure	X	Y	L6	PS_D_6 47° 2(PS_D_7	47° 34′ 32	7.8 King	0	0	15	SS	SS
Tacoma_Sea	Departure	Τ	N	L7	PS_D_7 47° 3 ² PS_D_8	47° 35′ 55	1.4 King	0	0	16	SS	SS
Tacoma_Sea	Departure	Τ	N	L8	PS_D_8 47° 3!PS_D_9	47° 37′ 02	1.1 Kitsap	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L9	PS_D_9 47° 3′ PS_D_10	47° 39′ 42	2.7 King	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L10	PS_D_10 47° 3!PS_D_11	47° 41′ 54	2.3 King	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L11	PS_D_11 47° 41PS_D_12	47° 45′ 52	4.0 Kitsap	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L12	PS_D_12 47° 4!PS_D_13	47° 46′ 40	0.8 King	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L13	PS_D_13 47° 4(PS_D_14	47° 48′ 06	1.5 Snohomish	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L14	PS_D_14 47° 4{PS_D_15	47° 52′ 36	4.6 Kitsap	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L15	PS_D_15 47° 52PS_D_16	47° 55′ 34	3.1 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L16	PS_D_16 47° 5!PS_D_17	47° 57′ 01	2.4 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L17	PS_D_17 47° 5 PS_D_18	47° 58′ 07	1.9 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L18	PS_D_18 47° 5{PS_D_19	48° 02′ 01	4.5 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L19	PS_D_19 48° 02PS_D_20	48° 04′ 48	2.8 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L20	PS_D_20 48° 04PS_D_21	48° 06′ 58	2.2 Jefferson	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L21	PS_D_21 48° 0(PS_D_22	48° 07′ 51	1.3 Jefferson	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L22	PS_D_22 48° 0 PS_D_23	48° 11′ 20	5.3 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L23	PS_D_23 48° 11PS_D_24	48° 11′ 44	1.4 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L24a	PS_D_24 48° 11 AA_A_1	48° 13′ 14	2.2 Island	0	0	SS	SS	SS
Admr_Anacortes	Arrival	X	N	L1	AA_A_1 48° 1; AA_A_2	48° 24′ 06 1	1.3 Island	0	0	18	SS	SS
Admr_Anacortes	Arrival	X	N	L2	AA_A_2 48° 24 AA_A_3		0.7 Island	0	0	16	12	SS
Admr_Anacortes	Arrival	Τ	N	L3a	AA_A_3 48° 24 RS_A_6	48° 28′ 00	3.2 Skagit	0	0	15	11	SS
PA_CherryPT	Arrival	Т	N	L6	RS_A_6 48° 28 RS_A_7	48° 30′ 01	2.0 Skagit	0	0	15	11	SS
PA_CherryPT	Arrival	Τ	N	L7	RS_A_7 48° 3(RS_A_8	48° 31′ 00	1.0 San Juan	0	0	15	11	SS
PA_CherryPT	Arrival	Τ	N	L8	RS_A_8 48° 3′ RS_A_9	48° 36′ 04	5.1 Skagit	0	0	15	11	SS
PA_CherryPT	Arrival	Т	N	L9	RS_A_9 48° 3(RS_A_10		2.1 Skagit	0	0	15	11	SS
PA_CherryPT	Arrival	T	N	L10	RS_A_10 48° 3′ RS_A_11		2.5 San Juan	0	0	15	11	SS
PA_CherryPT	Arrival	Τ	N	L11	RS_A_11 48° 4(RS_A_12		0.4 Whatcom	0	0	15	11	SS
PA_CherryPT	Arrival	Τ	N	L12	RS_A_12 48° 4(RS_A_13		5.3 Whatcom	0	0	15	11	SS
,							0.0	NT / CC	С . С	1		

Total Distance 98.2 nm

Note: SS - Service Speed

Puget Sound Emissions Inventory OGV-Routing: CHERRY POINT/FERNDALE to MARCH POINT

				- 2							- 1		,	
OGV-Routing	g: CHERRY	POIN'	T/FE	RNDALE	E to MARC	H POINT				Fast	Fast	Medium	Slow	Very Slow
Lat/Long in W	GS84 Datun	n											Bulkers	
												Reefer	Tankers	
DRAFT											Container	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	Starting WP Lat/Lon	End WP	Ending Waypoint Lat/Lon	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
CherryPT_PA	Departure	Т	N	L1	RS_D_2	48° 45′ 16′′ N 122° 47′ 14′′ W	RS_D_3	48° 40′ 34′′ N 122° 43′ 28′′ W	5.3 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	T	N	L2	RS_D_3	48° 40′ 34′′ N 122° 43′ 28′′ W	RS_D_4	48° 38′ 22′′ N 122° 43′ 58′′ W	2.2 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	T	N	L3	RS_D_4	48° 38′ 22′′ N 122° 43′ 58′′ W	RS_D_5	48° 37′ 43′′ N 122° 44′ 25′′ W	0.7 Skagit	0	0	15	13	SS
CherryPT_PA	Departure	T	N	L4	RS_D_5	48° 37′ 43′′ N 122° 44′ 25′′ W	RS_D_6	48° 36′ 06′′ N 122° 45′ 32′′ W	1.8 Skagit	0	0	15	13	SS
CherryPT_PA	Departure	T	N	L5	RS_D_6	48° 36′ 06′′ N 122° 45′ 32′′ W	RS_D_7	48° 33′ 58′′ N 122° 45′ 14′′ W	2.2 Skagit	0	0	15	13	SS
CherryPT_PA	Departure	T	N	L6	RS_D_7	48° 33′ 58′′ N 122° 45′ 14′′ W	RS_D_8	48° 32′ 48′′ N 122° 45′ 04′′ W	1.2 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	T	N	L7	RS_D_8	48° 32′ 48′′ N 122° 45′ 04′′ W	RS_D_9	48° 31′ 41′′ N 122° 44′ 54′′ W	1.1 Skagit	0	0	15	13	SS
CherryPT_MP	Arrival	X	Y	L1a	RS_D_9	48° 31′ 41′′ N 122° 44′ 54′′ W	MP_A_2	48° 31′ 00′′ N 122° 42′ 20′′ W	1.8 Skagit	0	0	14	11	SS
RS_MarchPT	Arrival	X	Y	L2	MP_A_2	48° 31′ 00′′ N 122° 42′ 20′′ W	MP_A_3	48° 31′ 04′′ N 122° 41′ 17′′ W	0.7 Skagit	0	0	14	11	SS
RS_MarchPT	Arrival	X	Y	L3	MP_A_3	48° 31′ 04′′ N 122° 41′ 17′′ W	MP_A_4	48° 31′ 34′′ N 122° 36′ 40′′ W	3.1 Skagit	0	0	11	8	SS
RS_MarchPT	Arrival	M	Y	L4	MP_A_4	48° 31′ 34′′ N 122° 36′ 40′′ W	MP_A_5	48° 31′ 23′′ N 122° 35′ 00′′ W	1.1 Skagit	0	0	9	7	6

Total Distance 21.3 nm

Speed by Link (knots)

Puget Sound Emissions Inventory
OGV-Routing: MARCH POINT to CHERRY POINT/FERNDALE

OGV-Routing: 1	MARCH P	OINT	to CHI	ERRY PO	INT/FEI	RND	LE				Fast	Fast	Medium	Slow	Very Slow
Lat/Long in WGS	884 Datum									•				Bulkers	
													Reefer	Tankers	
DRAFT												Container	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	WP I	End WP	aypoin l	Dist.	County	Cruise	Auto	Fishing	Fishing	Fishing
MarchPT_RS	Departure	M	Y	L1	MP_D_1	48° 3	MP_D_2	48° 31	1.1	Skagit	0	0	9	8	6
MarchPT_RS	Departure	M	Y	L2	MP_D_2	48° 3	MP_D_3	48° 31	3.1	Skagit	0	0	12	10	SS
MarchPT_RS	Departure	X	Y	L3	MP_D_3	48° 3	MP_D_4	48° 31	0.7	Skagit	0	0	14	11	SS
March PT_CPFrn	Departure	T	N	L1a	MP_D_4	48° 3	RS_A_8	48° 31	1.3	Skagit	0	0	14	11	SS
PA_CherryPT	Arrival	T	N	L8	RS_A_8	48° 3	RS_A_9	48° 36	5.1	Skagit	0	0	15	11	SS
PA_CherryPT	Arrival	T	N	L9	RS_A_9	48° 3	RS_A_10	48° 37	2.1	Skagit	0	0	15	11	SS
PA_CherryPT	Arrival	T	N	L10	RS_A_10	48° 3	RS_A_11	48° 40	2.5	San Juan	0	0	15	11	SS
PA_CherryPT	Arrival	T	N	L11	RS_A_11	48° 4	RS_A_12	48° 40	0.4	Whatcom	0	0	15	11	SS
PA_CherryPT	Arrival	T	N	L12	RS_A_12	48° 4	RS_A_13	48° 45	5.3	Whatcom	0	0	15	11	SS
							Total D	istance	21.6	nm	Note: SS	- Service Sp	eed		

Speed by Link (knots)

B-108

OGV-Routing: CHERRY POINT/FERNDALE to PORT ANGELES

Lat/Long in WGS84 Datum

												Reefer	Tankers	
DRAFT											Container	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	Starting WP Lat/Lon	End WP	Ending Waypoint Lat/Lon	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
CherryPT_PA	Departure	Т	N	L1	RS_D_2	48° 45′ 16′′ N 122° 47′ 14′′ W	RS_D_3	48° 40′ 34′′ N 122° 43′ 28′′ W	5.3 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	Τ	N	L2	RS_D_3	48° 40′ 34′′ N 122° 43′ 28′′ W	RS_D_4	48° 38′ 22′′ N 122° 43′ 58′′ W	2.2 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	Τ	N	L3	RS_D_4	48° 38′ 22′′ N 122° 43′ 58′′ W	RS_D_5	48° 37′ 43′′ N 122° 44′ 25′′ W	0.7 Skagit	0	0	15	13	SS
CherryPT_PA	Departure	Τ	N	L4	RS_D_5	48° 37′ 43′′ N 122° 44′ 25′′ W	RS_D_6	48° 36′ 06′′ N 122° 45′ 32′′ W	1.8 Skagit	0	0	15	13	SS
CherryPT_PA	Departure	Τ	N	L5	RS_D_6	48° 36′ 06′′ N 122° 45′ 32′′ W	RS_D_7	48° 33′ 58′′ N 122° 45′ 14′′ W	2.2 Skagit	0	0	15	13	SS
CherryPT_PA	Departure	Τ	N	L6	RS_D_7	48° 33′ 58′′ N 122° 45′ 14′′ W	RS_D_8	48° 32′ 48′′ N 122° 45′ 04′′ W	1.2 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	Т	N	L7	RS_D_8	48° 32′ 48′′ N 122° 45′ 04′′ W	RS_D_9	48° 31′ 41′′ N 122° 44′ 54′′ W	1.1 Skagit	0	0	15	13	SS
CherryPT_PA	Departure	Т	N	L8	RS_D_9	48° 31′ 41′′ N 122° 44′ 54′′ W	RS_D_10	48° 29′ 33′′ N 122° 44′ 36′′ W	2.1 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	X	N	L9	RS_D_10	48° 29′ 33′′ N 122° 44′ 36′′ W	RS_D_11	48° 28′ 53′′ N 122° 44′ 31′′ W	0.7 Skagit	0	0	15	13	SS
CherryPT_PA	Departure	X	N	L10	RS_D_11	48° 28′ 53′′ N 122° 44′ 31′′ W	RS_D_12	48° 27′ 12′′ N 122° 45′ 18′′ W	1.8 Skagit	0	0	15	13	SS
CherryPT_PA	Departure	X	N	L11	RS_D_12	48° 27′ 12′′ N 122° 45′ 18′′ W	RS_D_13	48° 26′ 10′′ N 122° 45′ 48′′ W	1.1 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	Τ	N	L12	RS_D_13	48° 26′ 10′′ N 122° 45′ 48′′ W	RS_D_14	48° 24′ 37′′ N 122° 48′ 09′′ W	2.2 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	Т	N	L13	RS_D_14	48° 24′ 37′′ N 122° 48′ 09′′ W	RS_D_15	48° 20′ 13′′ N 122° 58′ 21′′ W	8.1 San Juan	0	0	SS	SS	SS
CherryPT_PA	Departure	X	Y	L14a	RS_D_15	48° 20′ 13′′ N 122° 58′ 21′′ W	PS_D_27	48° 10′ 33′′ N 123° 23′ 03′′ W	19.0 Calallam	0	0	SS	SS	SS
CPFern_PA	Arrival	M	Y	L1a	PS_D_27	48° 10′ 33′′ N 123° 23′ 03′′ W	PA_A_2	48° 09′ 45′′ N 123° 23′ 25′′ W	0.8 Calallam	0	0	8	8	8
Sea_PortAngeles	Arrival	M	Y	L1	PA_A_2	48° 09′ 45′′ N 123° 23′ 25′′ W	PA_A_3	48° 08′ 21′′ N 123° 22′ 25′′ W	1.6 Calallam	0	0	8	8	8
Sea_PortAngeles	Arrival	M	Y	L2	PA_A_3	48° 08′ 21′′ N 123° 22′ 25′′ W	PA_A_4	48° 08′ 00′′ N 123° 23′ 48′′ W	1.0 Calallam	0	0	6	6	6

Total Distance 52.8 nm Note: SS - Service Speed

Speed by Link (knots)

Slow Very Slow

Bulkers

Fast Medium

OGV-Routing:	PORT AN	GELE	S to CI	HÉRRY F	OINT/FE	RN1	DALE		_	Fast	Fast	Medium	Slow	Very Slow
Lat/Long in WGS	S84 Datum												Bulkers	
												Reefer	Tankers	
DRAFT											Container	RO/RO	\mathbf{Log}	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP V	VP]	End WP	aypoir l	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
PortAngeles_Sea	Departure	M	Y	L1	PA_D_1 -	48° :	PA_D_2	48° 08	1.2 Calallam	0	0	6	6	6
PortAngeles_Sea	Departure	M	Y	L2	PA_D_2	48° 3	PA_D_3	48° 0!	1.5 Calallam	0	0	8	8	8
PortAngeles_Sea	Departure	\mathbf{M}	Y	L3a	PA_D_3 4	48°	PS_A_6	48° 09	0.5 Calallam	0	0	8	8	8
PA_CherryPT	Arrival	X	Y	L1a	PS_A_6	48°	RS_A_2	48° 10	13.1 Calallam	0	0	15	13.5	SS
PA_CherryPT	Arrival	Τ	N	L2	RS_A_2 4	48°	RS_A_3	48° 19	6.6 San Juan	0	0	13	13	SS
PA_CherryPT	Arrival	X	N	L3	RS_A_3	48°	RS_A_4	48° 24	8.3 San Juan	0	0	13	11	SS
PA_CherryPT	Arrival	Τ	N	L4	RS_A_4	48°	RS_A_5	48° 20	2.7 San Juan	0	0	13	11	SS
PA_CherryPT	Arrival	Т	N	L5	RS_A_5	48°	RS_A_6	48° 28	1.9 Skagit	0	0	13	11	SS
PA_CherryPT	Arrival	Т	N	L6	RS_A_6	48°	RS_A_7	48° 30	2.0 Skagit	0	0	13	11	SS
PA_CherryPT	Arrival	Τ	N	L7	RS_A_7	48°	RS_A_8	48° 31	1.0 San Juan	0	0	13	11	SS
PA_CherryPT	Arrival	Т	N	L8	RS_A_8	48°	RS_A_9	48° 30	5.1 Skagit	0	0	13	11	SS
PA_CherryPT	Arrival	Τ	N	L9	RS_A_9	48°	RS_A_10	48° 3′	2.1 Skagit	0	0	13	11	SS
PA_CherryPT	Arrival	Τ	N	L10	RS_A_10 4	48°	RS_A_11	48° 40	2.5 San Juan	0	0	13	11	SS
PA_CherryPT	Arrival	Т	N	L11	RS_A_11 4	48°	RS_A_12	48° 4(0.4 Whatcom	0	0	13	11	SS
PA_CherryPT	Arrival	Т	N	L12	RS_A_12 4			48° 4!	5.3 Whatcom	0	0	13	11	SS

Total Distance 54.0 nm Note: SS - Service Speed

Speed by Link (knots)

OGV-Routing:	CHERRY I	POINT	/FERI	NDALE t	to VANCO	UVER (NB3)				Fast	Fast	Medium	Slow	Very Slow
Lat/Long in WGS	S84 Datum												Bulkers	
												Reefer	Tankers	
DRAFT											Container	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	Starting WP Lat/Lon	End WP	Ending Waypoint Lat/Lon	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
CherryPT_PA	Departure	X	Y	L1a	RS_D_2	48° 45′ 16′′ N 122° 47′ 14′′ W	SG_D_1	48° 47′ 27′′ N 122° 51′ 18′′ W	3.45 San Juan	0	0	15	13	SS
BuoyYCA_NB3	Departure	T	N	L2	SG_D_1	48° 47′ 27′′ N 122° 51′ 18′′ W	SG_D_2	49° 00′ 09′′ N 123° 14′ 09′′ W	19.67 Whatcon	n 0	0	SS	SS	SS

Total Distance 23.12 nm Note: SS - Service Speed

Speed by Link (knots)

Puget Sound Emissions Inventory Speed by Link (knots) OGV-Routing: VANCOUVER (NB3) to CHERRY POINT/FERNDALE **Fast** Fast Medium Slow Very Slow Lat/Long in WGS84 Datum Bulkers Reefer **Tankers DRAFT** Log Container RO/RO Arr/Dep Mode NPE Link ID Start WP ing WP Lat, End WP ing Waypoint Lat, Dist. County Fishing Route Cruise Auto Fishing Fishing NB3_CherryPT NB3 A 1 49° 00′ 09′′ NB3 A 2 48° 49′ 10′′ N 12. 17.2 Whatcom Arrival SS SS SS NB3_CherryPT NB3_A_2 48° 49′ 10′′ NB3_A_3 48° 45′ 54′′ N 12′ 6.2 Whatcom SS SS 0 Arrival N L2 0 SS NB3_A_3 48° 45′ 54′′ RS_D_2 48° 45′ 16′′ N 12. 2.0 San Juan NB3_CherryPT Y L3a 17 13 SS Arrival CherryPT_Cross RS_D_2 48° 45′ 16′′ RS_A_13 48° 45′ 17′′ N 12′ 1.0 Whatcom Arrival X Y L1a 0 0 15 11 SS

Total Distance 26.4 nm Not

Puget Sound Emissions Inventory Speed by Link (knots) OGV-Routing: VANCOUVER (NB3) to VENDOVI ISLAND (ANCHORAGE) Slow Very Slow **Fast Fast** Medium Bulkers Lat/Long in WGS84 Datum Reefer **Tankers DRAFT** Container RO/RO Log Arr/Dep Mode NPE Link ID Start WP VP End WP po Dist. Route **Fishing** Fishing Fishing County Cruise Auto NB3_CherryPT NB3_A_1 4!NB3_A_2 48 Arrival N 17.2 Whatcom 0 0 SS SS L1 SS N L2 SS NB3_CherryPT Arrival NB3_A_2 4{NB3_A_3 4{ 6.2 Whatcom 0 0 SS SS NB3_CherryPT Arrival L3a NB3_A_3 48 RS_D_2 48 2.0 San Juan 17 13 0 0 SS Χ Y 15 CherryPT_Cross Arrival RS_D_2 4\ RS_D_3 4\ 5.3 San Juan SS L1 0 0 11 CherryPT_PA Departure Y RS_D_3 48 SG_A_1 48 1.7 San Juan 0 13 9 Χ L2a 0 SS GStght_Vendovi Χ Y SG_A_1 48 SG_A_2 48 1.1 Whatcom 8 SS Arrival L1 0 0 12 GStght_Vendovi SS Arrival Μ Y L2 SG_A_2 4\(\text{VI_AN_3 4\(\text{VI}}\) 2.2 Skagit 0 0 6 4

Total Distance 35.6 nm

Puget Sour	nd Emis	ssions	Inve	ntory								Speed	d by Link (knots)	
OGV-Routing	g: SEA to	MARC	H PO	INT							Fast	Fast	Medium	Slow	Very Slow
Lat/Long in W	GS84 Dat	um												Bulkers	
													Reefer	Tankers	
DRAFT												Container	RO/RO	Log	Other
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	ng WP Lat	End WP	Waypoint	Dist.	County	Cruise	Auto	Fishing	Fishing	Fishing
Sea_Tacoma	Arrival	Т	N	L1	PS_A_1	48° 28′ 30	PS_A_2	48° 28′ 3	10.7	Calallam	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L2	PS_A_2	48° 28′ 38	PS_A_3	48° 13′ 2	35.9	Calallam	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L3	PS_A_3	48° 13′ 22	PS_A_4	48° 13′ 2	15.4	Calallam	0	0	SS	SS	SS
Sea_Tacoma	Arrival	X	N	L4	PS_A_4	48° 13′ 20	PS_A_5	48° 09′ 2	6.9	Calallam	0	0	15	12	SS
Sea_Tacoma	Arrival	M	N	L5	PS_A_5	48° 09′ 20	PS_A_6	48° 09′ 5	0.6	Calallam	0	0	8	8	8
PA_CherryPT	Arrival	X	N	L1a	PS_A_6	48° 09′ 58	RS_A_2	48° 16′ 0	13.1	Calallam	0	0	15	13.5	SS
PA_CherryPT	Arrival	Τ	N	L2	RS_A_2	48° 16′ 08	RS_A_3	48° 19′ 4	6.6	San Juan	0	0	15	13	SS
PA_CherryPT	Arrival	X	N	L3	RS_A_3	48° 19′ 40	RS_A_4	48° 24′ 0	8.3	San Juan	0	0	15	11	SS
PA_CherryPT	Arrival	Τ	N	L4	RS_A_4	48° 24′ 06	RS_A_5	48° 26′ 1	2.7	San Juan	0	0	15	11	SS
PA_CherryPT	Arrival	T	N	L5	RS_A_5	48° 26′ 13	RS_A_6	48° 28′ 0	1.9	Skagit	0	0	15	11	SS
PA_CherryPT	Arrival	T	N	L6	RS_A_6	48° 28′ 00	RS_A_7	48° 30′ 0	2.0	Skagit	0	0	15	11	SS
RS_MarchPT	Arrival	T	N	L1a	RS_A_7	48° 30′ 01	MP_A_2	48° 31′ 0	1.6	Skagit	0	0	13	11	SS
RS_MarchPT	Arrival	X	Y	L2	MP_A_2	48° 31′ 00	MP_A_3	48° 31′ 0	0.7	Skagit	0	0	13	11	SS
RS_MarchPT	Arrival	X	Y	L3	MP_A_3	48° 31′ 04	MP_A_4	48° 31′ 3	3.1	Skagit	0	0	11	8	SS
RS MarchPT	Arrival	M	Y	L4	MP A 4	48° 31′ 34	MP A 5	48° 31′ 2	1.1	Skagit	0	0	9	7	6

Total Distance 110.5 nm

Puget Sound Emissions Inventory Speed by Link (knots) **OGV-Routing: MARCH POINT HARBOR** Fast Medium Slow **Fast** Very Slow Bulkers Lat/Long in WGS84 Datum Reefer Tankers DRAFT Container RO/RO Log Route Arr/Dep Link ID Start WP 1g WP La End WP g Waypoint La Dist. Fishing Fishing Fishing County Cruise Auto RS_MarchPT MP_A_5 48° 31′ 2 Mode: L4 Skagit MarchPT_RS Departure L5 MP_D_5 48° 30′ 3. NPE: Skagit NOTE: All ARRIVAL harbor transits branch from MP A 5 NOTE: All DEPARTURE harbor transits goto MP_D_5 MP A 5 48° 31′ 2 MP B 1 23′′ N 122° 35 MP_Shell 0.81 Skagit Arrival L1a 0 MP_Shell L1a MP_B_1 '' N 122° MP_D_5 48° 30′ 33'' N 0.81 Skagit 0 0 Departure MP Tosoro MP_A_5 48° 31′ 2 MP_B_2 32′′ N 122° 34 1.02 Skagit Arrival L1a 0 MP_Tosoro L1a MP_B_2 '' N 122° MP_D_5 48° 30′ 33'' N 1.02 Skagit 0 0 Departure MP_Anchorage MP_A_5 48° 31′ 2MP_AN_126′′ N 122° 33 0.69 Skagit Arrival L1a 0 0.69 Skagit MP_Anchroage Departure MP_AN_1" N 122° MP_D_5 48° 30′ 33" N 0 0 L1a

Puget Sour	nd Emiss	sions	Inven	itory				Spee	d by Link (1	knots)				
OGV-Routing	: MARCH	POIN	T to S	EA						Fast	Fast	Medium	Slow	Very Slow
Lat/Long in W	GS84 Datu	m							•				Bulkers	
												Reefer	Tankers	
DRAFT											Container	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	g WP L	End WF	7aypoint	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
MarchPT_RS	Departure	M	Y	L1	MP_D_1	48° 31	′ MP_D_2	2 48° 31′	1.1 Skagit	0	0	9	8	6
MarchPT_RS	Departure		Y	L2	MP_D_2	48° 31	MP_D_3	3 48° 31′	3.1 Skagit	0	0	12	10	SS
MarchPT_RS	Departure	X	Y	L3	MP_D_3	48° 31	′ MP_D_4	48° 31′	0.7 Skagit	0	0	14	11	SS
MarchPT_RS	Departure	T	N	L4a	MP_D_4	48° 31	RS_A_7	48° 30′	1.6 Skagit	0	0	15	13	SS
MarchPT_RS	Departure	T	N	L5a	RS_A_7	48° 30′	' RS_D_10) 48° 29′	0.8 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	Т	N	L10	RS_D_10	48° 29	' RS_D_1	1 48° 28′	0.7 Skagit	0	0	15	13	SS
CherryPT_PA	Departure	Τ	N	L11	RS_D_11	48° 28	RS_D_12	2 48° 27′	1.8 Skagit	0	0	15	13	SS
CherryPT_PA	Departure	Τ	N	L12	RS_D_12	48° 27	' RS_D_1	3 48° 26′	1.1 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	Τ	N	L13	RS_D_13	48° 26	' RS_D_1	4 48° 24′	2.2 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	Τ	N	L14	RS_D_14	48° 24	' RS_D_1	5 48° 20′	8.1 San Juan	0	0	SS	SS	SS
CherryPT_PA	Departure	X	N	L15a	RS_D_15	48° 20	PS_D_2	7 48° 10′	19.0 Calallam	0	0	SS	SS	SS
Tacoma_Sea	Departure	M	N	L27	PS_D_27	48° 10′	PS_D_28	3 48° 11′	0.8 Calallam	0	0	8	8	8
Tacoma_Sea	Departure	X	N	L28	PS_D_28	48° 11	PS_D_29	48° 14′	4.9 Calallam	0	0	14	12	SS
Tacoma_Sea	Departure	Τ	N	L29	PS_D_29	48° 14	PS_D_30	48° 15′	3.1 Calallam	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L30	PS_D_30	48° 15	PS_D_31	48° 17′	15.4 Calallam	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L31	PS_D_31	48° 17	PS_D_32	2 48° 30′	34.1 Calallam	0	0	SS	SS	SS
Tacoma_Sea	Departure	T	N	L32	PS_D_32	48° 30′	PS_D_33	3 48° 30′	10.9 Calallam	0	0	SS	SS	SS

Total Distance 109.2 nm Note: SS - Service Speed

OGV-Routing: M	IARCH PO	OINT to	o VAN	COUVER	R (NB3)			_	Fast	Fast	Medium	Slow	Very Slow
Lat/Long in WGS	84 Datum							_				Bulkers	<u>.</u>
											Reefer	Tankers	
DRAFT										Container	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	WP 1 End WP ty	poi Dis	t. County	Cruise	Auto	Fishing	Fishing	Fishing
MarchPT_RS	Departure	M	Y	L1	MP_D_1	48° 3 MP_D_2	48° : 1.	1 Skagit	0	0	9	8	6
MarchPT_RS	Departure	X	Y	L2	MP_D_2	48° 3 MP_D_3	48° : 3.	1 Skagit	0	0	12	10	SS
MarchPT_RS	Departure	X	Y	L3	MP_D_3	48° 3 MP_D_4	48° : 0.	7 Skagit	0	0	14	11	SS
March PT_CPFrn	Departure	Т	N	L1a	MP_D_4	48° : RS_A_8	48° : 1.	3 Skagit	0	0	14	11	SS
PA_CherryPT	Arrival	Т	N	L8	RS_A_8	48° 3 RS_A_9	48° : 5.	1 Skagit	0	0	15	13	SS
PA_CherryPT	Arrival	Τ	N	L9	RS_A_9	48° 3 RS_A_10	48° : 2.	1 Skagit	0	0	15	13	SS
PA_CherryPT	Arrival	Τ	N	L10	RS_A_10	48° 3 RS_A_11	48° 4 2.	5 San Juan	0	0	15	13	SS
PA_CherryPT	Arrival	Τ	N	L11	RS_A_11	48° 4 RS_A_12	48° 4 0.	4 Whatcom	0	0	15	13	SS
PA_CherryPT	Arrival	Τ	N	L12	RS_A_12	48° 4 RS_A_13	48° 4 5.	3 Whatcom	0	0	15	13	SS
BuoyYCA_NB3	Departure	Т	N	L1a	RS_A_13	48° ⁴ SG_D_1	48° 4 4.	2 Whatcom	0	0	17	13	SS
BuoyYCA_NB3	Departure	Т	N	L2	SG_D_1	48° 4 SG_D_2	49° (19.	7 Whatcom	0	0	SS	SS	SS

Total Distance 45.4 nm Note: SS - Service Speed

Speed by Link (knots)

Puget Sound	l Emissi	ons Ir	vent	ory			Spee	d by Link ((knots)				
OGV-Routing:	VANCOU	VER (NB3) t	o MARCI	H POINT				Fast	Fast	Medium	Slow	Very Slow
Lat/Long in WG	S84 Datum											Bulkers	
											Reefer	Tankers	
DRAFT										Container	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP g W	P L End WP Va	ypoint Dist.	County	Cruise	Auto	Fishing	Fishing	Fishing
NB3_CherryPT	Arrival	Т	N	L1	NB3_A_1 49°	00°NB3_A_2 48	8° 49′ 17.2	Whatcom	0	0	SS	SS	SS
NB3_CherryPT	Arrival	Τ	N	L2	NB3_A_2 48°	49 NB3_A_3 48	8° 45′ 6.2	Whatcom	0	0	SS	SS	SS
NB3_CherryPT	Arrival	X	N	L3a	NB3_A_3 48°	45 RS_D_2 48	8° 45′ 2.0	San Juan	0	0	17	13	SS
CherryPT_PA	Departure	Т	N	L1	RS_D_2 48°	45 RS_D_3 48	8° 40′ 5.3	San Juan	0	0	15	11	SS
CherryPT_PA	Departure	Т	N	L2	RS_D_3 48°	40° RS_D_4 48	8° 38′ : 2.2	San Juan	0	0	15	11	SS
CherryPT_PA	Departure	Τ	N	L3	RS_D_4 48°	38 RS_D_5 48	8° 37′ 0.7	Skagit	0	0	15	11	SS
CherryPT_PA	Departure	Τ	N	L4	RS_D_5 48°	37 RS_D_6 48	8° 36′ 1.8	Skagit	0	0	15	11	SS
CherryPT_PA	Departure	Τ	N	L5	RS_D_6 48°	36 RS_D_7 48	8° 33′ 2.2	Skagit	0	0	15	11	SS
CherryPT_PA	Departure	Τ	N	L6	RS_D_7 48°	33 RS_D_8 48	8° 32′ 1.2	San Juan	0	0	15	11	SS
CherryPT_PA	Departure	Т	N	L7	RS_D_8 48°	32 RS_D_9 48	8° 31′ 1.1	Skagit	0	0	15	11	SS
CherryPT_MP	Arrival	Т	N	L1a	RS_D_9 48°	31 MP_A_2 48	8° 31′ 1.8	Skagit	0	0	14	11	SS
RS_MarchPT	Arrival	X	Y	L2	MP_A_2 48°	31 MP_A_3 48	8° 31′ 0.7	Skagit	0	0	14	11	SS
RS_MarchPT	Arrival	X	Y	L3	MP_A_3 48°	31 MP_A_4 48	8° 31′ 3.1	Skagit	0	0	11	8	SS
RS_MarchPT	Arrival	M	Y	L4	MP_A_4 48°	31 MP_A_5 48	8° 31′: 1.1	Skagit	0	0	9	7	6

Total Distance 46.6 nm

Puget Sound Emissions Inventory Speed by Link (knots) OGV-Routing: MARCH POINT to VENDOVI ISLAND (ANCHORAGE) **Fast** Medium Slow Very Slow Fast Lat/Long in WGS84 Datum **Bulkers** Reefer Tankers DRAFT Container RO/RO Log Route Arr/Dep Mode NPE Link ID Start WP 1g WP La End WP 2 Waypoint L Dist. County Cruise Auto Fishing Fishing Fishing MarchPT_Vendovi Departure Μ MP D 1 48° 31′ 2 VI D 1 48° 31′ 33′′ 1 1.0 Skagit SS Y 9 L1 0 0 MarchPT_Vendovi Departure Μ Y L2 VI_D_1 48° 31′ 1 VI_D_2 48° 34′ 57′′ 1 3.6 Skagit 0 0 10 8 SS VI_D_2 48° 34′ !VI_AN_3 48° 37′ 16′′ I MarchPT_Vendovi Departure Y L3 3.0 Skagit 0 0 6 5 4

Total Distance 7.6 nm Note: SS - Service Speed

Speed by Link (knots) Medium

Slow Very Slow

Bulkers

OGV-Routing: VENDOVI ISLAND ((ANCHORAGE) to MARCH POINT
-------------------------------	----------------------------

Lat/Long in	WGS84	Datum
-------------	-------	-------

											Reefer	Tankers	
DRAFT										Container	RO/RO	\mathbf{Log}	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP 1g V	WP La End WP	Waypoint L	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
Vendovi_MarchPT	Arrival	M	Y	L1	VI_AN_3 48	° 37′′ VI_A_2	48° 34′ 57′′	3.0 Skagit	0	0	6	5	4
Vendovi_MarchPT	Arrival	X	Y	L2	VI_A_2 48	° 34′ : VI_A_1	48° 31′ 33′′	3.6 Skagit	0	0	12	9	SS
Vendovi_MarchPT	Arrival	M	Y	L3	VI_A_1 48	° 31′ ; MP_A_5	48° 31′ 23′′	1.0 Skagit	0	0	9	7	SS

Note: SS - Service Speed Total Distance 7.6 nm

Fast

Puget Sound E	Emission	s Inve	entory	7			Spee	d by Link (knots)					
OGV-Routing: VE	NDOVI IS	SLAND	(ANC	HORAG	E) to ANA	CORTES	3			Fast	Fast	Medium	Slow	Very Slow
Lat/Long in WGS84	1 Datum												Bulkers	
												Reefer	Tankers	
DRAFT											Container	RO/RO	\mathbf{Log}	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	ing WP I	Lat/ End WP	3 Waypoint L	Dist. Coun	ty Cruise	Auto	Fishing	Fishing	Fishing
Vendovi_MarchPT	Arrival	M	Y	L1	VI_AN_3	48° 37′ 1	6'' VI_A_2	48° 34′ 57′′ 1	3.0 Skagit	0	0	6	5	4
Vendovi_MarchPT	Arrival	X	Y	L2	VI_A_2	48° 34′ 5	7′′ VI_A_1	48° 31′ 33′′ 1	3.6 Skagit	0	0	12	9	SS
Vendovi_MarchPT	Arrival	M	Y	L3	VI_A_1	48° 31′ 3	3′′ MP_D_1	48° 31′ 23′′ 1	1.0 Skagit	0	0	9	7	SS
MarchPT_RS	Departure	X	Y	L1	MP_D_1	48° 31′ 2	.3′′ MP_D_2	48° 31′ 34′′ 1	1.1 Skagit	0	0	12	9	SS
_		•	•		•	•		Total Distance	8.7 nm	Note: S	S - Service Sp	eed		

Puget Sound Emissions Inventory OGV-Routing: VENDOVI ISLAND to TACOMA

Lat/Long in WGS DRAFT	S84 Datum					•		Container	Reefer RO/RO	Bulkers Tankers Log	, es y es e
Route	Arr/Dep	Mode	NPE	Link ID	Start WP 1g WP La End WP pt I	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
Vendovi_RS	Departure	M	Y	L1a	VI_AN_3 48° 37′ 1 BH_D_4 4	1.5 Skagit	0	0	6	4	SS
Bellingham_RS	Departure	X	Y	L3	BH_D_4 48° 36′ 0′ BH_D_3 4	2.9 Skagit	0	0	12	10	SS
Bellingham_RS	Departure	X	Y	L2	BH_D_3 48° 33′ 1: BH_D_2 4	3.7 Skagit	0	0	12	10	SS
Bellingham_RS	Departure	X	Y	L1a	BH_D_2 48° 30′ 0 RS_A_6 4	2.2 Skagit	0	0	14	11	SS
Bellingham_RS	Departure	X	Y	L0a	RS_A_6 48° 28′ 0 AA_D_2 4	1.9 San Juan	0	0	15	11	SS
Anacortes_Admr	Departure	X	N	L2	AA_D_2 48° 24′ 0 AA_D_3 4	1.8 San Juan	0	0	16	12	SS
Anacortes_Admr	Departure	X	N	L3	AA_D_3 48° 22′ 2 AA_D_4 4	9.3 Island	0	0	17	13	SS
Anacortes_Admr	Departure	T	N	L4	AA_D_4 48° 13′ 2' AA_D_5 4	2.1 Island	0	0	SS	SS	SS
Anacortes_Admr	Departure	T	N	L5a	AA_D_5 48° 11′ 3 PS_A_9 4	0.6 Jefferson	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L9	PS_A_9 48° 10′ 5′ PS_A_10 4	6.8 Jefferson	0	0	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L10	PS_A_10 48° 06′ 3 PS_A_11 4	5.6 Jefferson	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L11	PS_A_11 48° 01′ 0 PS_A_12 4	4.0 Island	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L12	PS_A_12 47° 57′ 4 PS_A_13 4	1.8 Island	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L13	PS_A_13 47° 56′ 3 PS_A_14 4	2.3 Kitsap	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L14	PS_A_14 47° 55′ 1′ PS_A_15 4	9.7 Kitsap	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L15	PS_A_15 47° 45′ 5 PS_A_16 4	6.3 Kitsap	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L16	PS_A_16 47° 39′ 4. PS_A_17 4	5.2 Kitsap	0	18	16	13	SS
Sea_Tacoma	Arrival	Τ	N	L17	PS_A_17 47° 34′ 3. PS_A_18 4	2.8 Kitsap	0	17	16	13	SS
Sea_Tacoma	Arrival	X	Y	L18	PS_A_18 47° 31′ 5 PS_A_19 4	5.3 King	0	16	16	13	SS
Sea_Tacoma	Arrival	X	Y	L19	PS_A_19 47° 26′ 4 PS_A_20 4	4.1 King	0	17	17	13	SS
Sea_Tacoma	Arrival	X	Y	L20	PS_A_20 47° 23′ 0' PS_A_21 4	5.3 King	0	14	13	12	SS
Sea_Tacoma	Arrival	M	Y	L21	PS_A_21 47° 19′ 3' PS_A_22 4	0.5 King	0	10	10	10	9
Sea_Tacoma	Arrival	M	Y	L22	PS_A_22 47° 19′ 1 PS_A_23 4	1.1 Pierce	0	10	10	10	8

Total Distance 86.8 nm Note: SS - Service Speed

Speed by Link (knots)

Slow

Very Slow

Medium

Fast

OGV-Routing: MARCH POINT to PORT ANGELES

Lat/Long in WGS	S84 Datum										Reefer	Bulkers Tankers	
DRAFT										Container	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	WP I End V	VP 7aypoin: 1	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
MarchPT_RS	Departure	M	Y	L1	MP_D_1	48° 3 MP_D	_2 48° 31′	1.1 Skagit	0	0	9	8	6
MarchPT_RS	Departure	X	Y	L2	MP_D_2	48° 3 MP_D	_3 48° 31′	3.1 Skagit	0	0	12	10	SS
MarchPT_RS	Departure	X	Y	L3	MP_D_3	48° 3 MP_D	_4 48° 31′	0.7 Skagit	0	0	14	11	SS
MarchPT_RS	Departure	X	Y	L4a	MP_D_4	48° 3 RS_A	_7 48° 30′	1.6 Skagit	0	0	15	13	SS
MarchPT_RS	Departure	X	Y	L5a	RS_A_7	48° 3 RS_D_	_10 48° 29′	0.8 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	X	Y	L10	RS_D_10	48° 2 RS_D_	_11 48° 28′	0.7 Skagit	0	0	15	13	SS
CherryPT_PA	Departure	T	N	L11	RS_D_12	48° 2 RS_D_	_13 48° 26′	1.1 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	Τ	N	L12	RS_D_13	48° 2 RS_D_	_14 48° 24′	2.2 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	Τ	N	L13	RS_D_14	48° 2 RS_D_	_15 48° 20′	8.1 San Juan	0	0	SS	SS	SS
CherryPT_PA	Departure	X	N	L14a	RS_D_15	48° 2 PS_D_	_27 48° 10′	19.0 Calallam	0	0	SS	SS	13
CPFern_PA	Arrival	X	Y	L1a	PS_D_27	48° 1 PA_A	_2 48° 09′	0.8 Calallam	0	0	8	8	8
Sea_PortAngeles	Arrival	M	Y	L1	PA_A_2	48° (PA_A	_3 48° 08′	1.6 Calallam	0	0	8	8	8
Sea_PortAngeles	Arrival	M	Y	L2	PA_A_3	48° (PA_A	_4 48° 08′	1.0 Calallam	0	0	6	6	6

Total Distance 41.7 nm Note: SS - Service Speed

Fast

Fast

Speed by Link (knots)

Slow

Very Slow

Medium

OGV-Routing: PORT ANGELES to MARCH POINT

Lat/Long in WGS	S84 Datum									C	Reefer	Bulkers Tankers	
DRAFT Route	Arr/Dep	Mode	NPE	Link ID	Start WP	g WP L End WI	Waypoint	Dist. County	Cruise	Container Auto	RO/RO Fishing	Log Fishing	Fishing
PortAngeles_Sea			Y	L1		48° 08 PA_D_2	7.1		0	0	6	6	6
PortAngeles_Sea	*		Y	L2	PA_D_2	48° 08 PA_D_3	48° 09′ 36	1.5 Calallam	0	0	8	8	8
PortAngeles_Sea	Departure	\mathbf{M}	Y	L3a	PA_D_3	48° 09 PS_A_6	48° 09′ 58	0.5 Calallam	0	0	8	8	8
PA_CherryPT	Arrival	X	Y	L1a	PS_A_6	48° 09 RS_A_2	48° 16′ 08	13.1 Calallam	0	0	15	13.5	SS
PA_CherryPT	Arrival	Τ	N	L2	RS_A_2	48° 16 RS_A_3	48° 19′ 40	6.6 San Juan	0	0	15	13	SS
PA_CherryPT	Arrival	Τ	N	L3	RS_A_3	48° 19 RS_A_4	48° 24′ 0€	8.3 San Juan	0	0	15	11	SS
PA_CherryPT	Arrival	Τ	N	L4	RS_A_4	48° 24 RS_A_5	48° 26′ 13	2.7 San Juan	0	0	15	11	SS
PA_CherryPT	Arrival	Τ	N	L5	RS_A_5	48° 26 RS_A_6	48° 28′ 00	1.9 Skagit	0	0	15	11	SS
PA_CherryPT	Arrival	Τ	N	L6	RS_A_6	48° 28 RS_A_7	48° 30′ 01	2.0 Skagit	0	0	15	11	SS
RS_MarchPT	Arrival	Т	N	L1a	RS_A_7	48° 30 MP_A_2	2 48° 31′ 00	1.6 Skagit	0	0	14	11	SS
RS_MarchPT	Arrival	X	Y	L2	MP_A_2	48° 31 MP_A_3	3 48° 31′ 0 ²	0.7 Skagit	0	0	14	11	SS
RS_MarchPT	Arrival	X	Y	L3	MP_A_3	48° 31 MP_A_4	48° 31′ 34	3.1 Skagit	0	0	11	8	SS
RS_MarchPT	Arrival	M	Y	L4	MP_A_4	48° 31 MP_A_5	5 48° 31′ 23	1.1 Skagit	0	0	9	7	6

Total Distance 44.2 nm

Speed by Link (knots)

Medium

Slow Very Slow

Fast

Puget Sound Emissions Inventory OGV-Routing: MARCH POINT to SEATTLE

Lat/Long in WGS		J11 (1 C	0 0211	1122			•	1 451	1 401	Wediam	Bulkers	very blow
Lat/Long in wGo	04 Datum									Reefer	Tankers	
DRAFT									Container		Log	
Route	Arr/Den	Mode	NPF	I ink ID	Start W/P	WP L End WP Vaypoint	Diet County	Cruise	Auto	Fishing	Fishing	Fishing
MarchPT_RS	Departure		Y	L1		48° 31 MP_D_2 48° 31′ 3		0	0	9	8	6
MarchPT_RS	Departure		Y	L1 L2		48° 31 MP_D_3 48° 31′ (3.1 Skagit	0	0	12	10	SS
MarchPT_RS	~		Y	L3		48° 31 MP_D_4 48° 31′ (0.7 Skagit	0	0	14	11	SS
—	Departure		Y				0	0	0			SS
MarchPT_RS	Departure		_	L4a		48° 31 RS_A_7 48° 30′ (1.6 Skagit	~	· ·	15	13	
MarchPT_RS	Departure		Y	L5a		48° 30 RS_D_10 48° 29′ 3	0.8 San Juan	0	0	15	13	SS
CherryPT_PA	Departure		Y	L9		48° 29 RS_D_11 48° 28′ 5	0.7 Skagit	0	0	15	13	SS
CherryPT_PA	Departure		N	L10a		48° 28 AA_D_1 48° 26′ (2.8 Skagit	0	0	15	13	SS
Anacortes_Admr	*		N	L1		48° 26 AA_D_2 48° 24′ (1.9 San Juan	0	0	15	13	SS
Anacortes_Admr	Departure	T	N	L2	AA_D_2	48° 24 AA_D_3 48° 22′ 2	1.8 San Juan	0	0	16	13	SS
Anacortes_Admr	Departure	T	N	L3	AA_D_3	48° 22 AA_D_4 48° 13′ 2	9.3 Island	0	0	17	13	SS
Anacortes_Admr	Departure	T	N	L4	AA_D_4	48° 13 AA_D_5 48° 11′ 3	2.1 Island	0	0	SS	SS	SS
Anacortes_Admr	Departure	T	N	L5a	AA_D_5	48° 11 PS_A_9 48° 10′ 5	0.6 Jefferson	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L9	PS_A_9	48° 10 PS_A_10 48° 06′ 3	6.8 Jefferson	0	0	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L10	PS_A_10	48° 06 PS_A_11 48° 01′ (5.6 Jefferson	0	0	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L11	PS_A_11	48° 01 PS_A_12 47° 57′ ²	4.0 Island	0	0	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L12	PS_A_12	47° 57 PS_A_13 47° 56′ 3	1.8 Island	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L13		47° 56 PS_A_14 47° 55′ 1	2.3 Kitsap	0	0	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L14		47° 55 PS_A_15 47° 45′ 5	9.7 Kitsap	0	0	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L15		47° 45 PS_A_16 47° 39′ 4	6.3 Kitsap	0	0	13	SS	SS
PS_ElliottB	Arrival	X	Y	L1a		47° 39 EB_A_2 47° 39′ 2	0.4 Kitsap	0	0	13	9	8
PS_ElliottB	Arrival	X	Y	L2		47° 39 EB_A_3 47° 38′ 1	1.5 King	0	0	12	8	7
		M	Y	L3			0	0	0	11		6
PS_ElliottB	Arrival	M	Y	L3	EB_A_3	47° 38 EB_A_4 47° 36′ 5	2.6 King	U	U	11	6	6

Total Distance 67.5 nm Note: SS - Service Speed

Speed by Link (knots)

Very Slow

Fast Medium Slow

Puget Sound Emissions Inventory OGV-Routing: SEATTLE to MARCH POINT

Lat/Long in WG	S84 Datum	ı									ъ .	Bulkers	-
DRAFT										Container	Reefer	Tankers	
Route	Arr/Don	Mode	NDF	Link ID	Start W/D	WP I End WP	'avnain T	Dist. County	Cruise	Auto	Fishing	Log Fishing	Fishing
ElliottB_PS			Y	Link 1D		47° 3(EB_D_2	<i>v</i> 1	2.6 King	0	0	9	8	6
ElliottB_PS	Departure Departure		Y	L1 L2a		47° 31 PS_D_10		1.5 King	0	0	SS	SS	7
Tacoma_Sea	Departure		N	L2a L10		47° 3!PS_D_10		2.3 King	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L10 L11		47° 4 PS_D_12		4.0 Kitsap	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L11		47° 4. PS_D_13		0.8 King	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L12		47° 4.1°3_D_13		1.5 Snohomish	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L13 L14		47° 4(PS_D_15		4.6 Kitsap	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L14 L15		47° 5′ PS_D_16		3.1 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L13		47° 5.175_D_10		2.4 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L17		47° 5′ PS_D_18		1.9 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L17		47° 51'S_D_10		4.5 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L19		48° 0. PS_D_20		2.8 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L20		48° 0. PS_D_21		2.2 Jefferson	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L21		48° 0 PS_D_22		1.3 Jefferson	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L22		48° 0′ PS_D_23		5.3 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L23		48° 1 PS_D_24		1.4 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L24a		48° 1 AA_A_1		2.2 Island	0	0	SS	SS	SS
Admr_Anacortes		T	N	L1		48° 1: AA_A_2			0	0	18	SS	SS
Admr_Anacortes		X	N	L2		48° 2. AA_A_3		0.7 Island	0	0	16	12	SS
Admr_Anacortes		T	N	L3a		48° 24 RS_A_6		3.2 Skagit	0	0	15	11	SS
PA_CherryPT	Arrival	Т	N	L6		48° 21 RS_A_7		2.0 Skagit	0	0	15	11	SS
RS_MarchPT	Arrival	Т	N	L1a		48° 3(MP_A_2		1.6 Skagit	0	0	14	11	SS
RS_MarchPT	Arrival	X	Y	L2		48° 3 MP_A_3		0.7 Skagit	0	0	14	11	SS
RS_MarchPT	Arrival	M	Y	L3		48° 3 MP_A_4		3.1 Skagit	0	0	11	8	SS
RS_MarchPT	Arrival	M	Y	L4		48° 3 MP_A_5		1.1 Skagit	0	0	9	7	6

Total Distance 68.1 nm Note: SS - Service Speed

Speed by Link (knots)

Medium

Fast

Fast

Slow

Very Slow

Puget Sound Emissions Inventory OGV-Routing: MARCH POINT to TACOMA

Lat/Long in WGS DRAFT Route		Mode	NPE	Link ID	Start WP	WP I End WP aypoin	Dist.	County	Cruise	Container Auto	Reefer RO/RO Fishing	Bulkers Tankers Log Fishing	Fishing
MarchPT_RS	Departure	M	Y	L1	MP_D_1	48° 3 MP_D_2 48° 3	1 1.1	Skagit	0	0	9	8	6
MarchPT_RS	Departure	M	Y	L2	MP_D_2	48° 3 MP_D_3 48° 3	1 3.1	Skagit	0	0	12	10	SS
MarchPT_RS	Departure	M	Y	L3	MP_D_3	48° 3 MP_D_4 48° 3	1 0.7	Skagit	0	0	14	11	SS
MarchPT_RS	Departure	M	Y	L4a	MP_D_4	48° 3 RS_A_7 48° 3	1.6	Skagit	0	0	15	13	SS
MarchPT_RS	Departure	M	Y	L5a	RS_A_7	48° 3 RS_D_10 48° 2	0.8	San Juan	0	0	15	13	SS
CherryPT_PA	Departure	X	Y	L9	RS_D_10	48° 2 RS_D_11 48° 2	8 0.7	Skagit	0	0	15	13	SS
CherryPT_PA	Departure	Т	N	L10a	RS_D_14	48° 2 AA_D_1 48° 2	ć 2.8	Skagit	0	0	15	13	SS
Anacortes_Admr	Departure	Т	N	L1	AA_D_1	48° 2 AA_D_2 48° 2	4 1.9	San Juan	0	0	15	13	SS
Anacortes_Admr	Departure	Т	N	L2	AA_D_2	48° 2 AA_D_3 48° 2	2 1.8	San Juan	0	0	16	13	SS
Anacortes_Admr	Departure	T	N	L3	AA_D_3	48° 2 AA_D_4 48° 1	9.3	Island	0	0	17	13	SS
Anacortes_Admr	Departure	T	N	L4	AA_D_4	48° 1 AA_D_5 48° 1	1 2.1	Island	0	0	SS	SS	SS
Anacortes_Admr	Departure	T	N	L5a	AA_D_5	48° 1 PS_A_9 48° 1	0.6	Jefferson	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L9	PS_A_9	48° 1 PS_A_10 48° 0	6.8	Jefferson	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L10	PS_A_10	48° (PS_A_11 48° 0	1 5.6	Jefferson	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L11	PS_A_11	48° (PS_A_12 47° 5	7 4.0	Island	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L12	PS_A_12	47° 5 PS_A_13 47° 5	ć 1.8	Island	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L13	PS_A_13	47° 5 PS_A_14 47° 5	5 2.3	Kitsap	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L14	PS_A_14	47° 5 PS_A_15 47° 4	5 9.7	Kitsap	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L15	PS_A_15	47° 4 PS_A_16 47° 3	6.3	Kitsap	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L15	PS_A_15	47° 4 PS_A_16 47° 3	6.3	Kitsap	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L16	PS_A_16	47° 3 PS_A_17 47° 3	4 5.2	Kitsap	0	0	16	13	SS
Sea_Tacoma	Arrival	Τ	N	L17	PS_A_17	47° 3 PS_A_18 47° 3	1 2.8	Kitsap	0	0	16	13	SS
Sea_Tacoma	Arrival	Т	N	L18		47° 3 PS_A_19 47° 2		King	0	0	16	13	SS
Sea_Tacoma	Arrival	X	Y	L19	PS_A_19	47° 2 PS_A_20 47° 2	3 4.1	King	0	0	17	13	SS
Sea_Tacoma	Arrival	X	Y	L20	PS_A_20	47° 2 PS_A_21 47° 1	5.3	King	0	0	13	12	SS
Sea_Tacoma	Arrival	M	Y	L21	PS_A_21	47° 1 PS_A_22 47° 1	0.5	King	0	0	10	10	9
Sea_Tacoma	Arrival	M	Y	L22	PS A 22	47° 1 PS_A_23 47° 1	1.1	Pierce	0	0	10	10	8

Total Distance 93.5 nm

Note: SS - Service Speed

Note: Red numbers - engines off

Speed by Link (knots)

Slow

Very Slow

Medium

Fast

OGV-Routing: TACOMA to MARCH POINT

Lat/Long in Wo			men	101111						Tast	Tast	McGiuiii	Bulkers	very slow
Lat/ Long III W	Joor Datui											Reefer	Tankers	
DRAFT											Container	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	WP 1	End WP	Vaypoint I	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
Tacoma_Sea	Departure		Y	L2	PS_D_2		PS D 3	47° 19′	1.3 Pierce	0	0	10	10	9
Tacoma_Sea	Departure		Y	L3	PS_D_3		PS_D_4	47° 19′	0.9 Pierce	0	0	12	12	SS
Tacoma_Sea	Departure		Y	L4	PS_D_4		PS_D_5	47° 23′	4.8 King	0	0	14	SS	SS
Tacoma_Sea	Departure		Y	L5	PS_D_5	47° :	PS_D_6	47° 26′	4.4 King	0	0	16	SS	SS
Tacoma_Sea	Departure		N	L6	PS_D_6	47° :	PS_D_7	47° 34′	7.8 King	0	0	15	SS	SS
Tacoma_Sea	Departure	Τ	N	L7	PS_D_7	47° :	PS_D_8	47° 35′	1.4 King	0	0	16	SS	SS
Tacoma_Sea	Departure	Τ	N	L8	PS_D_8	47° :	PS_D_9	47° 37′	1.1 Kitsap	0	0	SS	SS	SS
Tacoma_Sea	Departure	T	N	L9	PS_D_9	47° :	PS_D_10	47° 39′	2.7 King	0	0	SS	SS	SS
Tacoma_Sea	Departure	T	N	L10	PS_D_10	47° :	PS_D_11	47° 41′	2.3 King	0	0	SS	SS	SS
Tacoma_Sea	Departure	T	N	L11	PS_D_11	47° ·	PS_D_12	47° 45′	4.0 Kitsap	0	0	SS	SS	SS
Tacoma_Sea	Departure	T	N	L12	PS_D_12	47° ·	PS_D_13	47° 46′	0.8 King	0	0	SS	SS	SS
Tacoma_Sea	Departure	T	N	L13	PS_D_13	47° ·	PS_D_14	47° 48′	1.5 Snohomish	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L14	PS_D_14	47° ·	PS_D_15	47° 52′	4.6 Kitsap	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L15	PS_D_15	47° .	PS_D_16	47° 55′	3.1 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L16	PS_D_16	47° .	PS_D_17	47° 57′	2.4 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L17	PS_D_17	47° .	PS_D_18	47° 58′	1.9 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L18	PS_D_18	47° .	PS_D_19	48° 02′	4.5 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L19	PS_D_19	48° (PS_D_20	48° 04′	2.8 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L20	PS_D_20	48° (PS_D_21	48° 06′	2.2 Jefferson	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L21	PS_D_21		PS_D_22	48° 07′	1.3 Jefferson	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L22	PS_D_22		PS_D_23	48° 11′	5.3 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure		N	L23	PS_D_23		PS_D_24	48° 11′	1.4 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L24a	PS_D_24	48°	AA_A_1	48° 13′	2.2 Island	0	0	SS	SS	SS
Admr_Anacorte		X	Y	L1	AA_A_1	48°	AA_A_2	48° 24′	11.3 Island	0	0	18	SS	SS
Admr_Anacorte		X	Y	L2	AA_A_2	48° :	AA_A_3	48° 24′	0.7 Island	0	0	16	12	SS
Admr_Anacorte		X	Y	L3a	AA_A_3	48° :	RS_A_6	48° 28′	3.2 Skagit	0	0	15	11	SS
PA_CherryPT	Arrival	X	Y	L6	RS_A_6	48° :		48° 30′	2.0 Skagit	0	0	15	11	SS
RS_MarchPT	Arrival	X	Y	L1a	RS_A_7	48°		48° 31′	1.6 Skagit	0	0	14	11	SS
RS_MarchPT	Arrival	X	Y	L2	MP_A_2	48° .		48° 31′	0.7 Skagit	0	0	14	11	SS
RS_MarchPT	Arrival	M	Y	L3	MP_A_3	48° .		48° 31′	3.1 Skagit	0	0	11	8	SS
RS_MarchPT	Arrival	M	Y	L4	MP_A_4	48° .	MP_A_5	48° 31′	1.1 Skagit	0	0	9	7	6

Total Distance 88.4 nm Note: SS - Service Speed

Speed by Link (knots)

Slow Very Slow

Medium

Fast

OGV-Routing	SEA to A	ANACC	RTE	S						Fast	Fast	Medium	Slow	Very Slow
Lat/Long in W	GS84 Datu	ım							•				Bulkers	
												Reefer	Tankers	
DRAFT											Container	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	g WP L	End WP	g Waypoint L	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
Sea_Tacoma	Arrival	Т	N	L1	PS_A_1	48° 28	PS_A_2	48° 28′ 38′′]	10.7 Calallam	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L2	PS_A_2	48° 28	PS_A_3	48° 13′ 22′′]	35.9 Calallam	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L3	PS_A_3	48° 13	PS_A_4	48° 13′ 20′′]	15.4 Calallam	0	0	SS	SS	SS
Sea_Tacoma	Arrival	X	N	L4	PS_A_4	48° 13	PS_A_5	48° 09′ 20′′]	6.9 Calallam	0	0	15	12	SS
Sea_Tacoma	Arrival	M	N	L5	PS_A_5	48° 09	PS_A_6	48° 09′ 58′′]	0.6 Calallam	0	0	8	8	8
PA_CherryPT	Arrival	X	Y	L1a	PS_A_6	48° 09	RS_A_2	48° 16′ 08′′]	13.1 Calallam	0	0	15	13.5	SS
PA_CherryPT	Arrival	Τ	N	L2	RS_A_2	48° 16	RS_A_3	48° 19′ 40′′]	6.6 San Juan	0	0	15	13	SS
PA_CherryPT	Arrival	X	N	L3	RS_A_3	48° 19	RS_A_4	48° 24′ 06′′]	8.3 San Juan	0	0	15	11	SS
PA_CherryPT	Arrival	Τ	N	L4	RS_A_4	48° 24	RS_A_5	48° 26′ 13′′]	2.7 San Juan	0	0	15	11	SS
PA_CherryPT	Arrival	Τ	N	L5	RS_A_5	48° 26	RS_A_6	48° 28′ 00′′]	1.9 Skagit	0	0	15	11	SS
PA_CherryPT	Arrival	Τ	N	L6	RS_A_6	48° 28	RS_A_7	48° 30′ 01′′]	2.0 Skagit	0	0	15	11	SS
RS_MarchPT	Arrival	X	Y	L1a	RS_A_7	48° 30	MP_A_2	48° 31′ 00′′]	1.6 Skagit	0	0	13	11	SS
RS_MarchPT	Arrival	M	Y	L2	MP_A_2	48° 31	MP_A_3	48° 31′ 04′′]	0.7 Skagit	0	0	11	8	SS
RS_Anacortes	Arrival	M	Y	L1a	MP_A_3	48° 31	AC_A_2	48° 31′ 24′′]	2.6 Skagit	0	0	9	7	6

Total Distance 108.9 nm

Speed by Link (knots)

OGV-Routing: ANACORTES HARBOR Lat/Long in WGS84 Datum

Anacortes_CurtisWharf Arrival

Anacortes_CurtisWharf Departure

L1a

L1a

Speed by Link (knots)

Fast Fast Medium Slow Very Slow
Bulkers
Reefer Tankers
Container RO/RO Log

0

DRAFT

DRAFI									•	Containe	KO/KO	Log	
Route	Arr/Dep	Link ID	Start WP	Starting WP Lat/Lon	End WP	Ending Waypoint Lat/Lon	Dist. C	County	Cruise	Auto	Fishing	Fishing	Fishing
RS_Anacortes	Arrival	L1	AC_A_2	48° 31′ 24′′ N 122° 37′ 26′′ W	Mode:	M	Skaş	git					
Anacortes_RS	Departure	L1	AC_D_2	48° 31′ 24′′ N 122° 37′ 26′′ W	NPE:	Y	Skaş	git					
NOTE: All ARRIVAL	harbor trans	its branch	from AC_A	A_2									
NOTE: All DEPARTU	JRE harbor t	ransits got	to AC_D_2										
Anacortes_PortDock1	Arrival	L1a	AC_A_2	48° 31′ 24′′ N 122° 37′ 26′′ W	AC_B_1	48° 31′ 20′′ N 122° 36′ 29′′ W	0.63 Ska	git	0	3	3	3	3
Anacortes_PortDock1	Departure	L1a	AC_B_1	48° 31′ 20′′ N 122° 36′ 29′′ W	AC_D_2	48° 31′ 24′′ N 122° 37′ 26′′ W	0.63 Ska	git	0	3	3	3	3
Anacortes_PortDock2	Arrival	L1a	AC_A_2	48° 31′ 24′′ N 122° 37′ 26′′ W	AC_B_2	48° 31′ 20′′ N 122° 36′ 42′′ W	0.49 Ska	git	0	3	3	3	3
Anacortes_PortDock2	Departure	L1a	AC_B_2	48° 31′ 20′′ N 122° 36′ 42′′ W	AC_D_2	48° 31′ 24′′ N 122° 37′ 26′′ W	0.49 Ska	git	0	3	3	3	3
									·		· ·	· ·	

AC_A_2 48° 31′ 24′′ N 122° 37′ 26′′ W AC_B_3 48° 31′ 19′′ N 122° 36′ 54′′ W 0.36 Skagit

AC_B_3 48° 31′ 19′′ N 122° 36′ 54′′ W AC_D_2 48° 31′ 24′′ N 122° 37′ 26′′ W 0.36 Skagit

Puget Sound Emissions Inventory OGV-Routing: ANACORTES to SEA

Lat/Long in W	GS84 Datum	n							•		0	Reefer	Bulkers Tankers	
DRAFT	4 (5)				O	0 1970 1/1	E 1.W/D	T 1 W - 1 - /1	D: 0		Container	RO/RO	Log	T
Route	· •			Link ID	Start WP	0 ,	End WP	Ending Waypoint Lat/Lon	Dist. County	Cruise	Auto	Fishing	Fishing	
Anacortes_RS	Departure	M	Y	L1	AC_D_2	48° 31′ 24′′ N 122° 37′ 26′′ W		48° 31′ 04′′ N 122° 41′ 17′′ W	2.6 Skagit	0	0	11	9	8
MarchPT_RS	Departure	X	Y	L2	MP_D_3	48° 31′ 04′′ N 122° 41′ 17′′ W	MP_D_4	48° 31′ 00′′ N 122° 42′ 20′′ W	0.7 Skagit	0	0	12	11	SS
MarchPT_RS	Departure	X	Y	L3	MP_D_4	48° 31′ 00′′ N 122° 42′ 20′′ W	RS_A_7	48° 30′ 01′′ N 122° 44′ 12′′ W	1.6 Skagit	0	0	14	10	SS
MarchPT_RS	Departure	X	Y	L4a	RS_A_7	48° 30′ 01′′ N 122° 44′ 12′′ W	RS_D_10	48° 29′ 33′′ N 122° 44′ 36′′ W	0.8 San Juan	0	0	14	11	SS
CherryPT_PA	Departure	Т	N	L10	RS_D_10	48° 29′ 33′′ N 122° 44′ 36′′ W	RS_D_11	48° 28′ 53′′ N 122° 44′ 31′′ W	0.7 Skagit	0	0	15	13	SS
CherryPT_PA	Departure	Т	N	L11	RS_D_11	48° 28′ 53′′ N 122° 44′ 31′′ W	RS_D_12	48° 27′ 12′′ N 122° 45′ 18′′ W	1.8 Skagit	0	0	15	13	SS
CherryPT_PA	Departure	Т	N	L12	RS_D_12	48° 27′ 12′′ N 122° 45′ 18′′ W	RS_D_13	48° 26′ 10′′ N 122° 45′ 48′′ W	1.1 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	Т	N	L13	RS_D_13	48° 26′ 10′′ N 122° 45′ 48′′ W	RS_D_14	48° 24′ 37′′ N 122° 48′ 09′′ W	2.2 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	Т	N	L14	RS_D_14	48° 24′ 37′′ N 122° 48′ 09′′ W	RS_D_15	48° 20′ 13′′ N 122° 58′ 21′′ W	8.1 San Juan	0	0	SS	SS	SS
CherryPT_PA	Departure	X	N	L15	RS_D_15	48° 20′ 13′′ N 122° 58′ 21′′ W	PS_D_27	48° 10′ 33′′ N 123° 23′ 03′′ W	19.0 Calallam	0	0	SS	SS	SS
Tacoma_Sea	Departure	M	N	L27	PS_D_27	48° 10′ 33′′ N 123° 23′ 03′′ W	PS_D_28	48° 11′ 21′′ N 123° 23′ 02′′ W	0.8 Calallam	8	8	8	8	8
Tacoma_Sea	Departure	X	N	L28	PS_D_28	48° 11′ 21′′ N 123° 23′ 02′′ W	PS_D_29	48° 14′ 13′′ N 123° 28′ 57′′ W	4.9 Calallam	0	0	14	12	SS
Tacoma_Sea	Departure	Т	N	L29	PS_D_29	48° 14′ 13′′ N 123° 28′ 57′′ W	PS_D_30	48° 15′ 21′′ N 123° 33′ 17′′ W	3.1 Calallam	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L30	PS_D_30	48° 15′ 21′′ N 123° 33′ 17′′ W	PS_D_31	48° 17′ 36′′ N 123° 56′ 06′′ W	15.4 Calallam	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L31	PS_D_31	48° 17′ 36′′ N 123° 56′ 06′′ W	PS_D_32	48° 30′ 38′′ N 124° 43′ 36′′ W	34.1 Calallam	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L32	PS_D_32	48° 30′ 38′′ N 124° 43′ 36′′ W	PS_D_33	48° 30′ 43′′ N 125° 00′ 00′′ W	10.9 Calallam	0	0	SS	SS	SS

Total Distance 107.6 nm

Note: SS - Service Speed

Fast

Speed by Link (knots)

Fast Medium Slow Very Slow

Puget Sound Emissions Inventory Speed by Link (knots) OGV-Routing: VANCOUVER (NB3) to ANACORTES **Fast** Fast Medium Slow Very Slow Lat/Long in WGS84 Datum **Bulkers** Reefer **Tankers** DRAFT Container RO/RO Log Arr/Dep Mode NPE Link ID Start WP WP End WP Vaypoint Dist. County Fishing Fishing Route Cruise Auto Fishing NB3_CherryPT Arrival N NB3 A 1 49° NB3 A 2 48° 49′ 17.2 Whatcom 0 SS SS L1 SS NB3_CherryPT Arrival N L2 NB3_A_2 48° NB3_A_3 48° 45′ 6.2 Whatcom 0 SS SS SS 0 NB3 CherryPT NB3 A 3 48° RS_D_2 48° 45′ 2.0 San Juan 17 Arrival L3a 0 13 SS N 0 CherryPT_PA Τ N RS_D_2 48° RS_D_3 48° 40′ SS Departure L1 5.3 San Juan 0 0 15 13 CherryPT_PA Departure RS_D_3 48° RS_D_4 48° 38′ 0 Τ N L2 2.2 San Juan 0 15 13 SS Τ RS_D_4 48° RS_D_5 48° 37′ SS CherryPT_PA Departure N L3 0.7 Skagit 0 15 13

RS_D_8 48° 32′

RS_D_5 48° RS_D_6 48° 36′

RS D 6 48° RS D 7 48° 33′

RS_D_8 48° RS_D_9 48° 31′

RS D 8 48° RS D 9 48° 31′

RS D 9 48° MP A 2 48° 31′

MP_A_2 48° MP_A_3 48° 31′

MP A 3 48° AC A 2 48° 31′

RS_D_7 48°

Τ

Τ

Τ

Τ

Τ

X

Μ

Μ

N

N

N

N

N

Y

Y

Y

L4

L5

L6

L7

L7

L1a

L2

L1a

Departure

Departure

Departure

Departure

Departure

Arrival

Arrival

Arrival

CherryPT_PA

CherryPT PA

CherryPT_PA

CherryPT_PA

CherryPT_PA

CherryPT_MP

RS_MarchPT

RS_Anacortes

Total Distance 46.1 nm

1.8 Skagit

2.2 Skagit

1.1 Skagit

1.1 Skagit

1.8 Skagit

0.7 Skagit

2.6 Skagit

1.2 San Juan

0

0

0

0

0

0

0

0

0

0

0

0

0

15

15

15

15

15

14

11

9

13

13

13

13

13

11

8

SS

SS

SS

SS

SS

SS

SS

6

OGV-Routing: ANACORTES to MARCH POINT

Arr/Dep Mode NPE Link ID Start WP

L4

Starting WP Lat/Lon

MP_A_4 48° 31′ 34′′ N 122° 36′ 40′′ W MP_A_5 48° 31′ 23′′ N 122° 35′ 00′′ W

Lat/Long in WGS84 Datum

RS_MarchPT Arrival

DRAFT

Route

					Speed	d by Link (knots)	
				Fast	Fast	Medium	Slow	Very Slow
							Bulkers	
						Reefer	Tankers	
					Container	RO/RO	Log	
End WP	Ending Waypoint Lat/Lon	Dist.	County	Cruise	Auto	Fishing	Fishing	Fishing

11

9

SS

Total Distance 1.1 nm Note: SS - Service Speed

0

1.1 Skagit

Puget Sound Emissions Inventory
OGV-Routing: MARCH POINT to ANACORTES

Puget Sound Emissions Inventory OGV-Routing: MARCH POINT to ANACORTES												Speed Fast	l by Link (Medium	,	Very Slow
Lat/Long in	0													Bulkers	
, 0													Reefer	Tankers	
DRAFT												Container	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	Starting WP Lat/Lon	End WP	Ending Waypoint Lat/Lon	Dist.	County	Cruise	Auto	Fishing	Fishing	Fishing
MarchPT_RS	Departure	X	Y	L1	MP_D_1	48° 31′ 23′′ N 122° 35′ 00′′ W	MP_D_2	48° 31′ 34′′ N 122° 36′ 40′′ W	1.1 5	Skagit	0	0	12	9	SS
								m 15:			3.7		1		

Total Distance 1.1 nm Note: SS - Service Speed

OGV-Routing: ANACORTES to PORT ANGELES

Lat/Long in WGS84	1 Datum								-				Bulkers	
												Reefer	Tankers	
DRAFT											Container	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	Starting WP Lat/Lon	End WP	Ending Waypoint Lat/Lon	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
Anacortes_RS	Departure	M	Y	L1a	AC_D_2 4	48° 31′ 24′′ N 122° 37′ 26′′ W	MP_D_3	48° 31′ 04′′ N 122° 41′ 17′′ W	2.6 Skagit	0	0	11	9	8
MarchPT_RS	Departure	X	Y	L2	MP_D_3 4	48° 31′ 04′′ N 122° 41′ 17′′ W	MP_D_4	48° 31′ 00′′ N 122° 42′ 20′′ W	0.7 Skagit	0	0	14	11	SS
MarchPT_RS	Departure	T	N	L1	MP_D_4 4	48° 31′ 00′′ N 122° 42′ 20′′ W	RS_A_7	48° 30′ 01′′ N 122° 44′ 12′′ W	1.6 Skagit	0	0	15	13	SS
MarchPT_RS	Departure	T	N	L0a	RS_A_7 4	48° 30′ 01′′ N 122° 44′ 12′′ W	RS_D_10	48° 29′ 33′′ N 122° 44′ 36′′ W	0.8 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	T	N	L10	RS_D_10 4	48° 29′ 33′′ N 122° 44′ 36′′ W	RS_D_11	48° 28′ 53′′ N 122° 44′ 31′′ W	0.7 Skagit	0	0	15	13	SS
CherryPT_PA	Departure	T	N	L11	RS_D_12 4	48° 27′ 12′′ N 122° 45′ 18′′ W	RS_D_13	48° 26′ 10′′ N 122° 45′ 48′′ W	1.1 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	T	N	L12	RS_D_13 4	48° 26′ 10′′ N 122° 45′ 48′′ W	RS_D_14	48° 24′ 37′′ N 122° 48′ 09′′ W	2.2 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	Τ	N	L13	RS_D_14 4	48° 24′ 37′′ N 122° 48′ 09′′ W	RS_D_15	48° 20′ 13′′ N 122° 58′ 21′′ W	8.1 San Juan	0	0	SS	SS	SS
CherryPT_PA	Departure	T	N	L14a	RS_D_15 4	48° 20′ 13′′ N 122° 58′ 21′′ W	PS_D_27	48° 10′ 33′′ N 123° 23′ 03′′ W	19.0 Calallam	0	0	SS	SS	SS
CPFern_PA	Arrival	X	Y	L1a	PS_D_27 4	48° 10′ 33′′ N 123° 23′ 03′′ W	PA_A_2	48° 09′ 45′′ N 123° 23′ 25′′ W	0.8 Calallam	0	0	10	10	10
Sea_PortAngeles	Arrival	M	Y	L1	PA_A_2 4	48° 09′ 45′′ N 123° 23′ 25′′ W	PA_A_3	48° 08′ 21′′ N 123° 22′ 25′′ W	1.6 Calallam	0	0	8	8	8
Sea_PortAngeles	Arrival	M	Y	L2	PA_A_3 4	48° 08′ 21′′ N 123° 22′ 25′′ W	PA_A_4	48° 08′ 00′′ N 123° 23′ 48′′ W	1.0 Calallam	0	0	6	6	6

Total Distance 40.1 nm Note: SS - Service Speed

Speed by Link (knots)

Fast Medium

Fast

Slow Very Slow

Puget Sound Emissions Inventory OGV-Routing: ANACORTES to SEATTLE

Lat/Long in WGS	84 Datum								•				Bulkers	
												Reefer	Tankers	
DRAFT											Container		Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	Starting WP Lat/Lon	End WP	Ending Waypoint Lat/Lon	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
Anacortes_RS	Departure	M	Y	L1a	AC_D_2	48° 31′ 24′′ N 122° 37′ 26′′ W	MP_D_3	48° 31′ 04′′ N 122° 41′ 17′′ W	2.6 Skagit	0	0	10	7	7
MarchPT_RS	Departure	M	Y	L5	MP_D_3	48° 31′ 04′′ N 122° 41′ 17′′ W	MP_D_4	48° 31′ 00′′ N 122° 42′ 20′′ W	0.7 Skagit	0	0	11	9	8
MarchPT_RS	Departure	X	Y	L4	MP_D_4	48° 31′ 00′′ N 122° 42′ 20′′ W	RS_A_7	48° 30′ 01′′ N 122° 44′ 12′′ W	1.6 Skagit	0	0	13	10	SS
MarchPT_RS	Departure	X	Y	L3a	RS_A_7	48° 30′ 01′′ N 122° 44′ 12′′ W	RS_D_15	48° 29′ 33′′ N 122° 44′ 36′′ W	0.8 San Juan	0	0	14	11	SS
CherryPT_PA	Departure	X	Y	L10	RS_D_15	48° 29′ 33′′ N 122° 44′ 36′′ W	RS_D_14	48° 28′ 53′′ N 122° 44′ 31′′ W	0.7 Skagit	0	0	15	13	SS
CherryPT_PA	Departure	T	N	L11a	RS_D_14	48° 28′ 53′′ N 122° 44′ 31′′ W	AA_D_1	48° 26′ 04′′ N 122° 44′ 43′′ W	2.8 Skagit	0	0	15	13	SS
Anacortes_Admr	Departure	T	N	L1	AA_D_1	48° 26′ 04′′ N 122° 44′ 43′′ W	AA_D_2	48° 24′ 08′′ N 122° 44′ 50′′ W	1.9 San Juan	0	0	15	13	SS
Anacortes_Admr	Departure	T	N	L2	AA_D_2	48° 24′ 08′′ N 122° 44′ 50′′ W	AA_D_3	48° 22′ 25′′ N 122° 45′ 34′′ W	1.8 San Juan	0	0	16	13	SS
Anacortes_Admr	Departure	Т	N	L3	AA_D_3	48° 22′ 25′′ N 122° 45′ 34′′ W	AA_D_4	48° 13′ 29′′ N 122° 49′ 22′′ W	9.3 Island	0	0	17	13	SS
Anacortes_Admr	Departure	Т	N	L4	AA_D_4	48° 13′ 29′′ N 122° 49′ 22′′ W	AA_D_5	48° 11′ 32′′ N 122° 48′ 21′′ W	2.1 Island	0	0	SS	SS	SS
Anacortes_Admr	Departure	Т	N	L5a	AA_D_5	48° 11′ 32′′ N 122° 48′ 21′′ W	PS_A_9	48° 10′ 57′′ N 122° 48′ 01′′ W	0.6 Jefferson	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L9	PS_A_9	48° 10′ 57′′ N 122° 48′ 01′′ W	PS_A_10	48° 06′ 35′′ N 122° 40′ 10′′ W	6.8 Jefferson	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L10	PS_A_10	48° 06′ 35′′ N 122° 40′ 10′′ W	PS_A_11	48° 01′ 08′′ N 122° 38′ 08′′ W	5.6 Jefferson	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L11	PS_A_11	48° 01′ 08′′ N 122° 38′ 08′′ W	PS_A_12	47° 57′ 41′′ N 122° 35′ 10′′ W	4.0 Island	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L12	PS_A_12	47° 57′ 41′′ N 122° 35′ 10′′ W	PS_A_13	47° 56′ 38′′ N 122° 32′ 57′′ W	1.8 Island	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L13	PS_A_13	47° 56′ 38′′ N 122° 32′ 57′′ W	PS_A_14	47° 55′ 17′′ N 122° 30′ 06′′ W	2.3 Kitsap	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L14	PS_A_14	47° 55′ 17′′ N 122° 30′ 06′′ W	PS_A_15	47° 45′ 54′′ N 122° 26′ 45′′ W	9.7 Kitsap	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L15	PS_A_15	47° 45′ 54′′ N 122° 26′ 45′′ W	PS_A_16	47° 39′ 42′′ N 122° 28′ 24′′ W	6.3 Kitsap	0	0	SS	SS	SS
PS_ElliottB	Arrival	X	Y	L1a	PS_A_16	47° 39′ 42′′ N 122° 28′ 24′′ W	EB_A_2	47° 39′ 21′′ N 122° 28′ 02′′ W	0.4 Kitsap	0	0	13	9	8
PS_ElliottB	Arrival	X	Y	L2	EB_A_2	47° 39′ 21′′ N 122° 28′ 02′′ W		47° 38′ 16′′ N 122° 26′ 36′′ W	1.5 King	0	0	12	8	7
PS_ElliottB	Arrival	M	Y	L3	EB_A_3	47° 38′ 16′′ N 122° 26′ 36′′ W	EB_A_4	47° 36′ 52′′ N 122° 23′ 21′′ W	2.6 King	0	0	11	6	6
								Tatal Distance	65.0	NT 00	C : C -	1		

Total Distance 65.8 nm Note: SS - Service Speed

Speed by Link (knots)

Fast Medium Slow Very Slow

Puget Sound Emissions Inventory OGV-Routing: SEATTLE to ANACORTES

OGV-Routing:	SEATTLE	to AN	ACOR	TÉS					Fast	Fast	Medium	Slow	Very Slow
Lat/Long in WG												Bulkers	
_											Reefer	Tankers	
DRAFT										Container	RO/RO	Log	
Route	Arr/Dep	Mode		Link ID	Start WP	WP End WP	aypoint I	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
ElliottB_PS	Departure	X	Y	L1	EB_D_1	47° (EB_D_2	47° 38′	2.6 King	0	0	9	8	6
ElliottB_PS	Departure	X	Y	L2a	EB_D_2	47° : PS_D_10	47° 39′	1.5 King	0	0	SS	SS	7
Tacoma_Sea	Departure	Τ	N	L10	PS_D_10	47° (PS_D_11	47° 41′	2.3 King	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L11	PS_D_11	47° ² PS_D_12	47° 45′	4.0 Kitsap	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L12	PS_D_12	47° 'PS_D_13	47° 46′	0.8 King	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L13		47° 4PS_D_14		1.5 Snohomish	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L14	PS_D_14	47° 4PS_D_15	47° 52′	4.6 Kitsap	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L15		47° ! PS_D_16		3.1 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L16	PS_D_16	47° !PS_D_17	47° 57′	2.4 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L17	PS_D_17	47° ! PS_D_18	47° 58′	1.9 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L18	PS_D_18	47° !PS_D_19	48° 02′	4.5 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L19	PS_D_19	48° (PS_D_20	48° 04′	2.8 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L20	PS_D_20	48° (PS_D_21	48° 06′	2.2 Jefferson	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L21	PS_D_21	48° (PS_D_22	48° 07′	1.3 Jefferson	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L22	PS_D_22	48° (PS_D_23	48° 11′	5.3 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	T	N	L23	PS_D_23	48° 1PS_D_24	48° 11′	1.4 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	T	N	L24a	PS_D_24	48° 1 AA_A_1	48° 13′	2.2 Island	0	0	SS	SS	SS
Admr_Anacortes	Arrival	Т	N	L1	AA_A_1	48° : AA_A_2	48° 24′	11.3 Island	0	0	18	SS	SS
Admr_Anacortes	Arrival	X	Y	L2	AA_A_2	48° 1 AA_A_3	48° 24′	0.7 Island	0	0	16	12	SS
Admr_Anacortes	Arrival	X	Y	L3a	AA_A_3	48° 2 RS_A_6	48° 28′	3.2 Skagit	0	0	15	11	SS
PA_CherryPT	Arrival	X	Y	L6	RS_A_6	48° 2 RS_A_7	48° 30′	2.0 Skagit	0	0	15	11	SS
RS_MarchPT	Arrival	X	Y	L1a	RS_A_7	48° (MP_A_2	48° 31′	1.6 Skagit	0	0	14	11	SS
RS_MarchPT	Arrival	X	Y	L2	MP_A_2	48° : MP_A_3	48° 31′	0.7 Skagit	0	0	13	10	SS
RS_Anacortes	Arrival	M	Y	L1a	MP_A_3	48° (AC_A_2	48° 31′	2.6 Skagit	0	0	11	9	SS

Total Distance 66.4 nm Note: SS - Service Speed

Speed by Link (knots)

OGV-Routing: PORT ANGELES to ANACORTES

Lat/Long in WGS DRAFT	S84 Datum										Container	Reefer RO/RO	Bulkers Tankers Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	g WP L	End WP	aypoin 1	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
PortAngeles_Sea	Departure	M	Y	L1	PA_D_1	48° 08	PA_D_2	48° 08	1.2 Calallam	0	0	6	6	6
PortAngeles_Sea	Departure	\mathbf{M}	Y	L2	PA_D_2	48° 08	PA_D_3	48° 09	1.5 Calallam	0	0	8	8	8
PortAngeles_Sea	Departure	\mathbf{M}	Y	L3a	PA_D_3	48° 09	PS_A_6	48° 09	0.5 Calallam	0	0	10	10	10
PA_CherryPT	Arrival	Т	N	L1a	PS_A_6	48° 09	RS_A_2	48° 16	13.1 Calallam	0	0	15	13.5	SS
PA_CherryPT	Arrival	T	N	L2	RS_A_2	48° 16	RS_A_3	48° 19	6.6 San Juan	0	0	15	13	SS
PA_CherryPT	Arrival	X	N	L3	RS_A_3	48° 19	RS_A_4	48° 24	8.3 San Juan	0	0	15	11	SS
PA_CherryPT	Arrival	T	N	L4	RS_A_4	48° 24	RS_A_5	48° 26	2.7 San Juan	0	0	15	11	SS
PA_CherryPT	Arrival	Τ	N	L5	RS_A_5	48° 26	RS_A_6	48° 28	1.9 Skagit	0	0	15	11	SS
PA_CherryPT	Arrival	T	N	L6	RS_A_6	48° 28	RS_A_7	48° 30	2.0 Skagit	0	0	15	11	SS
RS_MarchPT	Arrival	X	Y	L1a	RS_A_7	48° 30	MP_A_2	48° 31	1.6 Skagit	0	0	13	11	SS
RS_MarchPT	Arrival	X	Y	L2	MP_A_2	48° 31	MP_A_3	48° 31	0.7 Skagit	0	0	13	11	SS
RS_Anacortes	Arrival	M	Y	L1a	MP_A_3	48° 31	AC_A_2	48° 31	2.6 Skagit	0	0	10	8	8

Total Distance 42.5 nm

Speed by Link (knots)

Medium

Fast

Fast

Slow

Very Slow

Puget Sound Emissions Inventory OGV-Routing: ANACORTES to CHERRY POINT/FERNDALE

OGV-Routing:	ANACORT	ES to C	CHER		Fast	Fast	Medium	Slow	Very Slow					
Lat/Long in WG					,				•				Bulkers	
												Reefer	Tankers	
DRAFT											Container	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	Starting WP Lat/Lon	End WP	Ending Waypoint Lat/Lon	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
Anacortes_RS	Departure	M	Y	L1a	AC_D_2	48° 31′ 24′′ N 122° 37′ 26′′ W	MP_D_3	48° 31′ 04′′ N 122° 41′ 17′′ W	2.6 Skagit	0	0	11	9	8
MarchPT_RS	Departure	X	Y	L5	MP_D_3	48° 31′ 04′′ N 122° 41′ 17′′ W	MP_D_4	48° 31′ 00′′ N 122° 42′ 20′′ W	0.7 Skagit	0	0	12	9	8
Anacortes_CPFrr	Departure	X	Y	L1a	MP_D_4	48° 31′ 00′′ N 122° 42′ 20′′ W	RS_A_8	48° 31′ 00′′ N 122° 44′ 21′′ W	1.3 Skagit	0	0	13	10	8
PA_CherryPT	Arrival	Т	N	L8	RS_A_8	48° 31′ 00′′ N 122° 44′ 21′′ W	RS_A_9	48° 36′ 04′′ N 122° 45′ 07′′ W	5.1 Skagit	0	0	15	11	SS
PA_CherryPT	Arrival	Τ	N	L9	RS_A_9	48° 36′ 04′′ N 122° 45′ 07′′ W	RS_A_10	48° 37′ 59′′ N 122° 43′ 52′′ W	2.1 Skagit	0	0	15	11	SS
PA_CherryPT	Arrival	Τ	N	L10	RS_A_10	48° 37′ 59′′ N 122° 43′ 52′′ W	RS_A_11	48° 40′ 15′′ N 122° 42′ 24′′ W	2.5 San Juan	0	0	15	11	SS
PA_CherryPT	Arrival	Τ	N	L11	RS_A_11	48° 40′ 15′′ N 122° 42′ 24′′ W	RS_A_12	48° 40′ 35′′ N 122° 42′ 10′′ W	0.4 Whatcom	0	0	15	11	SS
PA_CherryPT	Arrival	Т	N	L12	RS_A_12	48° 40′ 35′′ N 122° 42′ 10′′ W	RS_A_13	48° 45′ 17′′ N 122° 45′ 50′′ W	5.3 Whatcom	0	0	15	11	SS

Total Distance 19.9 nm Note: SS - Service Speed

Speed by Link (knots)

OGV-Routing:	CHERRY	POIN	Γ/FEF	RNDALE	to ANACC	ORTES				Fast	Fast	Medium	Slow	Very Slow
Lat/Long in Wo	GS84 Datum	l											Bulkers	
												Reefer	Tankers	
DRAFT											Container	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	Starting WP Lat/Lon	End WP	Ending Waypoint Lat/Lon	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
CherryPT_PA	Departure	Т	N	L1	RS_D_2	48° 45′ 16′′ N 122° 47′ 14′′ W	RS_D_3	48° 40′ 34′′ N 122° 43′ 28′′ W	5.3 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	T	N	L2	RS_D_3	48° 40′ 34′′ N 122° 43′ 28′′ W	RS_D_4	48° 38′ 22′′ N 122° 43′ 58′′ W	2.2 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	T	N	L3	RS_D_4	48° 38′ 22′′ N 122° 43′ 58′′ W	RS_D_5	48° 37′ 43′′ N 122° 44′ 25′′ W	0.7 Skagit	0	0	15	13	SS
CherryPT_PA	Departure	Т	N	L4	RS_D_5	48° 37′ 43′′ N 122° 44′ 25′′ W	RS_D_6	48° 36′ 06′′ N 122° 45′ 32′′ W	1.8 Skagit	0	0	15	13	SS
CherryPT_PA	Departure	Т	N	L5	RS_D_6	48° 36′ 06′′ N 122° 45′ 32′′ W	RS_D_7	48° 33′ 58′′ N 122° 45′ 14′′ W	2.2 Skagit	0	0	15	13	SS
CherryPT_PA	Departure	T	N	L6	RS_D_7	48° 33′ 58′′ N 122° 45′ 14′′ W	RS_D_8	48° 32′ 48′′ N 122° 45′ 04′′ W	1.2 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	T	N	L7	RS_D_8	48° 32′ 48′′ N 122° 45′ 04′′ W	RS_D_9	48° 31′ 41′′ N 122° 44′ 54′′ W	1.1 Skagit	0	0	15	13	SS
CherryPT_MP	Arrival	X	Y	L1a	RS_D_9	48° 31′ 41′′ N 122° 44′ 54′′ W	MP_A_2	48° 31′ 00′′ N 122° 42′ 20′′ W	1.8 Skagit	0	0	14	11	SS
RS_MarchPT	Arrival	X	Y	L2	MP_A_2	48° 31′ 00′′ N 122° 42′ 20′′ W	MP_A_3	48° 31′ 04′′ N 122° 41′ 17′′ W	0.7 Skagit	0	0	14	11	SS
RS_Anacortes	Arrival	M	Y	L1a	MP_A_3	48° 31′ 04′′ N 122° 41′ 17′′ W	AC_A_2	48° 31′ 24′′ N 122° 37′ 26′′ W	2.6 Skagit	0	0	10	8	8

Total Distance 19.6 nm

Speed by Link (knots)

OGV-Routing: PORT ANGELES to ORCAS ISLAND (ANCHORAGE)

Lat/Long in WGS	S84 Datum													Bulkers	
													Reefer	Tankers	
DRAFT												Container	RO/RO	Log	
Route			NPE		Start WP			, , , , , , , , , , , , , , , , , , ,			Cruise	Auto	Fishing	Fishing	Fishing
PortAngeles_Sea	Departure	M	Y	L1	PA_D_1	48° 0	PA_D_2	48° 08	1.2	Calallam	0	0	6	6	6
PortAngeles_Sea	Departure	M	Y	L2	PA_D_2	48° 0	PA_D_3	48° 09	1.5	Calallam	0	0	8	8	8
PortAngeles_Sea	Departure	M	Y	L3a	PA_D_3	48° 0	PS_A_6	48° 09	0.5	Calallam	0	0	10	10	10
PA_CherryPT	Arrival	X	N	L1a	PS_A_6	48° 0	RS_A_2	48° 16	13.1	Calallam	0	0	15	13.5	SS
PA_CherryPT	Arrival	Τ	N	L2	RS_A_2	48° 1	RS_A_3	48° 19	6.6	San Juan	0	0	15	13	SS
PA_CherryPT	Arrival	T	N	L3	RS_A_3	48° 1	RS_A_4	48° 24	8.3	San Juan	0	0	15	11	SS
PA_CherryPT	Arrival	T	N	L4	RS_A_4	48° 2	RS_A_5	48° 26	2.7	San Juan	0	0	15	11	SS
PA_CherryPT	Arrival	Τ	N	L5	RS_A_5	48° 2	RS_A_6	48° 28	1.9	Skagit	0	0	15	11	SS
PA_CherryPT	Arrival	T	N	L6	RS_A_6	48° 2	RS_A_7	48° 30	2.0	Skagit	0	0	15	11	SS
PA_CherryPT	Arrival	Τ	N	L7	RS_A_7	48° 3	RS_A_8	48° 31	1.0	San Juan	0	0	15	11	SS
PA_CherryPT	Arrival	Τ	N	L8	RS_A_8	48° 3	RS_A_9	48° 36	5.1	Skagit	0	0	15	11	SS
PA_CherryPT	Arrival	Τ	N	L9	RS_A_9	48° 3	RS_A_10	48° 37		Skagit	0	0	15	11	SS
PA_CherryPT	Arrival	Τ	N	L10	RS_A_10	48° 3	RS_A_11	48° 40	2.5	San Juan	0	0	15	11	SS
PA_CherryPT	Arrival	Τ	N	L11	RS A 11	48° 4	RS_A_12	48° 40	0.4	Whatcom	0	0	15	11	SS
PA_CherryPT	Arrival	X	Y	L12			RS_A_13	48° 45	5.3	Whatcom	0	0	12	9	SS
OrcasIS_BuoyYC		M	Y	L1a	_	_	OC_A_1	48° 44	0.6	Whatcom	0	0	8	6	5
OrcasIS_BuoyYC	~		Y	L2	OC_A_1		OC_AN_1			San Juan	0	0	6	4	4

Total Distance 56.9 nm Note: SS - Service Speed

Speed by Link (knots)

Very Slow

Slow

Medium

Fast

Fast

OGV-Routing: OF	RCAS ISLA	ND to A	ANAC	ORTES					_	Fast	Fast	Medium	Slow	Very Slow
Lat/Long in WGS84	4 Datum												Bulkers	
												Reefer	Tankers	
DRAFT											Container	RO/RO	\mathbf{Log}	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	g WP L	End WP v	ypoi	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
OrcasIS_BuoyYCA	Departure	M	Y	L1a	OC_AN_1	48° 43	RS_D_2	48° 4	2.4 San Juan	0	0	8	6	6
CherryPT_PA	Departure	X	Y	L1	RS_D_2	48° 45	RS_D_3	48° 4	5.3 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	T	N	L2	RS_D_3	48° 40	RS_D_4	48° (2.2 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	T	N	L3	RS_D_4	48° 38	RS_D_5	48° (0.7 Skagit	0	0	15	13	SS
CherryPT_PA	Departure	Τ	N	L4	RS_D_5	48° 37	RS_D_6	48° (1.8 Skagit	0	0	15	13	SS
CherryPT_PA	Departure	Τ	N	L5	RS_D_6	48° 36	RS_D_7	48° (2.2 Skagit	0	0	15	13	SS
CherryPT_PA	Departure	Τ	N	L6	RS_D_7	48° 33	RS_D_8	48° (1.2 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	Τ	N	L7	RS_D_8	48° 32	RS_D_9	48° (1.1 Skagit	0	0	15	13	SS
CherryPT_MP	Arrival	X	Y	L1a	RS_D_9	48° 31	MP_A_2	48° 3	1.8 Skagit	0	0	14	11	SS
RS_MarchPT	Arrival	X	Y	L2	MP_A_2	48° 31	MP_A_3	48° (0.7 Skagit	0	0	14	11	SS
RS_Anacortes	Arrival	M	Y	L1a	MP A 3	48° 31	AC A 2	48° (2.6 Skagit	0	0	10	8	8

Total Distance 22.0 nm

Speed by Link (knots)

Puget Sound Emissions Inventory Speed by Link (knots) OGV-Routing: SEA to VENDOVI ISLAND (ANCHORAGE) **Fast** Medium Slow Very Slow Fast Lat/Long in WGS84 Datum **Bulkers** Reefer **Tankers DRAFT** Container RO/RO Log Arr/Dep Mode NPE Link ID Start WP 2 WP L End WP 1ypoir Dist. **Fishing** Route Fishing County Cruise Auto Fishing Sea_Tacoma Arrival Τ N L1 PS A 1 48° 28 PS A 2 48° 2 10.7 Calallam 0 SS SS SS Sea_Tacoma Arrival Τ N L2 PS_A_2 48° 28 PS_A_3 48° 1 35.9 Calallam 0 0 SS SS SS Sea Tacoma Τ Arrival N 15.4 Calallam 0 0 SS SS SS L3 PS A 3 48° 13 PS A 4 48° 1 PS_A_4 48° 13 PS_A_5 48° (SS Sea_Tacoma Arrival Χ N L4 6.9 Calallam 0 15 12 PS_A_5 48° 09 PS_A_6 48° (0 8 Sea_Tacoma Arrival X N L50.6 Calallam 8 8 SS PA_CherryPT Arrival Τ N L₁a PS_A_6 48° 09 RS_A_2 48° 1 13.1 Calallam 15 13.5 PA_CherryPT Τ N L2 RS_A_2 48° 16 RS_A_3 48° 1 6.6 San Juan 0 15 13 SS Arrival PA_CherryPT Τ N 0 15 SS Arrival L3 RS A 3 48° 19 RS A 4 48° 2 8.3 San Juan 11 Τ RS_A_4 48° 24 RS_A_5 0 PA_CherryPT Arrival N L4 48° 2 2.7 San Juan 0 15 11 SS

RS_A_5 48° 26 RS_A_6 48° 2

RS A 6 48° 28 BH A 2 48° 3

BH A 2 48° 30 BH A 3 48° 3

BH_A_3 48° 33 BH_A_4 48° 3

BH_A_4 48° 36 VI_AN_3 48° 3

PA_CherryPT

RS Bellingham

RS Bellingham

RS_Bellingham

RS_Bellingham

Arrival

Arrival

Arrival

Arrival

Arrival

N

Y

Y

Y

Χ

Χ

Μ

Μ

L5

L₁a

L2

L3

L4

Total Distance 112.4 nm Note: SS - Service Speed

0

0

0

0

0

0

0

SS

SS

SS

6

3

11

11

10

6

15

12

10

8

1.9 Skagit

2.2 Skagit

3.7 Skagit

2.9 Skagit

1.5 Skagit

OGV-Routing: \	VENDOVI	(ANCI	HORA	GE) to SE	ZA					Fast	Fast	Medium	Slow	Very Slow
Lat/Long in WGS	884 Datum												Bulkers	
												Reefer	Tankers	
DRAFT											Container	RO/RO	\mathbf{Log}	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	ıg WP L	a End WP	′aypoin₁	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
Vendovi_RS	Departure	M	Y	L1a	VI_AN_3	48° 37′	1 BH_D_4	48° 36′	1.5 Skagit	0	0	6	4	SS
Bellingham_RS	Departure	M	Y	L3	BH_D_4	48° 36′	(BH_D_3	48° 33′	2.9 Skagit	0	0	10	9	SS
Bellingham_RS	Departure	X	Y	L2	BH_D_3	48° 33′	1 BH_D_2	48° 30′	3.7 Skagit	0	0	12	10	SS
Bellingham_RS	Departure	X	Y	L1	BH_D_2	48° 30′	(RS_A_6	48° 28′	2.2 Skagit	0	0	14	11	SS
Bellingham_RS	Departure	Τ	N	L0a	RS_A_6	48° 28′	(RS_D_12	48° 27′	1.3 Skagit	0	0	15	13	SS
CherryPT_PA	Departure	Т	N	L12	RS_D_12	48° 27′	1RS_D_13	48° 26′	1.1 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	Т	Y	L13	RS_D_13	48° 26′	1RS_D_14	48° 24′	2.2 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	Τ	N	L14	RS_D_14	48° 24′	3 RS_D_15	48° 20′	8.1 San Juan	0	0	SS	SS	SS
CherryPT_PA	Departure	X	N	L15a	RS_D_15	48° 20′	1PS_D_27	48° 10′	19.0 Calallam	0	0	SS	SS	SS
Tacoma_Sea	Departure	Μ	N	L27	PS_D_27	48° 10′	3PS_D_28	48° 11′	0.8 Calallam	0	0	8	8	8
Tacoma_Sea	Departure	X	N	L28	PS_D_28	48° 11′	2PS_D_29	48° 14′	4.9 Calallam	0	0	14	12	SS
Tacoma_Sea	Departure	Τ	N	L29	PS_D_29	48° 14′	1PS_D_30	48° 15′	3.1 Calallam	0	0	SS	SS	SS
Tacoma_Sea	Departure	Τ	N	L30	PS_D_30	48° 15′	2PS_D_31	48° 17′	15.4 Calallam	0	0	SS	SS	SS
Tacoma_Sea	Departure	T	N	L31	PS_D_31	48° 17′	3PS_D_32	48° 30′	34.1 Calallam	0	0	SS	SS	SS
Tacoma_Sea	Departure	T	N	L32	PS_D_32	48° 30′	3PS_D_33	48° 30′	10.9 Calallam	0	0	SS	SS	SS
	•						Total I	Sistanas	111.1 nm	Note: SS	Sarrica Spe	a d		

Total Distance 111.1 nm Note: SS - Service Speed

Speed by Link (knots)

OGV-Routing: SEA to BELLINGHAM

Lat/Long in WGS8	34 Datum										Reefer	Bulkers Tankers	
DRAFT										Container	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP V	WP]	End WP Vaypoint	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
Sea_Tacoma	Arrival	Т	N	L1	PS_A_1 -	48° :	PS_A_2 48° 28′ 3	10.7 Calallam	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L2	PS_A_2	48° :	PS_A_3 48° 13′ 2	35.9 Calallam	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L3	PS_A_3	48°	PS_A_4 48° 13′ 2	15.4 Calallam	0	0	SS	SS	SS
Sea_Tacoma	Arrival	X	N	L4	PS_A_4	48°	PS_A_5 48° 09′ 2	6.9 Calallam	0	0	15	12	SS
Sea_Tacoma	Arrival	M	N	L5	PS_A_5	48°	PS_A_6 48° 09′ 5	0.6 Calallam	0	0	8	8	8
PA_CherryPT	Arrival	X	N	L1a	PS_A_6	48°	RS_A_2 48° 16′ (13.1 Calallam	0	0	15	13.5	SS
PA_CherryPT	Arrival	Τ	N	L2	RS_A_2	48°	RS_A_3 48° 19′ 4	6.6 San Juan	0	0	15	13	SS
PA_CherryPT	Arrival	Τ	N	L3	RS_A_3	48°	RS_A_4 48° 24′ (8.3 San Juan	0	0	15	11	SS
PA_CherryPT	Arrival	Τ	N	L4	RS_A_4	48° :	RS_A_5 48° 26′ 1	2.7 San Juan	0	0	15	11	SS
PA_CherryPT	Arrival	Τ	N	L5	RS_A_5	48° :	RS_A_6 48° 28′ (1.9 Skagit	0	0	15	11	SS
RS_Bellingham	Arrival	T	N	L1a	RS_A_6 4	48°	BH_A_2 48° 30′ (2.2 Skagit	0	0	15	11	SS
RS_Bellingham	Arrival	T	N	L2	BH_A_2	48°	BH_A_3 48° 33′ 1	3.7 Skagit	0	0	15	10	SS
RS_Bellingham	Arrival	T	N	L3	BH_A_3	48°	BH_A_4 48° 36′ (2.9 Skagit	0	0	15	10	SS
RS_Bellingham	Arrival	Т	N	L4	BH_A_4	48°	BH_A_5 48° 38′ 2	4.1 Skagit	0	0	13	10	SS
RS_Bellingham	Arrival	X	Y	L5	BH_A_5	48°	BH_A_6 48° 38′ 4	0.4 Skagit	0	0	13	10	SS
RS_Bellingham	Arrival	M	Y	L6	BH_A_6	48°	BH_A_7 48° 42′ 4	4.2 Whatcom	0	0	10	8	6

Total Distance 119.5 nm

Note: SS - Service Speed

Fast

Fast

Speed by Link (knots)

Slow

Very Slow

Medium

Puget Sound Emis	ssions In	ventory	7							Spee	d by Link	(knots)	
OGV-Routing: BELLI	NGHAM I	HARBOR	}						Fast	Fast	Medium	Slow	Very Slow
Lat/Long in WGS84 Dat	tum							•				Bulkers	
_											Reefer	Tankers	
DRAFT										Containe	r RO/RO	Log	
Route	Arr/Dep	Link ID	Start WP	Starting	WP Lat/Lon	End WP	Ending Waypoint Lat/Lon	Dist. County	Cruise	Auto	Fishing	_	Fishing
RS_Bellingham	Arrival		BH_A_7	48° 42′ 46′′]	N 122° 32′ 43′′	W Mode:	M	Whatcom					
Bellingham_RS	Departure		BH_D_7	48° 42′ 46′′ 1	N 122° 32′ 43′′	W NPE:	Y	Whatcom					
NOTE: All ARRIVAL I	narbor trans	its branch	from BH_A	_7									
NOTE: All DEPARTUI	RE harbor t	ransits got	o BH_D_7										
Bellingham_PortDock1	Arrival	L1a	BH_A_7	48° 42′ 46′′]	N 122° 32′ 43′′	W BP_B_1	48° 42′ 46′′ N 122° 32′ 44′′ W	2.88 Whatcom	0	3	3	3	3
Bellingham_PortDock1	Departure	L1a	BP_B_1	48° 42′ 46′′	N 122° 32′ 44′	W BH_D_7	48° 42′ 46′′ N 122° 32′ 43′′ W	2.88 Whatcom	0	5	5	5	5
	•												
Bellingham_PortDock2	Arrival	L1a	BH_A_7	48° 42′ 46′′]	N 122° 32′ 43′′	W BP_B_2	48° 42′ 46′′ N 122° 32′ 43′′ W	3.24 Whatcom	0	3.5	3.5	3.5	3.5
Bellingham_PortDock2	Departure	L1a	BP_B_2	48° 42′ 46′′	N 122° 32′ 43′	W BH_D_7	48° 42′ 46′′ N 122° 32′ 43′′ W	3.24 Whatcom	0	6	6	6	6
	1												
Bellingham_ColdStorage	Arrival	L1a	BH A 7	48° 42′ 46′′]	N 122° 32′ 43′′	W BH A 8	48° 44′ 45′′ N 122° 31′ 16′′ W	2.21 Whatcom	0	4	4	4	4
Bellingham_ColdStorage		L2	BH A 8	48° 44′ 45′′]	N 122° 31′ 16′′	W BH B 3	48° 45′ 32′′ N 122° 30′ 42′′ W	0.86 Whatcom	0	3	3	3	3
Bellingham_ColdStorage		L2	BH B 3	48° 45′ 32′′]	N 122° 30′ 42′′	W BH A 8	48° 44′ 45′′ N 122° 31′ 16′′ W	0.86 Whatcom	0	3	3	3	3
Bellingham_ColdStorage			BH A 8	48° 44′ 45′′]	N 122° 31′ 16′′		48° 42′ 46′′ N 122° 32′ 43′′ W	2.21 Whatcom	0	6	6	6	6
8 = 11 11 11 11 11													
Bellingham_Anchorage	Arrival	L1a	BH A 7	48° 42′ 46′′]	N 122° 32′ 43′′	W BP_B_4	48° 44′ 18′′ N 122° 32′ 27′′ W	1.53 Whatcom	0	3	3	3	3
	Departure		BP B 4		N 122° 32′ 27′		48° 42′ 46′′ N 122° 32′ 43′′ W	1.53 Whatcom	0	4	4	4	4
	T												

OGV-Routing: BELLINGHAM to SEA

Lat/Long in WG	S84 Datum												Bulkers	
												Reefer	Tankers	
DRAFT											Container	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	Starting WP Lat/Lon	End WP	Ending Waypoint Lat/Lon	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
Bellingham_RS	Departure	M	Y	L6	BH_D_7	48° 42′ 46′′ N 122° 32′ 43′′ W	BH_D_6	48° 38′ 43′′ N 122° 34′ 10′′ W	4.2 Whatcom	0	0	10	8	6
Bellingham_RS	Departure	X	Y	L5	BH_D_6	48° 38′ 43′′ N 122° 34′ 10′′ W	BH_D_5	48° 38′ 22′′ N 122° 34′ 18′′ W	0.4 Skagit	0	0	11	9	SS
Bellingham_RS	Departure	X	Y	L4	BH_D_5	48° 38′ 22′′ N 122° 34′ 18′′ W	BH_D_4	48° 36′ 07′′ N 122° 39′ 29′′ W	4.1 Skagit	0	0	14	12	SS
Bellingham_RS	Departure	Τ	N	L3	BH_D_4	48° 36′ 07′′ N 122° 39′ 29′′ W	BH_D_3	48° 33′ 12′′ N 122° 39′ 48′′ W	2.9 Skagit	0	0	15	13	SS
Bellingham_RS	Departure	Τ	N	L2	BH_D_3	48° 33′ 12′′ N 122° 39′ 48′′ W	BH_D_2	48° 30′ 09′′ N 122° 43′ 05′′ W	3.7 Skagit	0	0	15	13	SS
Bellingham_RS	Departure	Τ	N	L1a	BH_D_2	48° 30′ 09′′ N 122° 43′ 05′′ W	RS_A_6	48° 28′ 00′′ N 122° 43′ 53′′ W	2.2 Skagit	0	0	15	13	SS
Bellingham_RS	Departure	Τ	N	L0a	RS_A_6	48° 28′ 00′′ N 122° 43′ 53′′ W	RS_D_12	48° 27′ 12′′ N 122° 45′ 18′′ W	1.3 Skagit	0	0	15	13	SS
CherryPT_PA	Departure	Т	N	L12	RS_D_12	48° 27′ 12′′ N 122° 45′ 18′′ W	RS_D_13	48° 26′ 10′′ N 122° 45′ 48′′ W	1.1 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	Т	N	L13	RS_D_13	48° 26′ 10′′ N 122° 45′ 48′′ W	RS_D_14	48° 24′ 37′′ N 122° 48′ 09′′ W	2.2 San Juan	0	0	15	13	SS
CherryPT_PA	Departure	Т	N	L14	RS_D_14	48° 24′ 37′′ N 122° 48′ 09′′ W	RS_D_15	48° 20′ 13′′ N 122° 58′ 21′′ W	8.1 San Juan	0	0	SS	SS	SS
CherryPT_PA	Departure	X	N	L15a	RS_D_15	48° 20′ 13′′ N 122° 58′ 21′′ W	PS_D_27	48° 10′ 33′′ N 123° 23′ 03′′ W	19.0 Calallam	0	0	SS	SS	SS
Tacoma_Sea	Departure	M	N	L27	PS_D_27	48° 10′ 33′′ N 123° 23′ 03′′ W	PS_D_28	48° 11′ 21′′ N 123° 23′ 02′′ W	0.8 Calallam	0	0	8	8	8
Tacoma_Sea	Departure	X	N	L28	PS_D_28	48° 11′ 21′′ N 123° 23′ 02′′ W	PS_D_29	48° 14′ 13′′ N 123° 28′ 57′′ W	4.9 Calallam	0	0	14	12	SS
Tacoma_Sea	Departure	Т	N	L29	PS_D_29	48° 14′ 13′′ N 123° 28′ 57′′ W	PS_D_30	48° 15′ 21′′ N 123° 33′ 17′′ W	3.1 Calallam	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L30	PS_D_30	48° 15′ 21′′ N 123° 33′ 17′′ W	PS_D_31	48° 17′ 36′′ N 123° 56′ 06′′ W	15.4 Calallam	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L31	PS_D_31	48° 17′ 36′′ N 123° 56′ 06′′ W	PS_D_32	48° 30′ 38′′ N 124° 43′ 36′′ W	34.1 Calallam	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L32	PS_D_32	48° 30′ 38′′ N 124° 43′ 36′′ W	PS_D_33	48° 30′ 43′′ N 125° 00′ 00′′ W	10.9 Calallam	0	0	SS	SS	SS
								T-4-1 Di-4	110 2	NT / CC	C: C-	1		

Total Distance 118.2 nm Note: SS - Service Speed

Speed by Link (knots)

Slow Very Slow

Medium

Fast

Fast

Puget Sound Emissions Inventory OGV-Routing: BELLINGHAM to VANCOUVER (NB3)

OGV-Routing:	BELLING	HAM t	o VAN	COUVE	R (NB3)						Fast	Fast	Medium	Slow	Very Slov
Lat/Long in WG	S84 Datum													Bulkers	
													Reefer	Tankers	
DRAFT												Container	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	Startin	g WP Lat/Lon	End WP	Ending Waypoint Lat/Lon	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
Bellingham_RS	Departure	M	Y	L6	BH_D_7	48° 42′ 46′′	N 122° 32′ 43′′ W	BH_D_6	48° 38′ 43′′ N 122° 34′ 10′′ W	4.2 Whatcom	0	0	10	8	6
Bellingham_RS	Departure	M	Y	L5	BH_D_6	48° 38′ 43′′	N 122° 34′ 10′′ W	BH_D_5	48° 38′ 22′′ N 122° 34′ 18′′ W	0.4 Skagit	0	0	11	9	SS
Bellingham_RS	Departure	X	Y	L4a	BH_D_5	48° 38′ 22′′	N 122° 34′ 18′′ W	LI_D_1	48° 37′ 15′′ N 122° 38′ 00′′ W	2.7 Skagit	0	0	14	12	SS
Vendovi_GStght	Departure	T	N	L1	LI_D_1	48° 37′ 15′′	N 122° 38′ 00′′ W	LI_D_2	48° 38′ 43′′ N 122° 39′ 49′′ W	1.9 Skagit	0	0	10	12	SS
Vendovi_GStght	Departure	T	N	L2a	LI_D_2	48° 38′ 43′′	N 122° 39′ 49′′ W	RS_A_12	48° 40′ 35′′ N 122° 42′ 10′′ W	2.4 Whatcom	0	0	12	12	SS
PA_CherryPT	Arrival	T	N	L12	RS_A_12	48° 40′ 35′′	N 122° 42′ 10′′ W	RS_A_13	48° 45′ 17′′ N 122° 45′ 50′′ W	5.3 Whatcom	0	0	15	12	SS
BuoyYCA_NB3	Departure	Т	N	L1a	RS_A_13	48° 45′ 17′′	N 122° 45′ 50′′ W	SG_D_1	48° 47′ 27′′ N 122° 51′ 18′′ W	4.2 Whatcom	0	0	17	13	SS
BuovYCA NB3	Departure	Т	N	L2	SG D 1	48° 47′ 27′′	N 122° 51′ 18′′ W	SG D 2	49° 00′ 09′′ N 123° 14′ 09′′ W	19.7 Whatcom	0	0	SS	SS	SS

Note: SS - Service Speed Total Distance 40.7 nm

Speed by Link (knots)

Puget Sound Emissions Inventory OGV-Routing: BELLINGHAM to TACOMA

Lat/Long in WGS84 Datum

												Reefer	Tankers	
DRAFT											Container	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	Starting WP Lat/Lon	End WP	Ending Waypoint Lat/Lon	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
Bellingham_RS	Departure	M	Y	L6	BH_D_7	48° 42′ 46′′ N 122° 32′ 43′′ W	BH_D_6	48° 38′ 43′′ N 122° 34′ 10′′ W	4.2 Whatcom	0	0	10	8	6
Bellingham_RS	Departure	X	Y	L5	BH_D_6	48° 38′ 43′′ N 122° 34′ 10′′ W	BH_D_5	48° 38′ 22′′ N 122° 34′ 18′′ W	0.4 Skagit	0	0	11	9	SS
Bellingham_RS	Departure	X	Y	L4	BH_D_5	48° 38′ 22′′ N 122° 34′ 18′′ W	BH_D_4	48° 36′ 07′′ N 122° 39′ 29′′ W	4.1 Skagit	0	0	14	12	SS
Bellingham_RS	Departure	T	N	L3	BH_D_4	48° 36′ 07′′ N 122° 39′ 29′′ W	BH_D_3	48° 33′ 12′′ N 122° 39′ 48′′ W	2.9 Skagit	0	0	15	13	SS
Bellingham_RS	Departure	T	N	L2		48° 33′ 12′′ N 122° 39′ 48′′ W		48° 30′ 09′′ N 122° 43′ 05′′ W	3.7 Skagit	0	0	15	13	SS
Bellingham_RS	Departure	T	N	L1	BH_D_2	48° 30′ 09′′ N 122° 43′ 05′′ W	RS_A_6	48° 28′ 00′′ N 122° 43′ 53′′ W	2.2 Skagit	0	0	15	13	SS
Bellingham_RS	Departure	T	N	L0a	RS_A_6	48° 28′ 00′′ N 122° 43′ 53′′ W	AA_D_2	48° 24′ 08′′ N 122° 44′ 50′′ W	1.9 San Juan	0	0	15	13	SS
Anacortes_Admr	Departure	T	N	L2	AA_D_2	48° 24′ 08′′ N 122° 44′ 50′′ W	AA_D_3	48° 22′ 25′′ N 122° 45′ 34′′ W	1.8 San Juan	0	0	16	13	SS
Anacortes_Admr	Departure	T	N	L3	AA_D_3	48° 22′ 25′′ N 122° 45′ 34′′ W	AA_D_4	48° 13′ 29′′ N 122° 49′ 22′′ W	9.3 Island	0	0	17	13	SS
Anacortes_Admr	Departure	T	N	L4		48° 13′ 29′′ N 122° 49′ 22′′ W		48° 11′ 32′′ N 122° 48′ 21′′ W	2.1 Island	0	0	SS	SS	SS
Anacortes_Admr	Departure	T	N	L5a	AA_D_5	48° 11′ 32′′ N 122° 48′ 21′′ W	PS_A_9	48° 10′ 57′′ N 122° 48′ 01′′ W	0.6 Jefferson	0	0	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L9	PS_A_9	48° 10′ 57′′ N 122° 48′ 01′′ W	PS_A_10	48° 06′ 35′′ N 122° 40′ 10′′ W	6.8 Jefferson	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L10	PS_A_10	48° 06′ 35′′ N 122° 40′ 10′′ W	PS_A_11	48° 01′ 08′′ N 122° 38′ 08′′ W	5.6 Jefferson	0	0	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L11	PS_A_11	48° 01′ 08′′ N 122° 38′ 08′′ W	PS_A_12	47° 57′ 41′′ N 122° 35′ 10′′ W	4.0 Island	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L12	PS_A_12	47° 57′ 41′′ N 122° 35′ 10′′ W	PS_A_13	47° 56′ 38′′ N 122° 32′ 57′′ W	1.8 Island	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L13	PS_A_13	47° 56′ 38′′ N 122° 32′ 57′′ W	PS_A_14	47° 55′ 17′′ N 122° 30′ 06′′ W	2.3 Kitsap	0	0	SS	SS	SS
Sea_Tacoma	Arrival	T	N	L14	PS_A_14	47° 55′ 17′′ N 122° 30′ 06′′ W	PS_A_15	47° 45′ 54′′ N 122° 26′ 45′′ W	9.7 Kitsap	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L15	PS_A_15	47° 45′ 54′′ N 122° 26′ 45′′ W	PS_A_16	47° 39′ 42′′ N 122° 28′ 24′′ W	6.3 Kitsap	0	0	SS	SS	SS
Sea_Tacoma	Arrival	Τ	N	L16	PS_A_16	47° 39′ 42′′ N 122° 28′ 24′′ W	PS_A_17	47° 34′ 32′′ N 122° 27′ 32′′ W	5.2 Kitsap	0	0	16	13	SS
Sea_Tacoma	Arrival	Т	N	L17	PS_A_17	47° 34′ 32′′ N 122° 27′ 32′′ W	PS_A_18	47° 31′ 51′′ N 122° 26′ 34′′ W	2.8 Kitsap	0	0	16	13	SS
Sea_Tacoma	Arrival	Τ	N	L18	PS_A_18	47° 31′ 51′′ N 122° 26′ 34′′ W	PS_A_19	47° 26′ 44′′ N 122° 24′ 45′′ W	5.3 King	0	0	16	13	SS
Sea_Tacoma	Arrival	X	Y	L19	PS_A_19	47° 26′ 44′′ N 122° 24′ 45′′ W	PS_A_20	47° 23′ 09′′ N 122° 21′ 56′′ W	4.1 King	0	0	17	13	SS
Sea_Tacoma	Arrival	X	Y	L20	PS_A_20	47° 23′ 09′′ N 122° 21′ 56′′ W	PS_A_21	47° 19′ 39′′ N 122° 27′ 52′′ W	5.3 King	0	0	13	12	SS
Sea_Tacoma	Arrival	M	Y	L21		47° 19′ 39′′ N 122° 27′ 52′′ W			0.5 King	0	0	10	10	9
Sea_Tacoma	Arrival	M	Y	L22	PS_A_22	47° 19′ 10′′ N 122° 28′ 05′′ W	PS_A_23	47° 18′ 07′′ N 122° 27′ 41′′ W	1.1 Pierce	0	0	10	10	8

Total Distance 93.9 nm

Note: SS - Service Speed

Note: Red numbers - engines off

Speed by Link (knots)

Fast

Medium Slow Very Slow

Bulkers

i uget sound				•						-	u by Link (. ,	
OGV-Routing:		to BEI	LLING	HAM					Fast	Fast	Medium	Slow	Very Slow
Lat/Long in WGS	S84 Datum											Bulkers	
											Reefer	Tankers	
DRAFT										Container	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	WP 1 End WP	⁷ aypoin I	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
Tacoma_Sea	Departure	M	Y	L2	PS_D_2	47° 1PS_D_3	47° 19′	1.3 Pierce	0	0	10	10	9
Tacoma_Sea	Departure	X	Y	L3	PS_D_3	47° 1PS_D_4	47° 19′	0.9 Pierce	0	0	12	12	SS
Tacoma_Sea	Departure	X	Y	L4	PS_D_4	47° 1PS_D_5	47° 23′	4.8 King	0	0	14	SS	SS
Tacoma_Sea	Departure	X	Y	L5	PS_D_5	47° 2PS_D_6	47° 26′	4.4 King	0	0	16	SS	SS
Tacoma_Sea	Departure	Т	N	L6	PS_D_6	47° 2PS_D_7	47° 34′	7.8 King	0	0	15	SS	SS
Tacoma_Sea	Departure	Т	N	L7	PS_D_7	47° 3PS_D_8	47° 35′	1.4 King	0	0	16	SS	SS
Tacoma_Sea	Departure	Т	N	L8	PS_D_8	47° 3PS_D_9	47° 37′	1.1 Kitsap	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L9	PS_D_9	47° 3PS_D_10	47° 39′	2.7 King	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L10	PS_D_10	47° 3PS_D_11	47° 41′	2.3 King	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L11	PS_D_11	47° 4PS_D_12	47° 45′	4.0 Kitsap	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L12	PS_D_12	47° 4PS_D_13	47° 46′	0.8 King	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L13	PS_D_13	47° 4PS_D_14	47° 48′	1.5 Snohomish	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L14		47° 4PS_D_15		4.6 Kitsap	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L15	PS_D_15	47° 5PS_D_16	47° 55′	3.1 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L16	PS_D_16	47° 5 PS_D_17	47° 57′	2.4 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L17	PS_D_17	47° 5PS_D_18	47° 58′	1.9 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L18	PS_D_18	47° 5PS_D_19	48° 02′	4.5 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L19	PS_D_19	48° (PS_D_20	48° 04′	2.8 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L20		48° (PS_D_21		2.2 Jefferson	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L21	PS_D_21	48° (PS_D_22	48° 07′	1.3 Jefferson	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L22		48° (PS_D_23		5.3 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L23	PS_D_23	48° 1PS_D_24	48° 11′	1.4 Island	0	0	SS	SS	SS
Tacoma_Sea	Departure	Т	N	L24a	PS_D_24	48° 1 AA_A_1	48° 13′	2.2 Island	0	0	SS	SS	SS
Admr_Anacortes	Arrival	X	N	L1	AA_A_1	48° 1 AA_A_2	48° 24′	11.3 Island	0	0	18	SS	SS
Admr_Anacortes	Arrival	Τ	N	L2	AA_A_2	48° 2 AA_A_3	48° 24′	0.7 Island	0	0	16	12	SS
Admr_Anacortes	Arrival	Τ	N	L3a	AA_A_3	48° 2 RS_A_6	48° 28′	3.2 Skagit	0	0	15	11	SS
RS_Bellingham	Arrival	Т	N	L1a	RS_A_6	48° 2 BH_A_2	48° 30′	2.2 Skagit	0	0	14	11	SS
RS_Bellingham	Arrival	Τ	N	L2	BH_A_2	48° 3 BH_A_3	48° 33′	3.7 Skagit	0	0	14	10	SS
RS_Bellingham	Arrival	T	N	L3	BH_A_3	48° 3 BH_A_4	48° 36′	2.9 Skagit	0	0	14	10	SS
RS_Bellingham	Arrival	Τ	N	L4	BH_A_4	48° 3 BH_A_5	48° 38′	4.1 Skagit	0	0	14	10	SS
RS_Bellingham	Arrival	X	Y	L5	BH_A_5	48° 3 BH_A_6	48° 38′	0.4 Skagit	0	0	12	10	SS
RS_Bellingham	Arrival	M	Y	L6	BH_A_6	48° 3 BH_A_7	48° 42′	4.2 Whatcom	0	0	10	8	6

Total Distance 97.4 nm Note: SS - Service Speed

Speed by Link (knots)

Puget Sound Emissions Inventory OGV-Routing: PORT ANGELES to VANCOUVER (NB2)

Lat/Long in WGS	S84 Datum												Bulkers	
												Reefer	Tankers	
DRAFT											Container	RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	g WP La	End WP	Waypoint	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
PortAngeles_Sea	Departure	M	Y	L1	PA_D_1	48° 08′	PA_D_2	48° 08′ 18	1.2 Calallam	0	6	6	6	6
PortAngeles_Sea	Departure	M	Y	L2	PA_D_2	48° 08′	PA_D_3	48° 09′ 36	1.5 Calallam	0	8	8	8	8
PortAngeles_Sea	Departure	M	Y	L3a	PA_D_3	48° 09′	PS_A_6	48° 09′ 58	0.5 Calallam	0	8	8	8	8
PA_CherryPT	Arrival	X	N	L1a	PS_A_6	48° 09′	RS_A_2	48° 16′ 08	13.1 Calallam	0	20	15	13.5	SS
PA_CherryPT	Arrival	Τ	N	L2	RS_A_2	48° 16′	RS_A_3	48° 19′ 40	6.6 San Juan	0	21	15	13	SS
PA_CherryPT	Arrival	Τ	N	L3	RS_A_3	48° 19′	AD_D_3	48° 19′ 51	8.3 San Juan	0	20	15	13	SS
AI_NB2	Departure	T	N	L3	AD_D_3	48° 19′	AD_D_4	48° 24′ 17	5.1 San Juan	0	22	SS	SS	SS
AI_NB2	Departure	T	N	L4	AD_D_4	48° 24′	AD_D_5	48° 29′ 18	7.3 San Juan	0	22	SS	SS	SS
AI_NB2	Departure	T	N	L5	AD_D_5	48° 29′	AD_D_6	48° 34′ 47	5.8 San Juan	0	22	SS	SS	SS
AI_NB2	Departure	X	N	L6	AD_D_6	48° 34′	AD_D_7	48° 40′ 00	5.4 San Juan	0	18	16	11	SS

Total Distance 54.7 nm

Speed by Link (knots)

Slow

Very Slow

Fast Medium

Fast

'ANCOU'	VER (N	JB2) to	PORT A	NGELES				Fast	Fast	Medium	Slow	Very Slow
84 Datum											Bulkers	_
										Reefer	Tankers	
									Containe	r RO/RO	Log	
Arr/Dep	Mode	NPE	Link ID	Start WP	WP L End WP	⁷ aypoin I	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
Arrival	Т	N	L1	AD_A_1	48° 40 AD_A_2	48° 34°	5.2 San Juan	0	18	16	SS	SS
Arrival	Τ	N	L2	AD_A_2	48° 34 AD_A_3	48° 29°	5.9 San Juan	0	22	SS	SS	SS
Arrival	Τ	N	L3	AD_A_3	48° 29 AD_A_4	48° 27°	2.4 San Juan	0	22	SS	SS	SS
Arrival	Τ	N	L4	AD_A_4	48° 27 AD_A_5	48° 25°	3.6 San Juan	0	22	SS	SS	SS
Arrival	Τ	N	L5	AD_A_5	48° 25 AD_A_6	48° 22°	3.3 San Juan	0	22	SS	SS	SS
Arrival	Τ	N	L6	AD_A_6	48° 22 AD_A_7	48° 20°	2.9 San Juan	0	22	SS	SS	SS
Arrival	X	N	L7a	AD_A_7	48° 20 PS_D_27	48° 10°	19.0 Calallam	0	16	14	13	11
Arrival	X	Y	L1a	PS_D_27	48° 10 PA_A_2	48° 09	0.8 Calallam	0	8	8	8	8
Arrival	M	Y	L1	PA_A_2	48° 09 PA_A_3	48° 08	1.6 Calallam	0	8	8	8	8
Arrival	M	Y	L2	PA_A_3	48° 08 PA_A_4	48° 08	1.0 Calallam	0	6	6	6	6
8	Arr/Dep Arrival	Arr/Dep Mode Arrival T Arrival X Arrival X Arrival X Arrival M	Arr/Dep Mode NPE Arrival T N Arrival X N Arrival X N Arrival X Y Arrival M Y	Arr/Dep Mode NPE Link ID Arrival T N L2 Arrival T N L3 Arrival T N L4 Arrival T N L4 Arrival T N L5 Arrival T N L5 Arrival T N L6 Arrival X N L7a Arrival X Y L1a Arrival M Y L1	Arr/Dep Mode NPE Link ID Start WP Arrival T N L1 AD_A_1 Arrival T N L2 AD_A_2 Arrival T N L3 AD_A_3 Arrival T N L4 AD_A_4 Arrival T N L5 AD_A_5 Arrival T N L6 AD_A_6 Arrival X N L7a AD_A_7 Arrival X Y L1a PS_D_27 Arrival M Y L1 PA_A_2	Arr/Dep Mode NPE Link ID Start WP; WP L End WP Arrival T N L1 AD_A_1 48° 40 AD_A_2 Arrival T N L2 AD_A_2 48° 34 AD_A_3 Arrival T N L3 AD_A_3 48° 29 AD_A_4 Arrival T N L4 AD_A_4 48° 27 AD_A_5 Arrival T N L5 AD_A_5 48° 25 AD_A_6 Arrival T N L6 AD_A_6 48° 22 AD_A_7 Arrival X N L7a AD_A_7 48° 20 PS_D_27 Arrival X Y L1a PS_D_27 48° 10 PA_A_2 Arrival M Y L1 PA_A_2 48° 09 PA_A_3 Arrival M Y L1 PA_A_3 48° 08 PA_A_4	Arr/Dep Mode NPE Link ID Start WP; WP L End WP 'aypoin ID Arrival T N L1 AD_A_1 48° 40 AD_A_2 48° 34 Arrival T N L2 AD_A_2 48° 34 AD_A_3 48° 29 Arrival T N L3 AD_A_3 48° 29 AD_A_4 48° 27 Arrival T N L4 AD_A_4 48° 27 AD_A_5 48° 25 Arrival T N L5 AD_A_5 48° 25 AD_A_6 48° 22 Arrival T N L6 AD_A_6 48° 22 AD_A_7 48° 20 Arrival X N L7a AD_A_7 48° 20 PS_D_27 48° 10 Arrival X Y L1a PS_D_27 48° 10 PA_A_2 48° 09 Arrival M Y L1 PA_A_2 48° 09 PA_A_3 48° 08	Arr/Dep Mode NPE Link ID Start WP; WP L End WP 'aypoin Dist. County Arrival T N L1 AD_A_1 48° 40 AD_A_2 48° 34 5.2 San Juan Arrival T N L2 AD_A_2 48° 34 AD_A_3 48° 29' 5.9 San Juan Arrival T N L3 AD_A_3 48° 29 AD_A_4 48° 27' 2.4 San Juan Arrival T N L4 AD_A_3 48° 27 AD_A_5 48° 25' 3.6 San Juan Arrival T N L5 AD_A_5 48° 25 AD_A_6 48° 22' 3.3 San Juan Arrival T N L6 AD_A_6 48° 22 AD_A_7 48° 20' 2.9 San Juan Arrival X N L7a AD_A_7 48° 20 PS_D_27 48° 10' 19.0 Calallam Arrival X Y L1a PS_D_27 48° 10' PA_A_2 48° 09' 0.8 Calallam Arrival M Y L1 PA_A_2 48° 09' </td <td>Arr/Dep Mode NPE Link ID Start WP; WP L End WP 'aypoin Dist. County Cruise Arrival T N L1 AD_A_1</td> <td> Containe Containe</td> <td>Reefer RoyRO Arr/Dep Mode NPE Link ID Start WP; WP L End WP aypoin Dist. County Cruise Auto Fishing Arrival T N L1 AD_A_1 48° 40 AD_A_2 48° 34 5.2 San Juan 0 18 16 Arrival T N L2 AD_A_2 48° 34 AD_A_3 48° 29 5.9 San Juan 0 22 SS Arrival T N L3 AD_A_3 48° 29 AD_A_4 48° 27 2.4 San Juan 0 22 SS Arrival T N L4 AD_A_4 48° 27 AD_A_5 48° 25 3.6 San Juan 0 22 SS Arrival T N L5 AD_A_5 48° 25 AD_A_6 48° 22 3.3 San Juan 0 22 SS Arrival T N L5 AD_A_5 48° 25 AD_A_6 48° 22 3.3 San Juan 0 22 SS Arrival T N L6 AD_A_6 48° 22 AD_A_7 48° 20 2.9 San Juan 0 22 SS Arrival T N L6 AD_A_6 48° 22 AD_A_7 48° 20 2.9 San Juan 0 22 SS Arrival T N L6 AD_A_6 48° 22 AD_A_7 48° 20 2.9 San Juan 0 22 SS Arrival X N L7a AD_A_7 48° 20 PS_D_27 48° 10 19.0 Calallam 0 16 14 Arrival X Y L1a PS_D_27 48° 10 PA_A_2 48° 09 0.8 Calallam 0 8 8 Arrival M Y L1 PA_A_2 48° 09 PA_A_3 48° 08 1.6 Calallam 0 8 8 Arrival M Y L1 PA_A_3 48° 08 PA_A_4 48° 08 1.0 Calallam 0 6 6</td> <td> Refer Refer Refer Refer Ro/RO Ro/R</td>	Arr/Dep Mode NPE Link ID Start WP; WP L End WP 'aypoin Dist. County Cruise Arrival T N L1 AD_A_1	Containe Containe	Reefer RoyRO Arr/Dep Mode NPE Link ID Start WP; WP L End WP aypoin Dist. County Cruise Auto Fishing Arrival T N L1 AD_A_1 48° 40 AD_A_2 48° 34 5.2 San Juan 0 18 16 Arrival T N L2 AD_A_2 48° 34 AD_A_3 48° 29 5.9 San Juan 0 22 SS Arrival T N L3 AD_A_3 48° 29 AD_A_4 48° 27 2.4 San Juan 0 22 SS Arrival T N L4 AD_A_4 48° 27 AD_A_5 48° 25 3.6 San Juan 0 22 SS Arrival T N L5 AD_A_5 48° 25 AD_A_6 48° 22 3.3 San Juan 0 22 SS Arrival T N L5 AD_A_5 48° 25 AD_A_6 48° 22 3.3 San Juan 0 22 SS Arrival T N L6 AD_A_6 48° 22 AD_A_7 48° 20 2.9 San Juan 0 22 SS Arrival T N L6 AD_A_6 48° 22 AD_A_7 48° 20 2.9 San Juan 0 22 SS Arrival T N L6 AD_A_6 48° 22 AD_A_7 48° 20 2.9 San Juan 0 22 SS Arrival X N L7a AD_A_7 48° 20 PS_D_27 48° 10 19.0 Calallam 0 16 14 Arrival X Y L1a PS_D_27 48° 10 PA_A_2 48° 09 0.8 Calallam 0 8 8 Arrival M Y L1 PA_A_2 48° 09 PA_A_3 48° 08 1.6 Calallam 0 8 8 Arrival M Y L1 PA_A_3 48° 08 PA_A_4 48° 08 1.0 Calallam 0 6 6	Refer Refer Refer Refer Ro/RO Ro/R

Total Distance 45.7 nm Note: SS - Service Speed

Speed by Link (knots)

											ed by Link	(knots)		
OGV-Routing:	SEA to PC	RT AN	IGELI	ES						Fast	Fast	Medium	Slow	Very Slow
Lat/Long in WG	S84 Datum												Bulkers	
												Reefer	Tankers	
DRAFT											Containe	r RO/RO	Log	
Route	Arr/Dep	Mode	NPE	Link ID	Start WP	ıg WP La	End WP	Waypoint	Dist. County	Cruise	Auto	Fishing	Fishing	Fishing
Sea_Tacoma	Arrival	Т	N	L1	PS_A_1	48° 28′ 3	PS_A_2	48° 28′ 3	10.7 Calallam	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L2	PS_A_2	48° 28′ 3	PS_A_3	48° 13′ 2	35.9 Calallam	0	SS	SS	SS	SS
Sea_Tacoma	Arrival	Т	N	L3	PS_A_3	48° 13′ 2	PS_A_4	48° 13′ 2	15.4 Calallam	0	20	SS	SS	SS
Sea_Tacoma	Arrival	X	Y	L4	PS_A_4	48° 13′ 2	PS_A_5	48° 09′ 2	6.9 Calallam	0	16	15	12	SS
Sea_PortAngeles	Arrival	M	Y	L1a	PS_A_5	48° 09′ 2	PA_A_2	48° 09′ 4	0.4 Calallam	0	8	8	8	8
Sea_PortAngeles	Arrival	M	Y	L1	PA_A_2	48° 09′ 4	PA_A_3	48° 08′ 2	1.6 Calallam	0	8	8	8	8
Sea_PortAngeles	Arrival	\mathbf{M}	Y	L2	PA_A_3	48° 08′ 2	PA_A_4	48° 08′ 0	1.0 Calallam	0	6	6	6	6
							Tota	l Distance	71.8 nm	Note: SS	S - Service S	Speed		

Puget Sound Emissions Inventory Speed by Link (knots) **OGV-Routing: PORT ANGELES HARBOR** Fast Fast Medium Slow Very Slow Bulkers Lat/Long in WGS84 Datum Reefer Tankers DRAFT Container RO/RO Log Route To Port To_Pier Arr/Dep Link ID Start WP WP | End WP ypoi Dist. County Cruise Auto Fishing Fishing Fishing Sea PortAngeles PORT ANGELES Arrival PA A 4 48° (Mode: Calallam Calallam PortAngeles_Sea PORT ANGELES Departure PA_D_1 48° (NPE: Y NOTE: All ARRIVAL harbor transits branch from PA A 4 NOTE: All DEPARTURE harbor transits goto PA D 1 PortAngeles 1-NortPORT ANGELES 1-NORTH Arrival PA A 4 48° (PA B 1 V 12 L₁a 2.55 Calallam 3 2.55 Calallam 4 4 1-North_PortAngel PORT ANGELES 1-NORTH Departure L1a PA_B_1 N 12 PA_D_1 48° 4 PortAngeles_TesorcPORT ANGELES TESORO PA_A_4 48° (PA_B_2 \ 12 L₁a 2.41 Calallam Tesoro_PortAngele: PORT ANGELES TESORO Departure L1a PA_B_2 N 12 PA_D_1 48° 2.41 Calallam PA A 4 48° (PA_B_3 N 12 PortAngeles Tesor(PORT ANGELES CITY DO(Arrival 1.93 Calallam L₁a Tesoro_PortAngele: PORT ANGELES CITY DO(Departure L1a PA_B_3 N 12 PA_D_1 48° 1.93 Calallam 4 PortAngeles_TesorcPORT ANGELES T PIER L1a PA A 4 48° (PA B 4 V 12 1.83 Calallam Arrival Tesoro_PortAngele: PORT ANGELES T PIER 1.83 Calallam L1a PA_B_4 N 12 PA_D_1 48° Departure PORT ANGELES Calallam Sea_PortAngeles PA A 3 48° (Mode: Arrival PortAngeles_Sea PORT ANGELES PA D 2 48° (NPE: Calallam Departure NOTE: All ANCHORAGE ARRIVAL harbor transits branch from PA A 3 NOTE: All ANCHORAGE DEPARTURE harbor transits goto PA_D_2 PortAngeles_Tesor(PORT ANGELES ANCHOR Arrival PA_A_4 48° (PA_B_5 \ \ 12 0.79 Calallam L1a

PA_B_5 N 12 PA_D_1 48°

0.53 Calallam

L1a

Tesoro_PortAngele: PORT ANGELES ANCHOR Departure

Puget Sound Emissions Inventory Speed by Link (knots) **OGV-Routing: PORT ANGELES to SEA Fast** Fast Medium Slow Very Slow Lat/Long in WGS84 Datum **Bulkers** Reefer **Tankers DRAFT** Container RO/RO Log Arr/Dep Mode NPE Link ID Start WPg WP L End WP Waypoint Dist. **Fishing** Route County Cruise Auto **Fishing** Fishing PortAngeles_Sea Departure M PA D 1 48° 08 PA D 2 48° 08′ 1 1.2 Calallam 0 6 6 L1 6 6 L2 PortAngeles_Sea Departure Μ Y PA_D_2 48° 08' PA_D_3 48° 09' 3 1.5 Calallam 0 8 8 8 8 PortAngeles Sea Departure PA D 3 48° 09′ PA D 4 48° 11′ 2 M Y L3 1.8 Calallam 8 8 8 0 8 X PS_D_28 48° 11 PS_D_29 48° 14′ 1 4.9 Calallam SS Tacoma_Sea Departure Y L28 0 15 14 12 Departure Τ PS_D_29 48° 14' PS_D_30 48° 15′ 2 SS SS Tacoma_Sea N L29 3.1 Calallam 0 19 SS Т SS SS SS SS Tacoma_Sea Departure N L30 PS_D_30 48° 15 PS_D_31 48° 17′ 3 15.4 Calallam Τ SS SS Tacoma_Sea Departure Ν L31 PS_D_31 48° 17' PS_D_32 48° 30′ 3 34.1 Calallam 0 SS SS Tacoma_Sea Departure N PS_D_32 48° 30' PS_D_33 48° 30′ 4 10.9 Calallam SS SS SS SS L32

Total Distance

72.8 nm

Note: SS - Service Speed

APPENDIX B - SUPPORTING DATA

HARBOR VESSEL DATA

				Engin	ie							
Vessel ID	Vessel Name	Type	Owner Name	ID User	Engine Type	Engine MFR	Engine Model	Engine Year	Fuel	HP	Annual Hours	Load
650273	Andrew Foss	Assist & Escort	Foss		1 Propulsion	GM EMD	16-645-E6		ULSD	2000		0.31
650273	Andrew Foss	Assist & Escort	Foss		2 Propulsion	GM EMD	16-645-E6		ULSD	2000		0.31
650273	Andrew Foss	Assist & Escort	Foss		3 auxiliary	GM Detroit			ULSD	100		0.43
650273	Andrew Foss	Assist & Escort	Foss		4 auxiliary	GM Detroit			ULSD	100	4281	0.43
573848 573848	Barbara Foss Barbara Foss	Assist & Escort Assist & Escort	Foss Foss		1 Propulsion 2 Propulsion	GM EMD GM EMD	12-645-E6 12-645-E6		ULSD ULSD	2150 2150		0.31
573848	Barbara Foss	Assist & Escort Assist & Escort	Foss		3 auxiliary	GM EMD GM Detroit			ULSD	192		0.31
573848	Barbara Foss	Assist & Escort	Foss		4 auxiliary	GM Detroit			ULSD	192		0.43
573848	Barbara Foss	Assist & Escort	Foss		5 auxiliary	GM Detroit		2003	ULSD	192		0.43
1063755	Chief	Assist & Escort	Crowley		1 Propulsion	CAT	3516	1998	ULSD	2400	2600	0.31
1063755	Chief	Assist & Escort	Crowley		2 Propulsion	CAT	3516		ULSD	2400	2600	0.31
1063755	Chief	Assist & Escort	Crowley		3 auxiliary	CAT	3304		ULSD	140		0.43
1063755	Chief	Assist & Escort	Crowley		4 auxiliary	CAT	3304		ULSD	140	3000	0.43
1139986	Corbin Foss	Assist & Escort	Foss		1 Propulsion		I Alco 16-251		ULSD	4100	2730	0.31
1139986	Corbin Foss	Assist & Escort	Foss		2 Propulsion		I Alco 16-251		ULSD	4100	3067	0.31
1139986	Corbin Foss	Assist & Escort	Foss		3 auxiliary	Cummins	6cta 8.3 -dc		ULSD	228	4475	0.43
1139986	Corbin Foss	Assist & Escort	Foss		4 auxiliary	Cummins	6cta 8.3 -dc	1 1982	ULSD	228	4193	0.43
1139986	Corbin Foss	Assist & Escort	Foss		5 auxiliary	Cummins	N-14-M		ULSD	480	144	0.43
1139986	Corbin Foss	Assist & Escort	Foss		6 auxiliary	John Deere	6068		ULSD	190	83	0.43
1228451	Delta Lindsey	Assist & Escort	Foss		1 Propulsion	Caterpillar	3516B	2010	ULSD	2575	2481	0.31
1228451	Delta Lindsey	Assist & Escort	Foss		2 Propulsion	Caterpillar	3516B	2010	ULSD	2575	2480	0.31
1228451	Delta Lindsey	Assist & Escort	Foss		3 auxiliary	Caterpillar	C6.6	2010	ULSD	201	1623	0.43
1228451	Delta Lindsey	Assist & Escort	Foss		4 auxiliary	Caterpillar	C6.6	2010	ULSD	201	1623	0.43
1228451	Delta Lindsey	Assist & Escort	Foss		5 auxiliary	Caterpillar	C4.4	2010	ULSD	74	4757	0.43
997792	Garth Foss	Assist & Escort	Foss		1 Propulsion	GM EMD	ME16-710-0	1993	ULSD	4000	3589	0.31
997792	Garth Foss	Assist & Escort	Foss		2 Propulsion	GM EMD	ME16-710-0	1993	ULSD	4000	3589	0.31
997792	Garth Foss	Assist & Escort	Foss		3 auxiliary	GM Detroit	6V-92TA	2004	ULSD	241	5870	0.43
997792	Garth Foss	Assist & Escort	Foss		4 auxiliary	GM Detroit	6V-92TA	2005	ULSD	241	3455	0.43
1063763	Guide	Assist & Escort	Crowley		1 Propulsion	CAT	3516	1998	ULSD	2400	2600	0.31
1063763	Guide	Assist & Escort	Crowley		2 Propulsion		3516		ULSD	2400	2600	0.31
1063763	Guide	Assist & Escort	Crowley		3 auxiliary	CAT	3304		ULSD	140		0.43
1063763	Guide	Assist & Escort	Crowley		4 auxiliary	CAT	3304		ULSD	140	3000	0.43
650272	Henry Foss	Assist & Escort	Foss		1 Propulsion	GM EMD	12-645-E6		ULSD	1500	3156	0.31
650272	Henry Foss	Assist & Escort	Foss		2 Propulsion	GM EMD	12-645-E6		ULSD	1500	3156	0.31
650272	Henry Foss	Assist & Escort	Foss		3 Propulsion	Cummins	KTA-50-M2		ULSD	1700	2853	0.31
650272	Henry Foss	Assist & Escort	Foss		4 auxiliary	GM Detroit			ULSD	192		0.43
650272	Henry Foss	Assist & Escort	Foss		5 auxiliary	GM Detroit			ULSD	192		0.43
997794	Lindsey Foss	Assist & Escort	Foss		1 Propulsion		16-710-G7A		ULSD	4000	2849	0.31
997794	Lindsey Foss	Assist & Escort	Foss		2 Propulsion		16-710-G7A		ULSD	4000	2846	0.31
997794	Lindsey Foss	Assist & Escort	Foss		3 auxiliary	GM Detroit			ULSD	550		0.43
997794	Lindsey Foss	Assist & Escort	Foss		4 auxiliary	GM Detroit			ULSD	550		0.43
9430507	Pacific Star	Assist & Escort	Foss		1 Propulsion	MTU	T1627M12/		ULSD	2575	3406	0.31
9430507 9430507	Pacific Star	Assist & Escort	Foss Foss		2 Propulsion	MTU Northarn Li	T1627M12/		ULSD ULSD	2575 201	3404	0.31 0.43
9430507	Pacific Star Pacific Star	Assist & Escort Assist & Escort	Foss		3 auxiliary 4 auxiliary		işM99C2 ? 99.		ULSD	201	4243 3620	0.43
1045212	Protector	Assist & Escort	Crowley		1 Propulsion		99 ? M99C2 } 3606		ULSD	2550	2600	0.43
1045212	Protector	Assist & Escort	Crowley		2 Propulsion	CAT	3606		ULSD	2550		0.31
1045212	Protector	Assist & Escort	Crowley		3 auxiliary	CAT	3304		ULSD	140		0.43
1045212	Protector	Assist & Escort	Crowley		4 auxiliary	CAT	3304		ULSD	140		0.43
1129936	Response	Assist & Escort	Crowley		1 Propulsion	CAT	3308		ULSD	3600	2600	0.43
1129936	Response	Assist & Escort	Crowley		2 Propulsion	CAT	3308		ULSD	3600		0.31
1129936	Response	Assist & Escort	Crowley		3 auxiliary	CAT	3306		ULSD	250		0.43
1129936	Response	Assist & Escort	Crowley		4 auxiliary	CAT	3306		ULSD	250		0.43
1021169	Tioga	Assist & Escort	Crowley		1 Propulsion	CAT	3516		ULSD	2400	2600	0.31
1021169	Tioga	Assist & Escort	Crowley		2 Propulsion	CAT	3516		ULSD	2400		0.31
1021169	Tioga	Assist & Escort	Crowley		3 auxiliary	CAT	3304		ULSD	140		0.43
1021169	Tioga	Assist & Escort	Crowley		4 auxiliary	CAT	3304		ULSD	140		0.43
1199816	Valor	Assist & Escort	Crowley		1 Propulsion	CAT	3516C		ULSD	2400	2600	0.31
1199816	Valor	Assist & Escort	Crowley		2 Propulsion	CAT	3516C		ULSD	2400	2600	0.31
1199816	Valor	Assist & Escort	Crowley		3 auxiliary	CAT	C4.4		ULSD	75	3000	0.43
1199816	Valor	Assist & Escort	Crowley		4 auxiliary	CAT	C4.4		ULSD	75	3000	0.43
649840	Wedell Foss	Assist & Escort	Foss		1 Propulsion	GM EMD	12-645-E6		ULSD	1500		0.31
	Wedell Foss	Assist & Escort	Foss		2 Propulsion	GM EMD	12-645-E6		ULSD	1500		0.31
649840					1							
649840 649840	Wedell Foss	Assist & Escort	Foss		3 Propulsion	Cummins	K1A-50-M2	2005	OLSD	1/00	2966	U) I
649840	Wedell Foss Wedell Foss	Assist & Escort Assist & Escort	Foss Foss		3 Propulsion 4 auxiliary	Cummins GM Detroit	KTA-50-M2 671		ULSD ULSD	1700 192		0.31 0.43
	Wedell Foss Wedell Foss Wedell Foss	Assist & Escort Assist & Escort Assist & Escort	Foss Foss Foss		3 Propulsion 4 auxiliary 5 auxiliary	GM Detroit GM Detroit	671	1982	ULSD ULSD	1700 192 192	4823	0.43 0.43

					Engine								
				Owner	ID	Engine	Engine	Engine	Engine			Annual	
Vessel ID	Vessel Name	Type		Name	User	Type	MFR	Model	Year	Fuel	HP	Hours	Load
7613698	ADVENTURE	Commercial	Fishing		2	2 Propulsion				ULSD	350	48	0.3
7613698	ADVENTURE	Commercial	Fishing		3	3 auxiliary				ULSD	100	48	0.3
271628	AFOGNAK	Commercial	Fishing			l Propulsion				ULSD	290	48	0.3
271628	AFOGNAK	Commercial	Fishing		2	2 Propulsion				ULSD	290	48	0.3
271628	AFOGNAK	Commercial	Fishing		3	3 auxiliary				ULSD	100	48	0.3
599164	AJ	Commercial	Fishing		1	Propulsion			1978	ULSD	760	48	0.3
599164	AJ	Commercial	Fishing		2	2 Propulsion			1978	ULSD	760	48	0.3
599164	AJ	Commercial	Fishing		3	3 auxiliary			1978	ULSD	330	48	0.3
641608	AKEMI	Commercial	Fishing		1	Propulsion				ULSD	550	48	0.3
641608	AKEMI	Commercial	Fishing		2	2 Propulsion				ULSD	550	48	0.3
641608	AKEMI	Commercial	Fishing		3	3 auxiliary				ULSD	330	48	0.3
7337165	ALASKA BEAUTY	Commercial	Fishing		1	Propulsion				ULSD	400	48	0.3
7337165	ALASKA BEAUTY	Commercial	Fishing		2	2 Propulsion				ULSD	400	48	0.3
7337165	ALASKA BEAUTY	Commercial	Fishing		3	3 auxiliary				ULSD	100	48	0.3
996921	ALASKA KNIGHT	Commercial	Fishing			Propulsion				ULSD	2300	48	0.3
996921	ALASKA KNIGHT	Commercial	Fishing		2	2 Propulsion				ULSD	2300	48	0.3
996921	ALASKA KNIGHT	Commercial	Fishing			3 auxiliary				ULSD	900	48	0.3
586179	ALASKA MIST	Commercial		GULF MIST		Propulsion			1944	ULSD	750	48	0.3
586179	ALASKA MIST	Commercial	_			2 Propulsion				ULSD	750	48	
586179	ALASKA MIST		-	GULF MIST		3 auxiliary				ULSD	330	48	
637856	ALASKA OCEAN	Commercial	-			Propulsion				ULSD	3125	48	
637856	ALASKA OCEAN	Commercial				2 Propulsion				ULSD	3125	48	
637856	ALASKA OCEAN	Commercial	-			3 auxiliary				ULSD	900	48	0.3
8133059	ALASKA PACKER		-			Propulsion				ULSD	900	48	
8133059	ALASKA PACKER		_			2 Propulsion				ULSD	900	48	
8133059	ALASKA PACKER					3 auxiliary			1717	ULSD	330	48	
5232907	ALASKA QUEEN I		-	IMBLIVI		Propulsion				ULSD	450	48	
5232907	ALASKA QUEEN I					2 Propulsion				ULSD	450	48	
5232907	ALASKA QUEEN I					3 auxiliary				ULSD	100	48	
510811	ALASKAN	Commercial	-			Propulsion			1967	ULSD	350	48	
510811	ALASKAN	Commercial	_			2 Propulsion				ULSD	350	48	
510811	ALASKAN	Commercial				3 auxiliary				ULSD	100	48	
7719193	ALASKAN BEAUT		_			Propulsion				ULSD	425	48	
7719193			-			2 Propulsion				ULSD	425	48	0.3
7719193	ALASKAN BEAUT ALASKAN BEAUT		-			3 auxiliary				ULSD	100	48	0.3
599383						Propulsion				ULSD	3000	48	0.3
599383	ALASKAN COMMA										3000	48	
599383	ALASKAN COMMA		-			2 Propulsion 3 auxiliary				ULSD	900	48	
595760	ALASKAN COMMA					Propulsion				ULSD	900	48	
595760	ALASKAN ENTER									ULSD	900	48	
	ALASKAN ENTER					2 Propulsion							
595760	ALASKAN ENTERI		_			3 auxiliary				ULSD	330	48	
8845767	ALASKAN LEADE		-			Propulsion				ULSD ULSD	800	48	
8845767	ALASKAN LEADE		_			2 Propulsion				ULSD	800	48 48	
8845767	ALASKAN LEADE					3 auxiliary			1991		330		
8411932	ALDEBARAN	Commercial				Propulsion				ULSD	750	48	
8411932	ALDEBARAN	Commercial				2 Propulsion				ULSD	750		
8411932	ALDEBARAN	Commercial	-			3 auxiliary				ULSD	330		
39072	ALESSA LEI	Commercial				Propulsion				ULSD	750	48	
39072	ALESSA LEI	Commercial	_			2 Propulsion				ULSD	750	48	
39072	ALESSA LEI	Commercial	_			3 auxiliary			4002	ULSD	330	48	
8851649	ALEUTIAN BALLA					Propulsion				ULSD	400		
8851649	ALEUTIAN BALLA					2 Propulsion				ULSD	400	48	
8851649	ALEUTIAN BALLA		-			3 auxiliary				ULSD	100	48	
7230989	ALEUTIAN BEAUT					Propulsion				ULSD	350		
7230989	ALEUTIAN BEAUT		_			2 Propulsion				ULSD	350		
7230989	ALEUTIAN BEAUT		_			3 auxiliary			1971	ULSD	100	48	0.3
7912109	ALEUTIAN CHALI		_			Propulsion				ULSD	850		
7912109	ALEUTIAN CHALI		_			2 Propulsion				ULSD	850		
7912109	ALEUTIAN CHALI					3 auxiliary				ULSD	330	48	
642161	ALEUTIAN FALCO		_	-		Propulsion				ULSD	1500	48	
642161	ALEUTIAN FALCO	O Commercial	Fishing 1	NORQUES'	2	2 Propulsion			1981	ULSD	1500	48	0.3
642161	ALEUTIAN FALCO	O Commercial	Fishing 1	NORQUES'	3	3 auxiliary			1981	ULSD	900	48	0.3
7915864	AT ETPTIANI MADIN	I Commercial	Fishing			Propulsion			1979	ULSD	600	48	0.3
	ALEUTIAN MARIN	Commercian	- 0						1070	THEFT	700	4.0	0.3
7915864	ALEUTIAN MARIN		_		2	2 Propulsion			19/9	ULSD	600	48	0.0
		Commercial	Fishing			2 Propulsion 3 auxiliary				ULSD	330		
7915864	ALEUTIAN MARIN	l Commercial l Commercial	Fishing Fishing	ALEUTIAN	3	-			1979			48	0.3

8010087 ALLIANCE Commercial Fishing 1 Propulsion 19 8010087 ALLIANCE Commercial Fishing 2 Propulsion 19 8010087 ALLIANCE Commercial Fishing 3 auxiliary 5 60237 ALYESKA Commercial Fishing WA'ATCH 1 1 Propulsion 19 560237 ALYESKA Commercial Fishing WA'ATCH 1 2 Propulsion 19 560237 ALYESKA Commercial Fishing WA'ATCH 1 3 auxiliary 19 511315 AMATULI Commercial Fishing WIDING 1 Propulsion 19 511315 AMATULI Commercial Fishing WIDING 2 Propulsion 19 511315 AMATULI Commercial Fishing WIDING 3 auxiliary 19 633219 American Challenger Commercial Fishing WIDING 3 auxiliary 19 633219 American Challenger Commercial Fishing AMERICAN 1 Propulsion 19 633219 American Challenger Commercial Fishing AMERICAN 2 Propulsion 19 633219 American Challenger Commercial Fishing AMERICAN 3 auxiliary 19 633219 American Challenger Commercial Fishing AMERICAN 3 auxiliary 19 633219 American Challenger Commercial Fishing AMERICAN 2 Propulsion 19 633210 American Challenger Commercial Fishing AMERICAN 3 auxiliary 19 633210 American Challenger Commercial Fishing American Se 1 Propulsion Bergen Diesc BRM 8 19 7390428 American Dynasty Commercial Fishing American Se 2 Propulsion 19 7513006 AMERICAN LADY Commercial Fishing 2 Propulsion 19 7513006 AMERICAN LADY Commercial Fishing 3 auxiliary 19	Fuel	5000 5000 5000 5000 5000 5000 5000 500	10 48 48 48 48 48 48 48 48 48 48 48 48 48	Load 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
8010087ALLIANCECommercial Fishing1 Propulsion198010087ALLIANCECommercial Fishing2 Propulsion198010087ALLIANCECommercial Fishing3 auxiliary560237ALYESKACommercial Fishing WA'ATCH 11 Propulsion19560237ALYESKACommercial Fishing WA'ATCH 12 Propulsion19560237ALYESKACommercial Fishing WA'ATCH 13 auxiliary19511315AMATULICommercial Fishing WIDING1 Propulsion19511315AMATULICommercial Fishing WIDING2 Propulsion19513219American ChallengerCommercial Fishing AMERICAN1 Propulsion19633219American ChallengerCommercial Fishing AMERICAN2 Propulsion19633219American ChallengerCommercial Fishing AMERICAN2 Propulsion19633219American DynastyCommercial Fishing AMERICAN3 auxiliary197390428American DynastyCommercial Fishing American Se1 PropulsionBergen Dies BRM 8197513006AMERICAN LADYCommercial Fishing2 Propulsion197513006AMERICAN LADYCommercial	80 ULSD 80 ULSD ULSD 74 ULSD 74 ULSD 754 ULSD 67 ULSD 67 ULSD 67 ULSD 81 ULSD 81 ULSD 81 ULSD 90 ULSD 90 ULSD 90 ULSD 73 ULSD	5000 5000 5000 5000 5000 5000 5000 500	48 48 48 48 48 48 48 48 48 48 48 48 48 4	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
8010087ALLIANCECommercial Fishing2 Propulsion198010087ALLIANCECommercial Fishing3 auxiliary560237ALYESKACommercial Fishing WA'ATCH 11 Propulsion19560237ALYESKACommercial Fishing WA'ATCH 12 Propulsion19560237ALYESKACommercial Fishing WA'ATCH 13 auxiliary19511315AMATULICommercial Fishing WIDING1 Propulsion19511315AMATULICommercial Fishing WIDING2 Propulsion19513219American ChallengerCommercial Fishing AMERICAN1 Propulsion19633219American ChallengerCommercial Fishing AMERICAN2 Propulsion19633219American ChallengerCommercial Fishing AMERICAN2 Propulsion19633219American ChallengerCommercial Fishing AMERICAN3 auxiliary197390428American DynastyCommercial Fishing American Se1 PropulsionBergen Dies/BRM 8197390428American DynastyCommercial Fishing American Se2 PropulsionBergen Dies/BRM 8197513006AMERICAN LADYCommercial Fishing1 Propulsion197513006AMERICAN LADYCommercial Fishing2 Propulsion197513006AMERICAN LADYCommercial Fishing2 Propulsion197513006AMERICAN LADYCommercial Fishing2 Propulsion197513006AMERICAN LADYCommercial Fishing2 Propulsion19 <td< td=""><td>80 ULSD</td><td>5000 3300 9000 9000 3300 3653 364 1000 4500 4500 44000 44000 44000</td><td>48 48 48 48 48 48 48 48 48 48 48 14 44 48 14 144 14</td><td>0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3</td></td<>	80 ULSD	5000 3300 9000 9000 3300 3653 364 1000 4500 4500 44000 44000 44000	48 48 48 48 48 48 48 48 48 48 48 14 44 48 14 144 14	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
8010087 ALLIANCE Commercial Fishing 3 auxiliary 560237 ALYESKA Commercial Fishing WA'ATCH 1 1 Propulsion 19 560237 ALYESKA Commercial Fishing WA'ATCH 1 2 Propulsion 19 560237 ALYESKA Commercial Fishing WA'ATCH 1 3 auxiliary 19 511315 AMATULI Commercial Fishing WIDING 1 Propulsion 19 511315 AMATULI Commercial Fishing WIDING 2 Propulsion 19 511315 AMATULI Commercial Fishing WIDING 3 auxiliary 19 633219 American Challenger Commercial Fishing AMERICAN 1 Propulsion 19 633219 American Challenger Commercial Fishing AMERICAN 2 Propulsion 19 633219 American Challenger Commercial Fishing AMERICAN 3 auxiliary 19 7390428 American Dynasty Commercial Fishing AMERICAN 3 auxiliary 19 7390428 American Dynasty Commercial Fishing American Se 1 Propulsion Bergen Dies BRM 8 19 7513006 AMERICAN LADY Commercial Fishing 1 Propulsion 19 7513006 AMERICAN LADY Commercial Fishing 2 Propulsion 19 7513006 AMERICAN LADY Commercial Fishing 3 auxiliary 19 7513006 AMERICAN LADY Commercial Fishing 19 7513006 AMERICAN LADY COMMERCIAN LADY COMMERCIAN LADY COMMERCIAN LADY COMMERCIAN LADY COMMER	ULSD 74 ULSD 74 ULSD 75 ULSD 67 ULSD 67 ULSD 68 ULSD 81 ULSD 81 ULSD 90 ULSD 90 ULSD 90 ULSD 73 ULSD 73 ULSD	330 900 900 330 336 365 364 450 450 4400 4400	48 48 48 48 48 48 49 144 144 144 144 144 144 144 144 144	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
560237ALYESKACommercial Fishing WA'ATCH I1 Propulsion19560237ALYESKACommercial Fishing WA'ATCH I2 Propulsion19560237ALYESKACommercial Fishing WA'ATCH I3 auxiliary19511315AMATULICommercial Fishing WIDING1 Propulsion19511315AMATULICommercial Fishing WIDING2 Propulsion19511315AMATULICommercial Fishing WIDING3 auxiliary19633219American ChallengerCommercial Fishing AMERICAN1 Propulsion19633219American ChallengerCommercial Fishing AMERICAN2 Propulsion19633219American ChallengerCommercial Fishing AMERICAN3 auxiliary197390428American DynastyCommercial Fishing AMERICAN3 auxiliary197390428American DynastyCommercial Fishing American Se1 PropulsionBergen Dies/BRM 8197513006AMERICAN LADYCommercial Fishing1 Propulsion197513006AMERICAN LADYCommercial Fishing2 Propulsion197513006AMERIC	74 ULSD 74 ULSD 74 ULSD 75 ULSD 67 ULSD 67 ULSD 681 ULSD 881 ULSD 881 ULSD 90 ULSD 90 ULSD 73 ULSD 73 ULSD	900 900 330 365 364 100 450 450 100 4400 4400	48 48 48 48 48 48 49 144 144 144 144 144 144 144 144 144	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
560237ALYESKACommercial Fishing WA'ATCH 12 Propulsion19560237ALYESKACommercial Fishing WA'ATCH 13 auxiliary19511315AMATULICommercial Fishing WIDING1 Propulsion19511315AMATULICommercial Fishing WIDING2 Propulsion19511315AMATULICommercial Fishing WIDING3 auxiliary19633219American ChallengerCommercial Fishing AMERICAN1 Propulsion19633219American ChallengerCommercial Fishing AMERICAN2 Propulsion19633219American ChallengerCommercial Fishing AMERICAN3 auxiliary197390428American DynastyCommercial Fishing American Se1 PropulsionBergen Dies BRM 8197390428American DynastyCommercial Fishing American Se2 PropulsionBergen Dies BRM 8197513006AMERICAN LADYCommercial Fishing1 Propulsion197513006AMERICAN LADYCommercial Fishing2 Propulsion197513006AMERICAN LADYCommercial Fishing2 Propulsion197513006AMERICAN LADYCommercial Fishing2 Propulsion197513006AMERICAN LADYCommercial Fishing2 Propulsion197513006AMERICAN LADYCommercial Fishing3 auxiliary19	74 ULSD 74 ULSD 67 ULSD 67 ULSD 67 ULSD 81 ULSD 81 ULSD 90 ULSD 73 ULSD 73 ULSD	900 330 365 364 100 450 450 4400 4400	48 48 48 44 48 48 48 49 48 40 48 40 444 40 444	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
560237ALYESKACommercial Fishing WA'ATCH I3 auxiliary19511315AMATULICommercial Fishing WIDING1 Propulsion19511315AMATULICommercial Fishing WIDING2 Propulsion19511315AMATULICommercial Fishing WIDING3 auxiliary19633219American ChallengerCommercial Fishing AMERICAN1 Propulsion19633219American ChallengerCommercial Fishing AMERICAN2 Propulsion197390428American DynastyCommercial Fishing AMERICAN3 auxiliary197390428American DynastyCommercial Fishing American Se1 PropulsionBergen Dies/BRM 8197513006AMERICAN LADYCommercial Fishing1 Propulsion197513006AMERICAN LADYCommercial Fishing2 Propulsion197513006AMERICAN LADYCommercial Fishing3 auxiliary19	74 ULSD 67 ULSD 67 ULSD 67 ULSD 81 ULSD 81 ULSD 90 ULSD 90 ULSD 73 ULSD 73 ULSD	330 365 364 100 450 450 4400 4400	48 48 48 48 48 48 48 144 144 144	0.3 0.3 0.3 0.3 0.3 0.3
511315AMATULICommercial Fishing WIDING1 Propulsion19511315AMATULICommercial Fishing WIDING2 Propulsion19511315AMATULICommercial Fishing WIDING3 auxiliary19633219American ChallengerCommercial Fishing AMERICAN1 Propulsion19633219American ChallengerCommercial Fishing AMERICAN2 Propulsion19633219American ChallengerCommercial Fishing AMERICAN3 auxiliary197390428American DynastyCommercial Fishing American Se1 PropulsionBergen Diesc BRM 8197513006AMERICAN LADYCommercial Fishing1 PropulsionBergen Diesc BRM 8197513006AMERICAN LADYCommercial Fishing2 Propulsion197513006AMERICAN LADYCommercial Fishing2 Propulsion197513006AMERICAN LADYCommercial Fishing2 Propulsion197513006AMERICAN LADYCommercial Fishing2 Propulsion197513006AMERICAN LADYCommercial Fishing3 auxiliary19	67 ULSD 67 ULSD 67 ULSD 81 ULSD 81 ULSD 90 ULSD 90 ULSD 73 ULSD 73 ULSD	365 364 100 450 450 4400 4400	48 48 48 48 144 144 144 144	0.3 0.3 0.3 0.3 0.3
511315AMATULICommercial Fishing WIDING2 Propulsion19511315AMATULICommercial Fishing WIDING3 auxiliary19633219American ChallengerCommercial Fishing AMERICAN1 Propulsion19633219American ChallengerCommercial Fishing AMERICAN2 Propulsion19633219American ChallengerCommercial Fishing AMERICAN3 auxiliary197390428American DynastyCommercial Fishing American Se1 PropulsionBergen Dies/BRM 8197390428American DynastyCommercial Fishing American Se2 PropulsionBergen Dies/BRM 8197513006AMERICAN LADYCommercial Fishing1 Propulsion197513006AMERICAN LADYCommercial Fishing2 Propulsion197513006AMERICAN LADYCommercial Fishing2 Propulsion197513006AMERICAN LADYCommercial Fishing3 auxiliary19	67 ULSD 67 ULSD 81 ULSD 81 ULSD 81 ULSD 90 ULSD 90 ULSD 73 ULSD 73 ULSD	364 100 450 450 100 4400 4400	48 0 48 0 144 0 144 0 144	0.3 0.3 0.3 0.3
511315AMATULICommercial Fishing WIDING3 auxiliary19633219American ChallengerCommercial Fishing AMERICAN1 Propulsion19633219American ChallengerCommercial Fishing AMERICAN2 Propulsion19633219American ChallengerCommercial Fishing AMERICAN3 auxiliary197390428American DynastyCommercial Fishing American Se1 PropulsionBergen Diest BRM 8197390428American DynastyCommercial Fishing American Se2 PropulsionBergen Diest BRM 8197513006AMERICAN LADYCommercial Fishing1 Propulsion197513006AMERICAN LADYCommercial Fishing2 Propulsion197513006AMERICAN LADYCommercial Fishing3 auxiliary197513006AMERICAN LADYCommercial Fishing3 auxiliary19	67 ULSD 81 ULSD 81 ULSD 81 ULSD 90 ULSD 90 ULSD 73 ULSD 73 ULSD	100 450 450 100 4400 4400	48 144 144 144 144	0.3 0.3 0.3
633219American ChallengerCommercial Fishing AMERICAN1 Propulsion19633219American ChallengerCommercial Fishing AMERICAN2 Propulsion19633219American ChallengerCommercial Fishing AMERICAN3 auxiliary197390428American DynastyCommercial Fishing American Se1 PropulsionBergen Dies/BRM 8197390428American DynastyCommercial Fishing American Se2 PropulsionBergen Dies/BRM 8197513006AMERICAN LADYCommercial Fishing1 Propulsion197513006AMERICAN LADYCommercial Fishing2 Propulsion197513006AMERICAN LADYCommercial Fishing2 Propulsion197513006AMERICAN LADYCommercial Fishing3 auxiliary19	81 ULSD 81 ULSD 81 ULSD 90 ULSD 90 ULSD 73 ULSD 73 ULSD	450 450 100 4400 4400	144 144 144	0.3 0.3 0.3
633219American ChallengerCommercial Fishing AMERICAN2 Propulsion19633219American ChallengerCommercial Fishing AMERICAN3 auxiliary197390428American DynastyCommercial Fishing American Se1 PropulsionBergen Dies/BRM 8197390428American DynastyCommercial Fishing American Se2 PropulsionBergen Dies/BRM 8197513006AMERICAN LADYCommercial Fishing1 Propulsion197513006AMERICAN LADYCommercial Fishing2 Propulsion197513006AMERICAN LADYCommercial Fishing3 auxiliary19	81 ULSD 81 ULSD 90 ULSD 90 ULSD 73 ULSD 73 ULSD	450 100 4400 4400	144 144	0.3 0.3
633219American ChallengerCommercial Fishing AMERICAN3 auxiliary197390428American DynastyCommercial Fishing American Se1 PropulsionBergen Dies/BRM 8197390428American DynastyCommercial Fishing American Se2 PropulsionBergen Dies/BRM 8197513006AMERICAN LADYCommercial Fishing1 Propulsion197513006AMERICAN LADYCommercial Fishing2 Propulsion197513006AMERICAN LADYCommercial Fishing3 auxiliary19	81 ULSD 90 ULSD 90 ULSD 73 ULSD 73 ULSD	100 4400 4400	144	0.3
7390428American DynastyCommercial Fishing American Se1 PropulsionBergen Dies/BRM 8197390428American DynastyCommercial Fishing American Se2 PropulsionBergen Dies/BRM 8197513006AMERICAN LADYCommercial Fishing1 Propulsion197513006AMERICAN LADYCommercial Fishing2 Propulsion197513006AMERICAN LADYCommercial Fishing3 auxiliary19	90 ULSD 90 ULSD 73 ULSD 73 ULSD	4400 4400		
7390428American DynastyCommercial Fishing American Se2 PropulsionBergen Dies/BRM 8197513006AMERICAN LADYCommercial Fishing1 Propulsion197513006AMERICAN LADYCommercial Fishing2 Propulsion197513006AMERICAN LADYCommercial Fishing3 auxiliary19	90 ULSD 73 ULSD 73 ULSD	4400		0.3
7513006AMERICAN LADYCommercial Fishing1 Propulsion197513006AMERICAN LADYCommercial Fishing2 Propulsion197513006AMERICAN LADYCommercial Fishing3 auxiliary19	73 ULSD 73 ULSD			0.3
7513006 AMERICAN LADY Commercial Fishing 2 Propulsion 19 7513006 AMERICAN LADY Commercial Fishing 3 auxiliary 19	73 ULSD	425		0.3
7513006 AMERICAN LADY Commercial Fishing 3 auxiliary 19	50 TH OD			0.3
· ·	73 ULSD	100	48	0.3
	79 ULSD	1125	48	0.3
7902001 American No. 1 Commercial Fishing North Paciff 2 Propulsion 19	79 ULSD	1125	48	0.3
7902001 American No. 1 Commercial Fishing North Paciif 3 auxiliary 19	79 ULSD	900	48	0.3
8851615 AMERICAN PATRIC Commercial Fishing 1 Propulsion	ULSD	750	48	0.3
8851615 AMERICAN PATRICCommercial Fishing 2 Propulsion	ULSD	750	48	0.3
8851615 AMERICAN PATRICCommercial Fishing 3 auxiliary	ULSD	330	48	0.3
7738412 American Triumph Commercial Fishing American Se 1 Propulsion Wartsila 8R32 19	89 ULSD	4400	48	0.3
7738412 American Triumph Commercial Fishing American Se 2 Propulsion Wartsila 8R32 19	89 ULSD	4400	48	0.3
6617075 AMY USEN Commercial Fishing 1 Propulsion	ULSD	750	48	0.3
6617075 AMY USEN Commercial Fishing 2 Propulsion	ULSD	750	48	0.3
6617075 AMY USEN Commercial Fishing 3 auxiliary	ULSD	330	48	0.3
249544 ANGIE Commercial Fishing 1 Propulsion	ULSD	150	48	0.3
249544 ANGIE Commercial Fishing 2 Propulsion	ULSD	150	48	0.3
249544 ANGIE Commercial Fishing 3 auxiliary	ULSD		48	0.3
7611391 ANITA J Commercial Fishing 1 Propulsion	ULSD			0.3
7611391 ANITA J Commercial Fishing 2 Propulsion	ULSD			0.3
7611391 ANITA J Commercial Fishing 3 auxiliary	ULSD			0.3
	70 ULSD			0.3
	70 ULSD			0.3
· · · · · · · · · · · · · · · · · · ·	70 ULSD			0.3
9204556 ANNELIES ILENA Commercial Fishing 1 Propulsion	ULSD			0.3
9204556 ANNELIES ILENA Commercial Fishing 2 Propulsion	ULSD			0.3
9204556 ANNELIES ILENA Commercial Fishing 3 auxiliary	ULSD			0.3
609117 ANNIHILATOR Commercial Fishing 1 Propulsion	ULSD			0.3
609117 ANNIHILATOR Commercial Fishing 2 Propulsion	ULSD			0.3
609117 ANNIHILATOR Commercial Fishing 3 auxiliary	ULSD			0.3
•	72 ULSD			0.3
	72 ULSD			0.3
· · · · · · · · · · · · · · · · · · ·	72 ULSD			0.3
	73 ULSD 73 ULSD			0.3
•	73 ULSD			0.3
8117885 ARCTIC DAWN Commercial Fishing 1 Propulsion	ULSD			0.3
8117885 ARCTIC DAWN Commercial Fishing 2 Propulsion	ULSD			0.3
8117885 ARCTIC DAWN Commercial Fishing 2 Hopatson 3 auxiliary	ULSD			0.3
· · · · · · · · · · · · · · · · · · ·	45 ULSD			0.3
	45 ULSD			0.3
	45 ULSD			0.3
9031325 ARCTIC FURY Commercial Fishing 1 Propulsion	ULSD			0.3
9031325 ARCTIC FURY Commercial Fishing 2 Propulsion	ULSD			0.3
9031325 ARCTIC FURY Commercial Fishing 3 auxiliary	ULSD			
592242 ARCTIC HUNTER Commercial Fishing 1 Propulsion	ULSD			0.3
592242 ARCTIC HUNTER Commercial Fishing 2 Propulsion	ULSD			0.3
592242 ARCTIC HUNTER Commercial Fishing 3 auxiliary	ULSD			0.3
8802390 ARCTIC OCEAN Commercial Fishing 1 Propulsion	ULSD			0.3
8802390 ARCTIC OCEAN Commercial Fishing 2 Propulsion	ULSD			0.3
8802390 ARCTIC OCEAN Commercial Fishing 3 auxiliary	ULSD			0.3
	78 ULSD			0.3
	78 ULSD			0.3

			0	Engine		E	E'			-		
Vessel ID	Vessel Name	Type	Owner Name	ID User	Engine Type	Engine MFR	Engine Model	Engine Year	Fuel	HP	Annual Hours	Load
596137	ARCTIC SEA	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
903511	ARCTIC STORM	Commercial Fishing	ARCTIC ST		1 Propulsion				ULSD	2500	72	0.3
903511	ARCTIC STORM	Commercial Fishing			2 Propulsion				ULSD	2500	72	0.3
903511	ARCTIC STORM	Commercial Fishing			3 auxiliary				ULSD	900	72	0.3
655328	ARCTURUS	Commercial Fishing			1 Propulsion				ULSD	770 770	48 48	0.3
655328 655328	ARCTURUS ARCTURUS	Commercial Fishing Commercial Fishing			2 Propulsion 3 auxiliary				ULSD ULSD	330	48	0.3
550139	ARICA	Commercial Fishing			1 Propulsion				ULSD	1500	48	0.3
550139	ARICA	Commercial Fishing			2 Propulsion				ULSD	1500	48	0.3
550139	ARICA	Commercial Fishing			3 auxiliary			1973	ULSD	900	48	0.3
258139	ARLINE	Commercial Fishing			1 Propulsion			1989	ULSD	800	48	0.3
258139	ARLINE	Commercial Fishing			2 auxiliary				ULSD	330	48	0.3
635397	AUGUSTINE	Commercial Fishing			1 Propulsion				ULSD	500	48	0.3
635397	AUGUSTINE	Commercial Fishing			2 Propulsion				ULSD	500	48	0.3
635397	AUGUSTINE	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
259779	AUTUMN DAWN	Commercial Fishing			1 Propulsion				ULSD ULSD	300 300	48 48	0.3
259779 259779	AUTUMN DAWN AUTUMN DAWN	Commercial Fishing Commercial Fishing			2 Propulsion 3 auxiliary				ULSD	100	48	0.3
7049158	BALLYHOO	Commercial Fishing	ACTOMIN I		1 Propulsion			1747	ULSD	625	48	0.3
7049158	BALLYHOO	Commercial Fishing			2 auxiliary				ULSD	100	48	0.3
598508	BARANOF	Commercial Fishing	ROMANZO		1 Propulsion			1978	ULSD	550	48	0.3
598508	BARANOF	Commercial Fishing			2 Propulsion				ULSD	550	48	0.3
598508	BARANOF	Commercial Fishing			3 auxiliary			1978	ULSD	330	48	0.3
648690	BARBARA J	Commercial Fishing			1 Propulsion			1982	ULSD	400	48	0.3
648690	BARBARA J	Commercial Fishing			2 Propulsion				ULSD	400	48	0.3
648690	BARBARA J	Commercial Fishing			3 auxiliary			1982	ULSD	100	48	0.3
7051668	BARWELL	Commercial Fishing			1 Propulsion				ULSD	700	48	0.3
7051668	BARWELL	Commercial Fishing			2 Propulsion				ULSD	700	48	0.3
7051668 33800	BARWELL	Commercial Fishing			3 auxiliary				ULSD ULSD	330 750	48 48	0.3
33800	BELINA BELINA	Commercial Fishing Commercial Fishing			1 Propulsion 2 Propulsion				ULSD	750	48	0.3
33800	BELINA	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
631084	BELLA K	Commercial Fishing	HIGHLANI		1 Propulsion			1980	ULSD	600	48	0.3
631084	BELLA K	Commercial Fishing			2 Propulsion				ULSD	600	48	0.3
631084	BELLA K	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
973006	BERING PROWLE	F Commercial Fishing			1 Propulsion			1991	ULSD	675	48	0.3
973006	BERING PROWLE	F Commercial Fishing			2 auxiliary				ULSD	330	48	0.3
8037578	BERING ROSE	Commercial Fishing			1 Propulsion				ULSD	1125	48	0.3
8037578	BERING ROSE	Commercial Fishing			2 Propulsion				ULSD	1125	48	0.3
8037578	BERING ROSE	Commercial Fishing	DOLL OF 1		3 auxiliary				ULSD	900	48	0.3
554126	BERING SEA	Commercial Fishing			1 Propulsion				ULSD	425	48	0.3
554126	BERING SEA	Commercial Fishing			2 Propulsion				ULSD	425	48	0.3
554126 593310	BERING SEA BERING STAR	Commercial Fishing Commercial Fishing			3 auxiliary 1 Propulsion				ULSD ULSD	100 425	48 48	0.3
593310	BERING STAR	Commercial Fishing			2 Propulsion				ULSD	425	48	0.3
593310	BERING STAR	Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
224779	BERYL E	Commercial Fishing			1 Propulsion				ULSD	200	48	0.3
224779	BERYL E	Commercial Fishing			2 Propulsion				ULSD	200	48	0.3
224779	BERYL E	Commercial Fishing			3 auxiliary			1925	ULSD	100	48	0.3
550190	BILLIKIN	Commercial Fishing	TRIDENT S		1 Propulsion			1973	ULSD	565	48	0.3
550190	BILLIKIN	Commercial Fishing			2 Propulsion				ULSD	565	48	0.3
550190	BILLIKIN	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
624429	BLUE ATTU	Commercial Fishing			1 Propulsion				ULSD	520	48	0.3
624429	BLUE ATTU	Commercial Fishing			2 Propulsion				ULSD	520	48	0.3
624429	BLUE ATTU	Commercial Fishing			3 auxiliary			1980	ULSD	330	48	0.3
546234	BLUE FIN	Commercial Fishing			1 Propulsion 2 Propulsion				ULSD	500	48 48	0.3
546234 546234	BLUE FIN BLUE FIN	Commercial Fishing Commercial Fishing			3 auxiliary				ULSD ULSD	500 330	48	0.3
569927	BLUE PACIFIC	Commercial Fishing	SELDOVIA		1 Propulsion			1944	ULSD	624	48	0.3
569927	BLUE PACIFIC	Commercial Fishing			2 Propulsion				ULSD	624	48	0.3
569927	BLUE PACIFIC	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
5410418	BLUE WATERS	Commercial Fishing			1 Propulsion				ULSD	235	48	0.3
7902207	BOLD PERFORMA	Commercial Fishing			1 Propulsion				ULSD	750	48	0.3
7902207		Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
7902207	BOLD PERFORMA	-			3 auxiliary				ULSD	330	48	0.3
648108	BOTANY BAY	Commercial Fishing			1 Propulsion				ULSD	350	48	0.3
648108	BOTANY BAY	Commercial Fishing			2 Propulsion			1982	ULSD	350	48	0.3

			Owner	Engine ID	Engine	Engine	Engine	Engine			Annual	
Vessel ID	Vessel Name		Name	User	Type	MFR	Model	Year	Fuel	HP		Load
648108	BOTANY BAY	Commercial Fishing			3 auxiliary			1982	ULSD	100	48	0.3
593404	BOUNTIFUL	Commercial Fishing			1 Propulsion				ULSD	850	48	0.3
593404	BOUNTIFUL	Commercial Fishing			2 Propulsion				ULSD	850	48	0.3
593404	BOUNTIFUL	Commercial Fishing	TRIDENT		3 auxiliary			1978	ULSD	330	48	0.3
611519 611519	BRENNA A Brenna A	Commercial Fishing Commercial Fishing			1 Propulsion 2 Propulsion				ULSD ULSD	250 250	48 48	0.3
611519	BRENNA A	Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
8030647	BRISTOL EXPLORI	0			1 Propulsion			1982	ULSD	1000	48	0.3
8030647	BRISTOL EXPLORI	_			2 Propulsion				ULSD	1000	48	0.3
8030647	BRISTOL EXPLORE	-			3 auxiliary			1982	ULSD	330	48	0.3
1060513	BRISTOL LEADER	Commercial Fishing			1 Propulsion			1998	ULSD	1000	48	0.3
1060513	BRISTOL LEADER	_			2 Propulsion			1998	ULSD	1000	48	0.3
1060513	BRISTOL LEADER	0	DENIEDO		3 auxiliary			1070	ULSD	900	48	0.3
600856	BRITTANY	Commercial Fishing			1 Propulsion				ULSD	365	48	0.3
600856 600856	BRITTANY Brittany	Commercial Fishing Commercial Fishing			2 Propulsion 3 auxiliary				ULSD ULSD	365 100	48 48	0.3
23277	CALEDONIAN	Commercial Fishing	KENTKO		1 Propulsion				ULSD	425	48	0.3
23277	CALEDONIAN	Commercial Fishing			2 Propulsion				ULSD	425	48	0.3
7739193	CALIFORNIA HOR	_			1 Propulsion				ULSD	350	48	0.3
7739193	CALIFORNIA HOR	Commercial Fishing		:	2 Propulsion			1978	ULSD	350	48	0.3
7739193	CALIFORNIA HOR	Commercial Fishing		:	3 auxiliary			1978	ULSD	100	48	0.3
6506953	CANADIAN NO 1	Commercial Fishing			1 Propulsion				ULSD	750	48	0.3
6506953	CANADIAN NO 1	Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
6506953	CANADIAN NO 1	Commercial Fishing			3 auxiliary			1070	ULSD	330	48	0.3
7939523 7939523	CAPE CALM CAPE CALM	Commercial Fishing Commercial Fishing			1 Propulsion 2 auxiliary				ULSD ULSD	460 100	48 48	0.3
8856613	CAPE CREIG	Commercial Fishing			1 Propulsion			1770	ULSD	450	48	0.3
8856613	CAPE CREIG	Commercial Fishing			2 Propulsion				ULSD	450	48	0.3
8856613	CAPE CREIG	Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
578178	CAPE DENBIGH	Commercial Fishing	NORQUES		1 Propulsion			1944	ULSD	750	48	0.3
578178	CAPE DENBIGH	Commercial Fishing	NORQUES	<i>'</i>	2 Propulsion			1944	ULSD	750	48	0.3
578178	CAPE DENBIGH	Commercial Fishing	-		3 auxiliary				ULSD	330	48	0.3
653806	CAPE HORN	Commercial Fishing			1 Propulsion				ULSD	900	48	0.3
653806	CAPE HORN	Commercial Fishing			2 Propulsion				ULSD	900	48	0.3
653806 677905	CAPE HORN CAPE ST JOHN	Commercial Fishing Commercial Fishing			3 auxiliary 1 Propulsion				ULSD ULSD	330 460	48 48	0.3
677905	CAPE ST JOHN	Commercial Fishing	IMIDENT		2 auxiliary				ULSD	100	48	0.3
557441	CASCADE MARINE	0	CASCADE		1 Propulsion				ULSD	450	48	0.3
557441	CASCADE MARINE	_			2 Propulsion				ULSD	450	48	0.3
557441	CASCADE MARINE	Commercial Fishing	CASCADE		3 auxiliary			1974	ULSD	100	48	0.3
619109	CHAMAI	Commercial Fishing			1 Propulsion			1979	ULSD	700	48	0.3
619109	CHAMAI	Commercial Fishing			2 auxiliary				ULSD	330	48	0.3
632162	CHANDALAR	Commercial Fishing			1 Propulsion				ULSD	175	48	0.3
632162	CHANDALAR	Commercial Fishing			2 Propulsion				ULSD	175	48	0.3
632162 623734	CHANDALAR CHASINA	Commercial Fishing Commercial Fishing			3 auxiliary 1 Propulsion				ULSD ULSD	100 150	48 48	0.3
623734	CHASINA	Commercial Fishing			2 Propulsion				ULSD	150	48	0.3
623734	CHASINA	Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
9031181	CHELSEA K	Commercial Fishing			1 Propulsion				ULSD	750	48	0.3
9031181	CHELSEA K	Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
9031181	CHELSEA K	Commercial Fishing			3 auxiliary			1992	ULSD	330	48	0.3
251424	CHICHAGOF	Commercial Fishing			1 Propulsion				ULSD	750	48	0.3
251424	CHICHAGOF	Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
251424	CHICHAGOF	Commercial Fishing			3 auxiliary			1001	ULSD	330	48	0.3
633593 633593	CLIPPER ENDEAV CLIPPER ENDEAV	0			1 Propulsion 2 Propulsion				ULSD ULSD	600 600	48 48	0.3
633593	CLIPPER ENDEAV	_			3 auxiliary				ULSD	330	48	0.3
1038382	Coastal Merchant	Commercial Fishing	COASTAL.		1 Propulsion				ULSD	700	48	0.3
1038382	Coastal Merchant	Commercial Fishing			2 Propulsion				ULSD	700	48	0.3
1038382	Coastal Merchant	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
622773	СОНО	Commercial Fishing			1 Propulsion			1980	ULSD	320	48	0.3
622773	СОНО	Commercial Fishing			2 Propulsion				ULSD	320	48	0.3
622773	COHO	Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
615729	COLUMBIA	Commercial Fishing			1 Propulsion				ULSD	325	48	0.3
615729	COLUMBIA	Commercial Fishing			2 Propulsion				ULSD	325	48	0.3
615729 312068	COLUMBIA	Commercial Fishing Commercial Fishing			3 auxiliary 1 Propulsion			1988	ULSD	100 600	48 48	0.3
512000	COMEALONG	Commercial Fishing			1 Propulsion				ULSD	000	48	0.3

				Engine	e							
Vessel ID	Vessel Name	Type	Owner Name	ID User	Engine Type	Engine MFR	Engine Model	Engine Year	Fuel	HP		Load
312068	COMEALONG	Commercial Fishing			2 Propulsion				ULSD	600	48	0.3
312068	COMEALONG	Commercial Fishing	EVENING		3 auxiliary			1007	ULSD	330		0.3
914214	COMMODORE COMMODORE	Commercial Fishing			1 Propulsion				ULSD ULSD	855	48	0.3
914214 914214	COMMODORE	Commercial Fishing Commercial Fishing			2 Propulsion 3 auxiliary				ULSD	855 330	48 48	0.3
532762	CONFIDENCE	Commercial Fishing	EVENING		1 Propulsion			1907	ULSD	350	48	0.3
532762	CONFIDENCE	Commercial Fishing			2 Propulsion				ULSD	350	48	0.3
532762	CONFIDENCE	Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
604998	CONSTELLATION		RSD FISHE		1 Propulsion			1979	ULSD	550	48	0.3
604998	CONSTELLATION				2 Propulsion			1979	ULSD	550	48	0.3
604998	CONSTELLATION	Commercial Fishing	RSD FISHE	1	3 auxiliary			1979	ULSD	330	48	0.3
1128928	CONTROLLER BAY	Commercial Fishing			1 Propulsion			2002	ULSD	425	48	0.3
1128928	CONTROLLER BAY	Commercial Fishing			2 Propulsion			2002	ULSD	425	48	0.3
1128928	CONTROLLER BAY	-			3 auxiliary			2002	ULSD	100		0.3
8036433	COPPER STAR	Commercial Fishing			1 Propulsion				ULSD	400	48	0.3
8036433	COPPER STAR	Commercial Fishing			2 Propulsion				ULSD	400	48	0.3
8036433	COPPER STAR	Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
7947398	COURAGEOUS	Commercial Fishing			1 Propulsion				ULSD	700	48	0.3
7947398 7947398	COURAGEOUS COURAGEOUS	Commercial Fishing			2 Propulsion				ULSD ULSD	700	48 48	0.3
284723	CRANE	Commercial Fishing Commercial Fishing			3 auxiliary 1 Propulsion				ULSD	330 150	48	0.3
284723	CRANE	Commercial Fishing			2 Propulsion				ULSD	150	48	0.3
284723	CRANE	Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
1038177	DALENA	Commercial Fishing			1 Propulsion				ULSD	750	48	0.3
1038177	DALENA	Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
1038177	DALENA	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
270361	DANCER	Commercial Fishing			1 Propulsion				ULSD	220	48	0.3
270361	DANCER	Commercial Fishing			2 Propulsion				ULSD	220	48	0.3
270361	DANCER	Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
7223845	DEBBIE SUE	Commercial Fishing			1 Propulsion				ULSD	750	48	0.3
7223845	DEBBIE SUE	Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
7223845	DEBBIE SUE	Commercial Fishing	WADDEN		3 auxiliary			4004	ULSD	330	48	0.3
643920	DEBRA D	Commercial Fishing			1 Propulsion				ULSD	350	48	0.3
643920	DEBRA D	Commercial Fishing			2 Propulsion				ULSD	350	48	0.3
643920 640956	DEBRA D DECEPTION	Commercial Fishing Commercial Fishing			3 auxiliary 1 Propulsion				ULSD ULSD	100 200	48 48	0.3
640956	DECEPTION	Commercial Fishing			2 auxiliary				ULSD	100	48	0.3
980422	DECISION	Commercial Fishing	ICALLIC		1 Propulsion				ULSD	270		0.3
980422	DECISION	Commercial Fishing			2 Propulsion				ULSD	270	48	0.3
980422	DECISION	Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
254366	DECO BAY	Commercial Fishing			1 Propulsion				ULSD	750	48	0.3
254366	DECO BAY	Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
254366	DECO BAY	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
640128	DEEP PACIFIC	Commercial Fishing	DEEP PAC		1 Propulsion				ULSD	600	48	0.3
640128	DEEP PACIFIC	Commercial Fishing			2 Propulsion				ULSD	600	48	0.3
640128	DEEP PACIFIC	Commercial Fishing			3 auxiliary			1981	ULSD	330		0.3
6506226	DEEP SEA	Commercial Fishing			1 Propulsion				ULSD	750		0.3
6506226	DEEP SEA	Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
6506226	DEEP SEA	Commercial Fishing	EV DEEEN		3 auxiliary			1074	ULSD	330	48	0.3
554030 554030	DEFENDER DEFENDER	Commercial Fishing Commercial Fishing			1 Propulsion 2 Propulsion				ULSD ULSD	3300 3300	48 48	0.3
554030	DEFENDER	Commercial Fishing			3 auxiliary				ULSD	900		0.3
7926514	DEFIANT	Commercial Fishing			1 Propulsion			17/7	ULSD	750		0.3
7926514	DEFIANT	Commercial Fishing			2 Propulsion				ULSD	750		0.3
7926514	DEFIANT	Commercial Fishing			3 auxiliary				ULSD	330		0.3
571879	DESTINATION	Commercial Fishing			1 Propulsion				ULSD	1500	48	0.3
571879	DESTINATION	Commercial Fishing			2 Propulsion				ULSD	1500	48	0.3
571879	DESTINATION	Commercial Fishing			3 auxiliary				ULSD	900	48	0.3
603126	DILIGENCE	Commercial Fishing	OSTROM F	7	1 Propulsion			1979	ULSD	460	48	0.3
603126	DILIGENCE	Commercial Fishing			2 Propulsion				ULSD	460	48	0.3
500072	DISCOVERY STAR				1 Propulsion				ULSD	150	48	0.3
500072	DISCOVERY STAR	_			2 Propulsion				ULSD	150		0.3
500072	DISCOVERY STAR				3 auxiliary				ULSD	100		0.3
617019	DOLPHIN	Commercial Fishing			1 Propulsion				ULSD	563		0.3
617019	DOLPHIN	Commercial Fishing			2 Propulsion				ULSD	563	48	0.3
617019	DOLPHIN	Commercial Fishing			3 auxiliary				ULSD	330		0.3
602309	DOMINATOR	Commercial Fishing	IMPENI		1 Propulsion			19/8	ULSD	1000	48	0.3

				Engine	2							
Vessel ID	Vessel Name	Туре	Owner Name	ID User	Engine Type	Engine MFR	Engine Model	Engine Year	Fuel	HP		Load
602309	DOMINATOR	Commercial Fishing			2 Propulsion				ULSD	1000	48	0.3
602309	DOMINATOR	Commercial Fishing			3 auxiliary				ULSD	900	48	0.3
249559	DOROTHEA	Commercial Fishing			1 Propulsion				ULSD	110	48	0.3
249559	DOROTHEA	Commercial Fishing			2 Propulsion				ULSD	110	48	0.3
249559 982375	DOROTHEA	Commercial Fishing I Commercial Fishing			3 auxiliary 1 Propulsion			1945	ULSD ULSD	100 750	48 48	0.3
982375		I Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
982375		I Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
6920240	EASTWARD HO	Commercial Fishing			1 Propulsion				ULSD	325	48	0.3
6920240	EASTWARD HO	Commercial Fishing			2 Propulsion				ULSD	325	48	0.3
6920240	EASTWARD HO	Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
629675	ECHO	Commercial Fishing			1 Propulsion				ULSD	750	48	0.3
629675	ECHO	Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
629675	ECHO	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
261269	EIGIL B	Commercial Fishing			1 Propulsion			1951	ULSD	350	48	0.3
261269	EIGIL B	Commercial Fishing			2 Propulsion				ULSD	350	48	0.3
261269	EIGIL B	Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
657383	ENTERPRISE	Commercial Fishing			1 Propulsion				ULSD	240	48	0.3
657383	ENTERPRISE	Commercial Fishing			2 Propulsion				ULSD	240	48	0.3
657383	ENTERPRISE	Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
227368	ENTERPRISE 5	Commercial Fishing			1 Propulsion				ULSD	750	48	0.3
227368	ENTERPRISE 5	Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
227368	ENTERPRISE 5	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
8851699		TCommercial Fishing			1 Propulsion				ULSD	750	48	0.3
8851699		TCommercial Fishing			2 Propulsion				ULSD	750	48	0.3
8851699	ENTRANCE POIN				3 auxiliary				ULSD	330	48	0.3
603607	EPIC EXPLORER	Commercial Fishing			1 Propulsion				ULSD	750	48	0.3
603607	EPIC EXPLORER	Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
603607	EPIC EXPLORER	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
972239	EQUINOX	Commercial Fishing			1 Propulsion			1991	ULSD	200	48	0.3
972239	EQUINOX	Commercial Fishing			2 Propulsion				ULSD	200	48	0.3
972239	EQUINOX	Commercial Fishing			3 auxiliary			1991	ULSD	100	48	0.3
598365	ERLA N	Commercial Fishing			1 Propulsion			1978	ULSD	550	48	0.3
598365	ERLA N	Commercial Fishing			2 Propulsion			1978	ULSD	550	48	0.3
598365	ERLA N	Commercial Fishing			3 auxiliary			1978	ULSD	330	48	0.3
248539	EVENING STAR	Commercial Fishing	;		1 Propulsion				ULSD	170	48	0.3
248539	EVENING STAR	Commercial Fishing	;		2 Propulsion				ULSD	170	48	0.3
248539	EVENING STAR	Commercial Fishing	;		3 auxiliary				ULSD	100	48	0.3
967502	EXCELLENCE	Commercial Fishing	; ALASKA J/		1 Propulsion				ULSD	2850	48	0.3
967502	EXCELLENCE	Commercial Fishing	; ALASKA J/		2 Propulsion				ULSD	2850	48	0.3
967502	EXCELLENCE	Commercial Fishing	; ALASKA J/		3 auxiliary				ULSD	900	48	0.3
7932109	EXODUS	Commercial Fishing	;		1 Propulsion			1984	ULSD	500	48	0.3
7932109	EXODUS	Commercial Fishing	;		2 Propulsion			1984	ULSD	500	48	0.3
7932109	EXODUS	Commercial Fishing	;		3 auxiliary			1984	ULSD	330	48	0.3
211065	EXPRESS	Commercial Fishing	;		1 Propulsion			1988	ULSD	220	48	0.3
211065	EXPRESS	Commercial Fishing			2 Propulsion				ULSD	220		0.3
211065	EXPRESS	Commercial Fishing			3 auxiliary			1988	ULSD	100		0.3
7950228	FAIRWIND	Commercial Fishing			1 Propulsion				ULSD	750	48	0.3
7950228	FAIRWIND	Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
7950228	FAIRWIND	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
369192	FEELIN FREE	Commercial Fishing			1 Propulsion				ULSD	750		0.3
369192	FEELIN FREE	Commercial Fishing			2 Propulsion				ULSD	750		0.3
369192	FEELIN FREE	Commercial Fishing			3 auxiliary				ULSD	330		0.3
925863	FORUM STAR	Commercial Fishing			1 Propulsion				ULSD	738	48	0.3
925863	FORUM STAR	Commercial Fishing			2 Propulsion				ULSD	738		0.3
925863	FORUM STAR	Commercial Fishing			3 auxiliary			1988	ULSD	330		0.3
20881		F Commercial Fishing			1 Propulsion				ULSD	750		0.3
20881		F Commercial Fishing			2 Propulsion				ULSD	750		0.3
20881	FREE ENTERPRIS				3 auxiliary			1001	ULSD	330		0.3
975015		O Commercial Fishing			1 Propulsion				ULSD	550		0.3
975015	FRONTIER EXPLO				2 Propulsion				ULSD	550	48	0.3
975015	FRONTIER EXPLO	_			3 auxiliary				ULSD	330		0.3
951441	FRONTIER SPIRIT				1 Propulsion				ULSD	550		0.3
951441	FRONTIER SPIRIT				2 Propulsion				ULSD	550		0.3
951441	FRONTIER SPIRIT	_			3 auxiliary			1989	ULSD	330		0.3
7628473	FROSTI	Commercial Fishing			1 Propulsion				ULSD	500		0.3
7628473	FROSTI	Commercial Fishing	;		2 Propulsion				ULSD	500	48	0.3

				Engine	2							
Vessel ID	Vessel Name	71	Owner Name	ID User	Engine Type	Engine MFR	Engine Model	Engine Year	Fuel	HP		Load
7628473	FROSTI	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
617540	GANDIL	Commercial Fishing			1 Propulsion				ULSD	320	48	0.3
617540	GANDIL	Commercial Fishing			2 Propulsion				ULSD	320		0.3
617540 630401	GANDIL GENE S	Commercial Fishing Commercial Fishing			3 auxiliary 1 Propulsion				ULSD	100 750	48 48	0.3
630401	GENE S	Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
600325	Glacier Bay	Commercial Fishing			1 Propulsion				ULSD	1125	48	0.3
600325	Glacier Bay	Commercial Fishing			2 Propulsion				ULSD	1125	48	0.3
600325	Glacier Bay	Commercial Fishing			3 auxiliary				ULSD	900	48	0.3
7938115	GLADIATOR	Commercial Fishing			1 Propulsion			1978	ULSD	850	48	0.3
7938115	GLADIATOR	Commercial Fishing			2 Propulsion			1978	ULSD	850	48	0.3
7938115	GLADIATOR	Commercial Fishing			3 auxiliary			1978	ULSD	330	48	0.3
651041	GOLDEN ALASKA	Commercial Fishing	GAS LLC		1 Propulsion			1972	ULSD	2400	48	0.3
651041	GOLDEN ALASKA	_			2 Propulsion				ULSD	2400	48	0.3
651041	GOLDEN ALASKA	_			3 auxiliary				ULSD	900	48	0.3
604315	GOLDEN DAWN				1 Propulsion				ULSD	1000	48	0.3
604315	GOLDEN DAWN	Commercial Fishing			2 Propulsion				ULSD	1000	48	0.3
604315	GOLDEN ELEGE	Commercial Fishing			3 auxiliary				ULSD	900	48	0.3
7932393	GOLDEN FLEECE	_			1 Propulsion				ULSD ULSD	550	48	0.3
7932393 7932393	GOLDEN FLEECE GOLDEN FLEECE	_			2 Propulsion 3 auxiliary				ULSD	550 330	48 48	0.3
477300	GOOD PARTNER	_			1 Propulsion			19/9	ULSD	750	48	0.3
477300	GOOD PARTNER				2 Propulsion				ULSD	750	48	0.3
477300	GOOD PARTNER	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
225264	GRANT	Commercial Fishing			1 Propulsion				ULSD	150	48	0.3
225264	GRANT	Commercial Fishing			2 Propulsion				ULSD	150	48	0.3
225264	GRANT	Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
7947506	GREAT PACIFIC	Commercial Fishing			1 Propulsion			1979	ULSD	750	48	0.3
7947506	GREAT PACIFIC	Commercial Fishing			2 Propulsion			1979	ULSD	750	48	0.3
7947506	GREAT PACIFIC	Commercial Fishing			3 auxiliary			1979	ULSD	330	48	0.3
608438	GULF WINDS	Commercial Fishing			1 Propulsion				ULSD	250	48	0.3
608438	GULF WINDS	Commercial Fishing			2 Propulsion				ULSD	250	48	0.3
608438	GULF WINDS	Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
615796	HALF MOON BAY	-			1 Propulsion				ULSD	425	48	0.3
615796 615796	HALF MOON BAY	_			2 Propulsion				ULSD ULSD	425 100	48 48	0.3
970937	HALF MOON BAY HANDLER	Commercial Fishing			3 auxiliary 1 Propulsion				ULSD	625	48	0.3
970937	HANDLER	Commercial Fishing			2 Propulsion				ULSD	625	48	0.3
970937	HANDLER	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
7644269	HARVESTOR	Commercial Fishing			1 Propulsion				ULSD	750	48	0.3
7644269	HARVESTOR	Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
7644269	HARVESTOR	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
594154	HICKORY WIND	Commercial Fishing	HICKORY		1 Propulsion			1978	ULSD	475	48	0.3
594154	HICKORY WIND	Commercial Fishing	HICKORY	,	2 Propulsion			1978	ULSD	475	48	0.3
594154	HICKORY WIND	Commercial Fishing	HICKORY	,	3 auxiliary			1978	ULSD	100	48	0.3
608177	HUNTRESS	Commercial Fishing			1 Propulsion				ULSD	250		0.3
608177	HUNTRESS	Commercial Fishing			2 Propulsion				ULSD	250		0.3
608177	HUNTRESS	Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
586918	HUSKY	Commercial Fishing			1 Propulsion				ULSD	600		0.3
586918	HUSKY	Commercial Fishing			2 Propulsion				ULSD	600		0.3
586918	HUSKY	Commercial Fishing			3 auxiliary				ULSD	330		0.3
272744 272744	ICY BAY ICY BAY	Commercial Fishing Commercial Fishing			1 Propulsion 2 Propulsion				ULSD ULSD	700 700		0.3
272744	ICY BAY	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
6701852	IKAIKA KAI ONE	U			1 Propulsion			1750	ULSD	2900	96	0.3
6701852	IKAIKA KAI ONE	U			2 Propulsion				ULSD	2900	96	0.3
6701852	IKAIKA KAI ONE	U			3 auxiliary				ULSD	900		0.3
237743	INDEPENDENCE				1 Propulsion			1938	ULSD	1100	48	0.3
237743	INDEPENDENCE				2 Propulsion				ULSD	1100	48	0.3
237743	INDEPENDENCE	-			3 auxiliary			1938	ULSD	900	48	0.3
9037771	INTREPID EXPLO	Commercial Fishing			1 Propulsion			1992	ULSD	850	48	0.3
9037771	INTREPID EXPLO	_			2 Propulsion				ULSD	850		0.3
9037771	INTREPID EXPLO	_			3 auxiliary				ULSD	330		0.3
610290	ISLAND ENTERPR				1 Propulsion				ULSD	2400	48	0.3
610290	ISLAND ENTERPR				2 Propulsion				ULSD	2400	48	0.3
610290	ISLAND ENTERPR	_			3 auxiliary				ULSD	900		0.3
973478	ISLAND MIST	Commercial Fishing	EVAINS		1 Propulsion			1991	ULSD	625	48	0.3

SIAND MIST Connected Fishing 1 Propulsion U.S.D 548 48 0.3					Engin	e							
SIAND MIST Commercial Fishing 1 Propulsion U.S.D 548 48 0.3		Vessel Name		Name		Type	MFR	_	Year		HP	Hours	
SPINOS SIAND SIN Commercial Fishing 1 Propulsion			_										0.3
SEAND SIN Commercial Fabring 2 Propulsion U.S.D 548 48 9.3									1991				
SEMOZO SIAND SEN Commercial Fishing 1 Propulsion 1988 UISD 425 48 0.3			U										
SMUTZED AMBIL MARIE Commercial Fishing 1 Propulsion 1988 U.SD 425 48 0.3						-							
SM07256 JAMIE MARIE Commercial Fishing 2 Propulsion 1988 ULSD 425 485 0.3 SM959001 JANICE Commercial Fishing 2 Propulsion 1988 ULSD 125 48 0.3 SM959001 JANICE Commercial Fishing 2 Propulsion 1988 ULSD 125 48 0.3 SM959001 JANICE Commercial Fishing 2 Propulsion 1988 ULSD 125 48 0.3 SM959001 JANICE Commercial Fishing 2 Propulsion 1988 ULSD 125 48 0.3 SM959001 JANICE Commercial Fishing 1 Propulsion 1998 ULSD 100 48 0.3 SM959001 JANICE Commercial Fishing 1 Propulsion 1972 ULSD 100 48 0.3 SM95901 JANICE Commercial Fishing 1 Propulsion 1972 ULSD 100 48 0.3 SM95901 JANICE Commercial Fishing 1 Propulsion 1979 ULSD 100 48 0.3 SM95901 JANICE Commercial Fishing 1 Propulsion 1979 ULSD 100 48 0.3 SM95901 JANICE Commercial Fishing 1 Propulsion 1979 ULSD 100 48 0.3 SM95901 JANICE Commercial Fishing 1 Propulsion 1989 ULSD 100 48 0.3 SM95901 JANICE Commercial Fishing 2 Propulsion 1989 ULSD 100 48 0.3 SM95901 JANICE Commercial Fishing 2 Propulsion 1989 ULSD 100 48 0.3 SM95901 JANICE Commercial Fishing 2 Propulsion 1989 ULSD 100 48 0.3 SM95901 JANICE Commercial Fishing 3 auxiliary ULSD 100 48 0.3 SM95902 JANICE Commercial Fishing 2 Propulsion ULSD 250 48 0.3 SM95905 JANICE Commercial Fishing 3 auxiliary ULSD 100 48 0.3 SM95905 JANICE Commercial Fishing 3 auxiliary ULSD 100 48 0.3 SM95906 JANICE Commercial Fishing 3 auxiliary ULSD 100 48 0.3 SM95907 JANICE Commercial Fishing 3 auxiliary ULSD 100 48 0.3 SM95908 JANICE Commercial Fishing 3 auxiliary ULSD 100 48 0.3 SM95909 JANICE Commercial Fishing 2 Propulsion ULSD 250 48 0.3 SM95909 JANICE Commercial Fishing 2 Propulsion ULSD 250 48 0.3 SM95909 JANICE Commercial Fishing 2 Propulsion ULSD 250			U						1988				
SM070001 JANICE			_										
S999001 ANICE			_										0.3
1989000 ANICE	8939001	JANICE	_						1958	ULSD	125	48	0.3
JEANNA MARIE Commercial Fishing FENNIMO 1 Propulsion 1972 U.S.D 100 48 0.3	8939001	JANICE	Commercial Fishing			2 Propulsion			1958	ULSD	125	48	0.3
JEANNA MARIE	8939001	JANICE	Commercial Fishing			3 auxiliary			1958	ULSD	100	48	0.3
1976 IENNIFER A	18085	JEANNA MARIE	Commercial Fishing	FENNIMO!		1 Propulsion			1972	ULSD	110	48	0.3
1970 IFNNIFER A		-	_										
1976 1			-										
H3166 KAIA			-			-							
141316 KAIA Commercial Fishing 2 Propulsion 1989 ULSD 200 48 0.3		-	_										
14316 KAIA			-			-							
8854495 KAMI M Commercial Fishing 1 Propulsion UISD 250 48 0.3 8854495 KAMI M Commercial Fishing 3 auxiliary UISD 100 48 0.3 629244 KAMII AR Commercial Fishing 1 Propulsion 1980 UISD 2.90 48 0.3 629244 KAMII AR Commercial Fishing 1 Propulsion 1980 UISD 2.90 48 0.3 629244 KAMII AR Commercial Fishing 1 Propulsion 1980 UISD 2.90 48 0.3 7902219 KARENORA Commercial Fishing 1 Propulsion UISD 3.90 48 0.3 7902219 KARENORA Commercial Fishing KARIN LYI 1 Propulsion 1978 UISD 225 48 0.3 502291 KARIN IAYNN Commercial Fishing KARIN LYI 2 Propulsion 1978 UISD 225 48 0.3 502291 KARIN IAYNN Commercial Fishing WRIGHT 2 Propulsion 1979 UISD 0.0 48 0.3 <tr< td=""><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>			_										
8854495 KAMI M Commercial Fishing 2 Propulsion ULSD 250 48 0.3 629244 KAMILAR Commercial Fishing 1 Propulsion 1980 ULSD 250 48 0.3 629244 KAMILAR Commercial Fishing 2 Propulsion 1980 ULSD 250 48 0.3 7902219 KARENORA Commercial Fishing 3 auxiliary 1980 ULSD 250 48 0.3 7902219 KARENORA Commercial Fishing 1 Propulsion ULSD 750 48 0.3 7902219 KARENORA Commercial Fishing 2 Propulsion ULSD 750 48 0.3 7902219 KARENORA Commercial Fishing KARIN LY 1 Propulsion 178 ULSD 225 48 0.3 592291 KARIN LYNN Commercial Fishing KARIN LY 1 Propulsion 178 ULSD 225 48 0.3 592291 KARIN LYNN Commercial Fishing WRIGHT 1 Propulsion 129 ULSD 300 48 0.3			-						1707				
8854495 KAMI M Commercial Fishing 3 auxiliary UISD 100 48 0.3 620244 KAMILAR Commercial Fishing 1 Propulsion 1980 UISD 250 48 0.3 620244 KAMILAR Commercial Fishing 2 Propulsion 1980 UISD 250 48 0.3 7902219 KARINORA Commercial Fishing 2 Propulsion UISD 750 48 0.3 7902219 KARINORA Commercial Fishing 2 Propulsion UISD 750 48 0.3 7902219 KARINORA Commercial Fishing 2 Propulsion UISD 750 48 0.3 592291 KARIN IAYNN Commercial Fishing KARIN LYI 1 Propulsion 1978 UISD 225 48 0.3 592291 KARIN IAYNN Commercial Fishing WRIGHT 2 Propulsion 1920 UISD 300 48 0.3 228446 KARLUK Commercial Fishing WRIGHT 2 Propulsion 1292 UISD 300 48 0.3													
629244 KAMILAR Commercial Fishing 1 Propulsion 1980 UISD 250 48 0.3 629244 KAMILAR Commercial Fishing 2 Propulsion 1980 UISD 100 48 0.3 629244 KAMILAR Commercial Fishing 1 Propulsion UISD 700 48 0.3 7902219 KARENORA Commercial Fishing 2 Propulsion UISD 750 48 0.3 7902219 KARENORA Commercial Fishing KARIN LY? 1 Propulsion 1978 UISD 32 48 0.3 592291 KARIN LYNN Commercial Fishing KARIN LY? 2 Propulsion 1978 UISD 225 48 0.3 592291 KARIN LYNN Commercial Fishing KARIN LY? 3 auxiliary 1978 UISD 225 48 0.3 28446 KARIUK Commercial Fishing KARIN LY? 1 Propulsion 1920 UISD 300 48 0.3 48612 KATHLEEN Commercial Fishing WRIGHT 2 Propulsion UISD 300 48 0.3			U										
202214 KARILAR Commercial Fishing 3 auxiliary 1980 ULISD 100 48 0.3	629244		-						1980				0.3
Propulsion	629244	KAMILAR	Commercial Fishing						1980	ULSD	250	48	0.3
79002219 KARENORA Commercial Fishing 2 Propulsion ULSD 750 48 0.3 79002219 KARENORA Commercial Fishing KARIN LY? 1 Propulsion 1978 ULSD 225 48 0.3 692291 KARIN LYNN Commercial Fishing KARIN LY? 2 Propulsion 1978 ULSD 225 48 0.3 692291 KARIN LYNN Commercial Fishing KARIN LY? 2 Propulsion 1978 ULSD 225 48 0.3 692291 KARIN LYNN Commercial Fishing KARIN LY? 2 Propulsion 1978 ULSD 200 48 0.3 692291 KARIN LYNN Commercial Fishing KARIN LY? 1 Propulsion 1920 ULSD 300 48 0.3 692291 KARIN LYNN Commercial Fishing KARIN LY? 1 Propulsion 1920 ULSD 300 48 0.3 6931055 KARIU Commercial Fishing KARIN LY? 2 Propulsion 1920 ULSD 300 48 0.3 6931055 Kaic Ann Commercial Fishing Marcican Sc 1 Propulsion ULSD 200 48 0.3 6931055 Kaic Ann Commercial Fishing American Sc 1 Propulsion Bergen Dies KVM 18 1983 ULSD 400 48 0.3 6931055 Kaic Ann Commercial Fishing American Sc 1 Propulsion ULSD 300 48 0.3 6931055 Kaic Ann Commercial Fishing 2 Propulsion ULSD 300 48 0.3 6931055 Kaic Ann Commercial Fishing 2 Propulsion ULSD 300 48 0.3 6931055 Kaic Ann Commercial Fishing 2 Propulsion ULSD 300 48 0.3 6931055 Kaic Ann Commercial Fishing 2 Propulsion ULSD 300 48 0.3 6931055 Kaic Ann Commercial Fishing 2 Propulsion ULSD 300 48 0.3 6931055 KILY MAE Commercial Fishing UBILEE FI 2 Propulsion ULSD 300 48 0.3 6931055 KILY MAE Commercial Fishing 2 Propulsion ULSD 300 48 0.3 6931055 KINGHT DRAGON Commercial Fishing 1 Propulsion ULSD 750 48 0.3 6931055 KINGHT DRAGON Commercial Fishing 1 Propulsion ULSD 750 48 0.3 6931055 KINGHT DRAGON Commercial Fishing 1 Propulsion ULSD 200 48 0.3 6931055 6931055 6931055 6931055 6931055 6931055 6931055 6931055 6931055 693	629244	KAMILAR	Commercial Fishing			3 auxiliary			1980	ULSD	100	48	0.3
2902219 KARIN LYNN Commercial Fishing KARIN LYI 1 Propulsion 1978 ULSD 330 48 0.3	7902219	KARENORA	Commercial Fishing			1 Propulsion				ULSD	750	48	0.3
1972 KARIN LYNN Commercial Fishing KARIN LY? 1 Propulsion 1978 ULSD 225 48 0.3		KARENORA	Commercial Fishing			2 Propulsion				ULSD			0.3
592291 KARIN LYNN Commercial Fishing KARIN LY2 3 auxiliary 1978 ULSD 100 48 0.3 0.3 0.228446 KARLUK Commercial Fishing WRIGHT 1 Propulsion 1920 ULSD 300 48 0.3 0.3 0.228446 KARLUK Commercial Fishing WRIGHT 2 Propulsion 1920 ULSD 300 48 0.3 0.3 0.4 0.4 0.3 0.4 0.						-							
592291 KARIN LYNN Commercial Fishing WRIGHT 1 Propulsion 1929 ULSD 300 48 0.3			-										
228446 KARLUK			_										
228446 KARLUK Commercial Fishing WRIGHT 2 Propulsion 1929 UISD 300 48 0.3 48612 KATHILEEN Commercial Fishing 1 Propulsion UISD 200 48 0.3 548612 KATHILEEN Commercial Fishing 2 auxiliary UISD 100 48 0.3 6931055 Katie Ann Commercial Fishing American Se 1 Propulsion Bergen Dies KVM 18 1983 UISD 4200 48 0.3 1157826 KELLY MAE Commercial Fishing 2 Propulsion UISD 300 48 0.3 1157826 KELLY MAE Commercial Fishing JUBILEE FI 1 Propulsion 1979 UISD 500 48 0.3 612616 KJEVOLJA Commercial Fishing JUBILEE FI 2 Propulsion 1979 UISD 500 48 0.3 8023682 KNIGHT DRAGON Commercial Fishing 1 Propulsion 1979 UISD 330 48 0.3 8023682 KNIGHT DRAGON Commercial Fishing 1 Propulsion UISD 330 48 0.3 <td></td> <td></td> <td>-</td> <td></td>			-										
548612 KATHLEEN Commercial Fishing 1 Propulsion ULSD 200 48 0.3 548612 KATHLEEN Commercial Fishing American Se 2 auxiliary ULSD 100 48 0.3 5031055 Katie Ann Commercial Fishing American Se 1 Propulsion ULSD 300 48 0.3 1157826 KELLY MAE Commercial Fishing 2 Propulsion ULSD 300 48 0.3 612616 KJEVOLJA Commercial Fishing JUBILEE FI 3 auxiliary ULSD 100 48 0.3 612616 KJEVOLJA Commercial Fishing JUBILEE FI 1 Propulsion 1979 ULSD 500 48 0.3 612616 KJEVOLJA Commercial Fishing JUBILEE FI 2 Propulsion 1979 ULSD 300 48 0.3 612616 KJEVOLJA Commercial Fishing TUBILEE FI 3 auxiliary 1979 ULSD 330 48 0.3 8023682 KNIGHT DRAGON Commercial Fishing 2 Propulsion ULSD 30 48 0.3			_										
548612 KATHILEEN Commercial Fishing 2 auxiliary ULSD 100 48 0.3 6931055 Kate Ann Commercial Fishing 1 Propulsion Bergen Dies KVM 18 193 ULSD 420 48 0.3 1157826 KELLY MAE Commercial Fishing 2 Propulsion ULSD 300 48 0.3 1157826 KELLY MAE Commercial Fishing JUBILEE FI 2 Propulsion ULSD 300 48 0.3 612616 KJEVOLJA Commercial Fishing JUBILEE FI 1 Propulsion 1979 ULSD 500 48 0.3 612616 KJEVOLJA Commercial Fishing JUBILEE FI 2 Propulsion 1979 ULSD 500 48 0.3 8023682 KNIGHT DRAGON Commercial Fishing 1 Propulsion ULSD 750 48 0.3 8023682 KNIGHT DRAGON Commercial Fishing 1 Propulsion ULSD 33 48 0.3 579450 KODIAK ENTERPI Commercial Fishing TRIDENT S 1 Propulsion 1977 ULSD 300 48 0.3			-						1929				
6931055 Katie Ann Commercial Fishing American Se 1 Propulsion Bergen Diess KVM 18 1983 U.S.D 4200 48 0.3 0.3 0.3 0.3 0.3 0.4 0.3 0.3 0.3 0.3 0.3 0.4 0.3			_										
1157826 KELLY MAE Commercial Fishing 1 Propulsion ULSD 300 48 0.3 1157826 KELLY MAE Commercial Fishing 2 Propulsion ULSD 300 48 0.3 1157826 KELLY MAE Commercial Fishing 2 Propulsion 1979 ULSD 500 48 0.3 612616 KJEVOLJA Commercial Fishing JUBILEE FI 1 Propulsion 1979 ULSD 500 48 0.3 612616 KJEVOLJA Commercial Fishing JUBILEE FI 2 Propulsion 1979 ULSD 500 48 0.3 8023682 KNIGHT DRAGON Commercial Fishing JUBILEE FI 2 Propulsion ULSD 750 48 0.3 8023682 KNIGHT DRAGON Commercial Fishing TRIDENT S 2 Propulsion ULSD 750 48 0.3 8023682 KNIGHT DRAGON Commercial Fishing TRIDENT S 2 Propulsion 1977 ULSD 300 48 0.3 79450 KODIAK ENTERPI Commercial Fishing TRIDENT S 2 Propulsion 1977 ULSD <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>Bergen Die</td><td>s KVM 18</td><td>1983</td><td></td><td></td><td></td><td></td></th<>							Bergen Die	s KVM 18	1983				
1157826 KELLY MAE Commercial Fishing 2 Propulsion ULSD 300 48 0.3 1157826 KELLY MAE Commercial Fishing 3 auxiliary ULSD 100 48 0.3 612616 KJEVOLJA Commercial Fishing JUBILEE F 1 Propulsion 1979 ULSD 500 48 0.3 612616 KJEVOLJA Commercial Fishing JUBILEE F 2 Propulsion 1979 ULSD 500 48 0.3 8023682 KNIGHT DRAGON Commercial Fishing 2 Propulsion ULSD 750 48 0.3 8023682 KNIGHT DRAGON Commercial Fishing 2 Propulsion ULSD 750 48 0.3 8023682 KNIGHT DRAGON Commercial Fishing 2 Propulsion ULSD 300 48 0.3 8023682 KNIGHT DRAGON Commercial Fishing TRIDENT S 1 Propulsion 1977 ULSD 300 48 0.3 8023682 KNIGHT DRAGON Commercial Fishing TRIDENT S 1 Propulsion 1977 ULSD 300 48 0.3 81945 KODIAK ENTERPI Commer			-				8						0.3
612616 KJEVOLJA Commercial Fishing JUBILEE FI 1 Propulsion 1979 ULSD 500 48 0.3 612616 KJEVOLJA Commercial Fishing JUBILEE FI 2 Propulsion 1979 ULSD 500 48 0.3 8023682 KNIGHT DRAGON Commercial Fishing 1 Propulsion ULSD 750 48 0.3 8023682 KNIGHT DRAGON Commercial Fishing 2 Propulsion ULSD 750 48 0.3 8023682 KNIGHT DRAGON Commercial Fishing 3 auxiliary ULSD 750 48 0.3 879450 KODIAK ENTERPI Commercial Fishing TRIDENT § 1 Propulsion 1977 ULSD 300 48 0.3 879450 KODIAK ENTERPI Commercial Fishing TRIDENT § 2 Propulsion 1977 ULSD 300 48 0.3 178828 KORNAT 1 Commercial Fishing 1 Propulsion ULSD 200 48 0.3 178828 KORNAT 1 Commercial Fishing 1 Propulsion ULSD 200 48 0.3 178828 KORNAT 1	1157826		_							ULSD	300	48	0.3
612616 KJEVOLJA Commercial Fishing JUBILEE FI 2 Propulsion 1979 ULSD 500 48 0.3 612616 KJEVOLJA Commercial Fishing JUBILEE FI 3 auxiliary 1979 ULSD 330 48 0.3 8023682 KNIGHT DRAGON/Commercial Fishing 1 Propulsion ULSD 750 48 0.3 8023682 KNIGHT DRAGON/Commercial Fishing 2 Propulsion ULSD 330 48 0.3 8023682 KNIGHT DRAGON/Commercial Fishing 3 auxiliary ULSD 300 48 0.3 579450 KODIAK ENTERPI Commercial Fishing TRIDENT* 2 Propulsion 1977 ULSD 300 48 0.3 579450 KODIAK ENTERPI Commercial Fishing TRIDENT* 3 auxiliary 1977 ULSD 300 48 0.3 178828 KORNAT 1 Commercial Fishing 1 Propulsion ULSD 280 48 0.3 178828 KORNAT 1 Commercial Fishing 1 Propulsion ULSD 280 48 0.3 66355442 KYNOC C	1157826	KELLY MAE	Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
612616 KJEVOLJA Commercial Fishing JUBILEE FI 3 auxiliary 1979 ULSD 330 48 0.3 8023682 KNIGHT DRAGON Commercial Fishing 1 Propulsion ULSD 750 48 0.3 8023682 KNIGHT DRAGON Commercial Fishing 2 Propulsion ULSD 750 48 0.3 8023682 KNIGHT DRAGON Commercial Fishing 2 Propulsion ULSD 330 48 0.3 8023682 KNIGHT DRAGON Commercial Fishing TRIDENTS 1 Propulsion 1977 ULSD 300 48 0.3 579450 KODIAK ENTERPI Commercial Fishing TRIDENTS 2 Propulsion 1977 ULSD 3000 48 0.3 579450 KODIAK ENTERPI Commercial Fishing TRIDENTS 3 auxiliary 1977 ULSD 900 48 0.3 178828 KORNAT 1 Commercial Fishing 1 Propulsion ULSD 280 48 0.3 178828 KORNAT 1 Commercial Fishing 2 Propulsion ULSD 100 48 0.3 178828 KORNAT 1 Commercial	612616	KJEVOLJA	Commercial Fishing	JUBILEE F		1 Propulsion			1979	ULSD	500	48	0.3
8023682 KNIGHT DRAGON Commercial Fishing 1 Propulsion ULSD 750 48 0.3 8023682 KNIGHT DRAGON Commercial Fishing 2 Propulsion ULSD 750 48 0.3 8023682 KNIGHT DRAGON Commercial Fishing 3 auxiliary ULSD 330 48 0.3 579450 KODIAK ENTERPI Commercial Fishing TRIDENT \$ 2 Propulsion 1977 ULSD 3000 48 0.3 579450 KODIAK ENTERPI Commercial Fishing TRIDENT \$ 2 Propulsion 1977 ULSD 3000 48 0.3 178828 KORNAT 1 Commercial Fishing 1 Propulsion ULSD 280 48 0.3 178828 KORNAT 1 Commercial Fishing 2 Propulsion ULSD 280 48 0.3 178828 KORNAT 1 Commercial Fishing 1 Propulsion ULSD 280 48 0.3 178828 KORNAT 1 Commercial Fishing 1 Propulsion ULSD 280 48 0.3 60355442 KYNOC Commercial Fishing		KJEVOLJA	_	-									0.3
8023682 KNIGHT DRAGON Commercial Fishing 2 Propulsion ULSD 750 48 0.3 8023682 KNIGHT DRAGON Commercial Fishing 3 auxiliary ULSD 330 48 0.3 579450 KODIAK ENTERPI Commercial Fishing TRIDENT S 1 Propulsion 1977 ULSD 3000 48 0.3 579450 KODIAK ENTERPI Commercial Fishing TRIDENT S 2 Propulsion 1977 ULSD 3000 48 0.3 579450 KODIAK ENTERPI Commercial Fishing TRIDENT S 3 auxiliary 1977 ULSD 900 48 0.3 178828 KORNAT 1 Commercial Fishing 1 Propulsion ULSD 280 48 0.3 178828 KORNAT 1 Commercial Fishing 2 Propulsion ULSD 280 48 0.3 178828 KORNAT 1 Commercial Fishing 1 Propulsion ULSD 280 48 0.3 66355442 KYNOC Commercial Fishing 1 Propulsion ULSD 280 48 0.3 600600 LADY HELEN Commercial			-	-		-			1979				
8023682 KNIGHT DRAGON Commercial Fishing 3 auxiliary ULSD 330 48 0.3 579450 KODIAK ENTERPI Commercial Fishing TRIDENT \$ 1 Propulsion 1977 ULSD 3000 48 0.3 579450 KODIAK ENTERPI Commercial Fishing TRIDENT \$ 2 Propulsion 1977 ULSD 3000 48 0.3 579450 KODIAK ENTERPI Commercial Fishing TRIDENT \$ 3 auxiliary 1977 ULSD 900 48 0.3 178828 KORNAT 1 Commercial Fishing 1 Propulsion ULSD 280 48 0.3 178828 KORNAT 1 Commercial Fishing 2 Propulsion ULSD 280 48 0.3 178828 KORNAT 1 Commercial Fishing 3 auxiliary ULSD 100 48 0.3 66355442 KYNOC Commercial Fishing 1 Propulsion ULSD 280 48 0.3 60356442 KYNOC Commercial Fishing 1 Propulsion ULSD 230 48 0.3 600600 LADY HELEN Co													
579450 KODIAK ENTERPI Commercial Fishing TRIDENT \$ 1 Propulsion 1977 ULSD 3000 48 0.3 579450 KODIAK ENTERPI Commercial Fishing TRIDENT \$ 2 Propulsion 1977 ULSD 3000 48 0.3 579450 KODIAK ENTERPI Commercial Fishing TRIDENT \$ 3 auxiliary 1977 ULSD 900 48 0.3 178828 KORNAT 1 Commercial Fishing 1 Propulsion ULSD 280 48 0.3 178828 KORNAT 1 Commercial Fishing 2 Propulsion ULSD 280 48 0.3 178828 KORNAT 1 Commercial Fishing 3 auxiliary ULSD 100 48 0.3 66355442 KYNOC Commercial Fishing 1 Propulsion ULSD 280 48 0.3 66355442 KYNOC Commercial Fishing 2 Propulsion ULSD 280 48 0.3 660600 LADY HELEN Commercial Fishing 1 Propulsion ULSD 280 48 0.3 600600 LADY HELEN Commercial Fishing 1 Propulsion ULSD 20 48 0.3 600600 LADY HELEN Commercial Fishing 1 Propulsion ULSD 230 48 0.3 7336850 LADY KATE Commercial Fishing 2 Propulsion			U										
579450 KODIAK ENTERPI Commercial Fishing TRIDENT \$ 2 Propulsion 1977 ULSD 3000 48 0.3 579450 KODIAK ENTERPI Commercial Fishing 1 Propulsion 1977 ULSD 900 48 0.3 178828 KORNAT 1 Commercial Fishing 1 Propulsion ULSD 280 48 0.3 178828 KORNAT 1 Commercial Fishing 2 Propulsion ULSD 100 48 0.3 66355442 KYNOC Commercial Fishing 1 Propulsion ULSD 280 48 0.3 66355442 KYNOC Commercial Fishing 2 Propulsion ULSD 280 48 0.3 66355442 KYNOC Commercial Fishing 2 Propulsion ULSD 280 48 0.3 600600 LADY HELEN Commercial Fishing 1 Propulsion ULSD 230 48 0.3 600600 LADY HELEN Commercial Fishing 1 Propulsion ULSD 230 48 0.3 7336850 LADY KATE			_		:				1077				
579450 KODIAK ENTERPI Commercial Fishing TRIDENT State (Commercial Fishing State (
178828 KORNAT 1 Commercial Fishing 1 Propulsion ULSD 280 48 0.3 178828 KORNAT 1 Commercial Fishing 2 Propulsion ULSD 280 48 0.3 178828 KORNAT 1 Commercial Fishing 3 auxiliary ULSD 100 48 0.3 66355442 KYNOC Commercial Fishing 2 Propulsion ULSD 280 48 0.3 66355442 KYNOC Commercial Fishing 2 Propulsion ULSD 280 48 0.3 66355442 KYNOC Commercial Fishing 3 auxiliary ULSD 280 48 0.3 600600 LADY HELEN Commercial Fishing 1 Propulsion ULSD 20 48 0.3 600600 LADY HELEN Commercial Fishing 2 Propulsion ULSD 230 48 0.3 7336850 LADY KATE Commercial Fishing 1 Propulsion 1973 ULSD 225 48 0.3 7336850 LADY KATE			_										
178828 KORNAT 1 Commercial Fishing 2 Propulsion ULSD 280 48 0.3 178828 KORNAT 1 Commercial Fishing 3 auxiliary ULSD 100 48 0.3 66355442 KYNOC Commercial Fishing 1 Propulsion ULSD 280 48 0.3 66355442 KYNOC Commercial Fishing 2 Propulsion ULSD 280 48 0.3 66355442 KYNOC Commercial Fishing 3 auxiliary ULSD 100 48 0.3 600600 LADY HELEN Commercial Fishing 1 Propulsion ULSD 230 48 0.3 600600 LADY HELEN Commercial Fishing 3 auxiliary ULSD 230 48 0.3 7336850 LADY KATE Commercial Fishing 1 Propulsion 1973 ULSD 225 48 0.3 7336850 LADY KATE Commercial Fishing 3 auxiliary 1973 ULSD 225 48 0.3 600072 LADY KODIAK Commercial Fishing 1 Propulsion 1978 ULSD 365 48 0.3<													0.3
66355442 KYNOC Commercial Fishing 1 Propulsion ULSD 280 48 0.3 66355442 KYNOC Commercial Fishing 2 Propulsion ULSD 280 48 0.3 66355442 KYNOC Commercial Fishing 3 auxiliary ULSD 100 48 0.3 600600 LADY HELEN Commercial Fishing 1 Propulsion ULSD 230 48 0.3 600600 LADY HELEN Commercial Fishing 2 Propulsion ULSD 230 48 0.3 600600 LADY HELEN Commercial Fishing 3 auxiliary ULSD 100 48 0.3 7336850 LADY KATE Commercial Fishing 2 Propulsion 1973 ULSD 225 48 0.3 600072 LADY KODIAK Commercial Fishing 1 Propulsion 1978 ULSD 365 48 0.3 600072 LADY KODIAK Commercial Fishing 2 Propulsion 1978 ULSD 365 48 0.3 819946 LADY VALERIE Commercial Fishing 1 Propulsion ULSD 230 48						1							0.3
66355442 KYNOC Commercial Fishing 2 Propulsion ULSD 280 48 0.3 66355442 KYNOC Commercial Fishing 3 auxiliary ULSD 100 48 0.3 600600 LADY HELEN Commercial Fishing 1 Propulsion ULSD 230 48 0.3 600600 LADY HELEN Commercial Fishing 2 Propulsion ULSD 230 48 0.3 7336850 LADY KATE Commercial Fishing 1 Propulsion 1973 ULSD 225 48 0.3 7336850 LADY KATE Commercial Fishing 2 Propulsion 1973 ULSD 225 48 0.3 600072 LADY KODIAK Commercial Fishing 1 Propulsion 1978 ULSD 365 48 0.3 600072 LADY KODIAK Commercial Fishing 2 Propulsion 1978 ULSD 365 48 0.3 819946 LADY VALERIE Commercial Fishing 1 Propulsion ULSD 230 48 0.3 819946 LADY VALERIE Commercial Fishing 2 Propulsion ULSD 230 48	178828	KORNAT 1	Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
66355442 KYNOC Commercial Fishing 3 auxiliary ULSD 100 48 0.3 600600 LADY HELEN Commercial Fishing 1 Propulsion ULSD 230 48 0.3 600600 LADY HELEN Commercial Fishing 2 Propulsion ULSD 230 48 0.3 600600 LADY HELEN Commercial Fishing 3 auxiliary ULSD 100 48 0.3 7336850 LADY KATE Commercial Fishing 2 Propulsion 1973 ULSD 225 48 0.3 7336850 LADY KATE Commercial Fishing 2 Propulsion 1973 ULSD 225 48 0.3 7336850 LADY KODIAK Commercial Fishing 3 auxiliary 1973 ULSD 100 48 0.3 600072 LADY KODIAK Commercial Fishing 2 Propulsion 1978 ULSD 365 48 0.3 819946 LADY VALERIE Commercial Fishing 1 Propulsion 1978 ULSD 100 48 0.3 819946 <td>66355442</td> <td>KYNOC</td> <td>Commercial Fishing</td> <td></td> <td></td> <td>1 Propulsion</td> <td></td> <td></td> <td></td> <td>ULSD</td> <td>280</td> <td>48</td> <td>0.3</td>	66355442	KYNOC	Commercial Fishing			1 Propulsion				ULSD	280	48	0.3
600600 LADY HELEN Commercial Fishing 1 Propulsion ULSD 230 48 0.3 600600 LADY HELEN Commercial Fishing 2 Propulsion ULSD 230 48 0.3 600600 LADY HELEN Commercial Fishing 3 auxiliary ULSD 100 48 0.3 7336850 LADY KATE Commercial Fishing 2 Propulsion 1973 ULSD 225 48 0.3 7336850 LADY KATE Commercial Fishing 3 auxiliary 1973 ULSD 225 48 0.3 7336850 LADY KATE Commercial Fishing 3 auxiliary 1973 ULSD 100 48 0.3 600072 LADY KODIAK Commercial Fishing 1 Propulsion 1978 ULSD 365 48 0.3 600072 LADY KODIAK Commercial Fishing 2 Propulsion 1978 ULSD 365 48 0.3 819946 LADY VALERIE Commercial Fishing 1 Propulsion ULSD 230 48 0.3 819946 </td <td>66355442</td> <td>KYNOC</td> <td>Commercial Fishing</td> <td></td> <td></td> <td>2 Propulsion</td> <td></td> <td></td> <td></td> <td>ULSD</td> <td>280</td> <td>48</td> <td>0.3</td>	66355442	KYNOC	Commercial Fishing			2 Propulsion				ULSD	280	48	0.3
600600 LADY HELEN Commercial Fishing 2 Propulsion ULSD 230 48 0.3 600600 LADY HELEN Commercial Fishing 3 auxiliary ULSD 100 48 0.3 7336850 LADY KATE Commercial Fishing 1 Propulsion 1973 ULSD 225 48 0.3 7336850 LADY KATE Commercial Fishing 2 Propulsion 1973 ULSD 100 48 0.3 600072 LADY KODIAK Commercial Fishing 1 Propulsion 1978 ULSD 365 48 0.3 600072 LADY KODIAK Commercial Fishing 2 Propulsion 1978 ULSD 365 48 0.3 600072 LADY KODIAK Commercial Fishing 3 auxiliary 1978 ULSD 365 48 0.3 819946 LADY VALERIE Commercial Fishing 1 Propulsion 1978 ULSD 100 48 0.3 819946 LADY VALERIE Commercial Fishing 2 Propulsion ULSD 230 48 0.3 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.3</td></td<>													0.3
600600 LADY HELEN Commercial Fishing 3 auxiliary ULSD 100 48 0.3 7336850 LADY KATE Commercial Fishing 1 Propulsion 1973 ULSD 225 48 0.3 7336850 LADY KATE Commercial Fishing 2 Propulsion 1973 ULSD 225 48 0.3 600072 LADY KODIAK Commercial Fishing 1 Propulsion 1978 ULSD 365 48 0.3 600072 LADY KODIAK Commercial Fishing 2 Propulsion 1978 ULSD 365 48 0.3 600072 LADY KODIAK Commercial Fishing 3 auxiliary 1978 ULSD 365 48 0.3 819946 LADY VALERIE Commercial Fishing 1 Propulsion ULSD 230 48 0.3 819946 LADY VALERIE Commercial Fishing 2 Propulsion ULSD 230 48 0.3 819946 LADY VALERIE Commercial Fishing 2 Propulsion ULSD 230 48 0.3 81													0.3
7336850 LADY KATE Commercial Fishing 1 Propulsion 1973 ULSD 225 48 0.3 7336850 LADY KATE Commercial Fishing 2 Propulsion 1973 ULSD 225 48 0.3 7336850 LADY KATE Commercial Fishing 3 auxiliary 1973 ULSD 100 48 0.3 600072 LADY KODIAK Commercial Fishing 1 Propulsion 1978 ULSD 365 48 0.3 600072 LADY KODIAK Commercial Fishing 2 Propulsion 1978 ULSD 365 48 0.3 819946 LADY VALERIE Commercial Fishing 1 Propulsion ULSD 230 48 0.3 819946 LADY VALERIE Commercial Fishing 2 Propulsion ULSD 230 48 0.3 819946 LADY VALERIE Commercial Fishing 2 Propulsion ULSD 230 48 0.3 819946 LADY VALERIE Commercial Fishing 3 auxiliary ULSD 100 48 0.3			U			-							
7336850 LADY KATE Commercial Fishing 2 Propulsion 1973 ULSD 225 48 0.3 7336850 LADY KATE Commercial Fishing 3 auxiliary 1973 ULSD 100 48 0.3 600072 LADY KODIAK Commercial Fishing 1 Propulsion 1978 ULSD 365 48 0.3 600072 LADY KODIAK Commercial Fishing 2 Propulsion 1978 ULSD 365 48 0.3 819946 LADY VALERIE Commercial Fishing 1 Propulsion ULSD 230 48 0.3 819946 LADY VALERIE Commercial Fishing 2 Propulsion ULSD 230 48 0.3 819946 LADY VALERIE Commercial Fishing 2 Propulsion ULSD 230 48 0.3 819946 LADY VALERIE Commercial Fishing 3 auxiliary ULSD 20 48 0.3									4072				
7336850 LADY KATE Commercial Fishing 3 auxiliary 1973 ULSD 100 48 0.3 600072 LADY KODIAK Commercial Fishing 1 Propulsion 1978 ULSD 365 48 0.3 600072 LADY KODIAK Commercial Fishing 2 Propulsion 1978 ULSD 365 48 0.3 819946 LADY VALERIE Commercial Fishing 1 Propulsion ULSD 230 48 0.3 819946 LADY VALERIE Commercial Fishing 2 Propulsion ULSD 230 48 0.3 819946 LADY VALERIE Commercial Fishing 3 auxiliary ULSD 20 48 0.3 819946 LADY VALERIE Commercial Fishing 3 auxiliary ULSD 20 48 0.3			_										
600072 LADY KODIAK Commercial Fishing 1 Propulsion 1978 ULSD 365 48 0.3 600072 LADY KODIAK Commercial Fishing 2 Propulsion 1978 ULSD 365 48 0.3 600072 LADY KODIAK Commercial Fishing 3 auxiliary 1978 ULSD 100 48 0.3 819946 LADY VALERIE Commercial Fishing 1 Propulsion ULSD 230 48 0.3 819946 LADY VALERIE Commercial Fishing 2 Propulsion ULSD 230 48 0.3 819946 LADY VALERIE Commercial Fishing 3 auxiliary ULSD 100 48 0.3			_										
600072 LADY KODIAK Commercial Fishing 2 Propulsion 1978 ULSD 365 48 0.3 600072 LADY KODIAK Commercial Fishing 3 auxiliary 1978 ULSD 100 48 0.3 819946 LADY VALERIE Commercial Fishing 1 Propulsion ULSD 230 48 0.3 819946 LADY VALERIE Commercial Fishing 2 Propulsion ULSD 230 48 0.3 819946 LADY VALERIE Commercial Fishing 3 auxiliary ULSD 100 48 0.3			_										
600072 LADY KODIAK Commercial Fishing 3 auxiliary 1978 ULSD 100 48 0.3 819946 LADY VALERIE Commercial Fishing 1 Propulsion ULSD 230 48 0.3 819946 LADY VALERIE Commercial Fishing 2 Propulsion ULSD 230 48 0.3 819946 LADY VALERIE Commercial Fishing 3 auxiliary ULSD 100 48 0.3			-										
819946 LADY VALERIE Commercial Fishing 1 Propulsion ULSD 230 48 0.3 819946 LADY VALERIE Commercial Fishing 2 Propulsion ULSD 230 48 0.3 819946 LADY VALERIE Commercial Fishing 3 auxiliary ULSD 100 48 0.3			_										0.3
819946 LADY VALERIE Commercial Fishing 2 Propulsion ULSD 230 48 0.3 819946 LADY VALERIE Commercial Fishing 3 auxiliary ULSD 100 48 0.3			_						12.10				0.3
819946 LADY VALERIE Commercial Fishing 3 auxiliary ULSD 100 48 0.3			_										0.3
667407 LAST FRONTIER Commercial Fishing 1 Propulsion 1984 ULSD 400 48 0.3													0.3
	667407	LAST FRONTIER	Commercial Fishing			1 Propulsion			1984	ULSD	400	48	0.3

			Owner	Engine		Engir :	Enoise -	Fnoine			Annual		
Vessel ID	Vessel Name	Type	Owner Name	ID User	Engine Type	Engine MFR	Engine Model	Engine Year	Fuel	HP	Annual Hours	Load	
667407	LAST FRONTIER	Commercial Fishing			2 Propulsion				ULSD	400	48		0.3
667407	LAST FRONTIER	Commercial Fishing			3 auxiliary			1984	ULSD	100	48		0.3
127489	LAUREN L KAPP	Commercial Fishing			1 Propulsion				ULSD	750	48		0.3
127489	LAUREN L KAPP	Commercial Fishing			2 Propulsion				ULSD	750	48		0.3
127489 697907	LAUREN L KAPP	Commercial Fishing	MADTINI		3 auxiliary			1005	ULSD	330	48 48		0.3
697907	LEGACY LEGACY	Commercial Fishing Commercial Fishing			1 Propulsion 2 Propulsion				ULSD ULSD	435 435	48		0.3
697907	LEGACY	Commercial Fishing			3 auxiliary				ULSD	100	48		0.3
976538	LILLI ANN	Commercial Fishing			1 Propulsion				ULSD	585	48		0.3
976538	LILLI ANN	Commercial Fishing			2 Propulsion			1991	ULSD	585	48		0.3
976538	LILLI ANN	Commercial Fishing	LILLI ANN	I	3 auxiliary			1991	ULSD	330	48		0.3
1038717	LISA MARIE	Commercial Fishing			1 Propulsion				ULSD	425	48		0.3
1038717	LISA MARIE	Commercial Fishing			2 Propulsion				ULSD	425	48		0.3
1038717	LISA MARIE	Commercial Fishing			3 auxiliary			1996	ULSD	100	48		0.3
101579 101579	LOWRIDER LOWRIDER	Commercial Fishing			1 Propulsion 2 Propulsion				ULSD ULSD	350 350	48 48		0.3
101579	LOWRIDER	Commercial Fishing Commercial Fishing			3 auxiliary				ULSD	100	48		0.3
594399		E Commercial Fishing			1 Propulsion				ULSD	750	48		0.3
594399		E Commercial Fishing			2 Propulsion				ULSD	750	48		0.3
594399		E Commercial Fishing			3 auxiliary				ULSD	330	48		0.3
8855358	MAJESTY	Commercial Fishing			1 Propulsion				ULSD	590	48		0.3
8855358	MAJESTY	Commercial Fishing			2 Propulsion				ULSD	590	48		0.3
8855358	MAJESTY	Commercial Fishing			3 auxiliary				ULSD	330	48	(0.3
975597	MARAUDER	Commercial Fishing			1 Propulsion				ULSD	270	48		0.3
975597	MARAUDER	Commercial Fishing			2 Propulsion				ULSD	270	48		0.3
975597	MARAUDER	Commercial Fishing			3 auxiliary				ULSD	100	48		0.3
615563 615563	MARGARET LYN MARGARET LYN	Commercial Fishing Commercial Fishing			1 Propulsion 2 Propulsion				ULSD ULSD	750 750	48 48		0.3
615563	MARGARET LYN	Commercial Fishing			3 auxiliary				ULSD	330	48		0.3
1040505	MARINA	Commercial Fishing	Old MI		1 Propulsion			17/7	ULSD	750	48		0.3
1040505	MARINA	Commercial Fishing			2 Propulsion				ULSD	750	48		0.3
1040505	MARINA	Commercial Fishing			3 auxiliary				ULSD	330	48	(0.3
800021	MARY ISLE	Commercial Fishing			1 Propulsion				ULSD	350	48	(0.3
800021	MARY ISLE	Commercial Fishing			2 Propulsion				ULSD	350	48		0.3
800021	MARY ISLE	Commercial Fishing	D/3736437D		3 auxiliary			4002	ULSD	100	48		0.3
647314	MAVERICK	Commercial Fishing			1 Propulsion				ULSD	285	48 48		0.3
647314 647314	MAVERICK MAVERICK	Commercial Fishing Commercial Fishing			2 Propulsion 3 auxiliary				ULSD ULSD	285 100	48		0.3
622875	MIKETTE	Commercial Fishing	1'/ V IVIZI V I		1 Propulsion			1703	ULSD	640	48		0.3
622875	MIKETTE	Commercial Fishing			2 Propulsion				ULSD	640	48		0.3
622875	MIKETTE	Commercial Fishing			3 auxiliary				ULSD	330	48		0.3
6404789	MILLBANKE SOU	NCommercial Fishing			1 Propulsion				ULSD	250	48		0.3
6404789	MILLBANKE SOU	Commercial Fishing			2 Propulsion				ULSD	250	48		0.3
6404789		N Commercial Fishing			3 auxiliary				ULSD	100	48		0.3
522643	MISS LEONA	Commercial Fishing			1 Propulsion				ULSD	425	48		0.3
522643 522643	MISS LEONA	Commercial Fishing Commercial Fishing			2 Propulsion 3 auxiliary				ULSD ULSD	425 100	48 48		0.3
668040	MISS LEONA MISTY BLUE	Commercial Fishing			1 Propulsion				ULSD	165	48		0.3
668040	MISTY BLUE	Commercial Fishing			2 Propulsion				ULSD	165	48		0.3
668040	MISTY BLUE	Commercial Fishing			3 auxiliary				ULSD	100	48		0.3
926647	MISTY DAWN	Commercial Fishing	KATAHDI	1	1 Propulsion			1988	ULSD	600	48		0.3
926647	MISTY DAWN	Commercial Fishing	KATAHDI		2 Propulsion			1988	ULSD	600	48		0.3
926647	MISTY DAWN	Commercial Fishing			3 auxiliary				ULSD	330	48		0.3
611524	MUIR MILACH	Commercial Fishing			1 Propulsion				ULSD	400	48		0.3
611524	MUIR MILACH	Commercial Fishing			2 Propulsion				ULSD	400	48		0.3
611524	MUIR MILACH	Commercial Fishing			3 auxiliary				ULSD	100	48		0.3
250971 250971	MUSKRAT MUSKRAT	Commercial Fishing Commercial Fishing			1 Propulsion 2 Propulsion				ULSD ULSD	250 250	48 48		0.3
250971	MUSKRAT	Commercial Fishing			3 auxiliary				ULSD	100	48		0.3
552893	MYSTERY BAY	Commercial Fishing			1 Propulsion				ULSD	850	48		0.3
552893	MYSTERY BAY	Commercial Fishing			2 Propulsion				ULSD	850	48		0.3
552893	MYSTERY BAY	Commercial Fishing			3 auxiliary				ULSD	330	48		0.3
572337	NEMESIS	Commercial Fishing			1 Propulsion				ULSD	190	48		0.3
572337	NEMESIS	Commercial Fishing	WELCH		2 auxiliary				ULSD	100	48		0.3
7201756	NEW LIFE	Commercial Fishing			1 Propulsion				ULSD	450	48		0.3
7201756	NEW LIFE	Commercial Fishing			2 Propulsion				ULSD	450	48		0.3
7201756	NEW LIFE	Commercial Fishing			3 auxiliary			1900	ULSD	100	48	,	0.3

Vessel ID	Vessel Name	Type	Owner Name	Engine ID User	Engine Type	Engine MFR	Engine Model	Engine Year	Fuel	НР	Annual Hours	Load
565816	NEW VENTURE	Commercial Fishing	INAIIIC		l Propulsion	MITI	Model		ULSD	150	48	0.3
565816	NEW VENTURE	Commercial Fishing			2 Propulsion				ULSD	150	48	0.3
565816	NEW VENTURE	Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
739513	NOR QUEST	Commercial Fishing			l Propulsion				ULSD	750	48	0.3
739513	NOR QUEST	Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
739513	NOR QUEST	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
8825896	NORDIC PEARL	Commercial Fishing			l Propulsion				ULSD	750	48	0.3
8825896	NORDIC PEARL	Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
8825896	NORDIC PEARL	Commercial Fishing		3	3 auxiliary				ULSD	330	48	0.3
542651	NORDIC STAR	Commercial Fishing			l Propulsion			1977	ULSD	500	48	0.3
542651	NORDIC STAR	Commercial Fishing		2	2 Propulsion			1977	ULSD	500	48	0.3
542651	NORDIC STAR	Commercial Fishing		3	3 auxiliary			1977	ULSD	330	48	0.3
601068	NORSEMAN II	Commercial Fishing	NORSEMA		l Propulsion			1979	ULSD	425	48	0.3
601068	NORSEMAN II	Commercial Fishing	NORSEMA		2 Propulsion			1979	ULSD	425	48	0.3
601068	NORSEMAN II	Commercial Fishing	NORSEMA		3 auxiliary			1979	ULSD	100	48	0.3
566067	NORTH AMERICA	A Commercial Fishing	NORTH AN		1 Propulsion			1975	ULSD	600	48	0.3
566067	NORTH AMERICA	A Commercial Fishing	NORTH AN	. 2	2 Propulsion			1975	ULSD	600	48	0.3
566067	NORTH AMERICA	A Commercial Fishing	NORTH AN		3 auxiliary			1975	ULSD	330	48	0.3
950038	NORTH CAPE	Commercial Fishing	NORTH CA	1	l Propulsion			1989	ULSD	460	48	0.3
950038	NORTH CAPE	Commercial Fishing	NORTH CA	! 2	2 Propulsion			1989	ULSD	460	48	0.3
950038	NORTH CAPE	Commercial Fishing	NORTH CA	! 3	3 auxiliary			1989	ULSD	100	48	0.3
606565	NORTH SEA	Commercial Fishing	KRISTIAN		l Propulsion			1979	ULSD	705	48	0.3
606565	NORTH SEA	Commercial Fishing	KRISTIAN	2	2 Propulsion			1979	ULSD	705	48	0.3
606565	NORTH SEA	Commercial Fishing	KRISTIAN	3	3 auxiliary			1979	ULSD	330	48	0.3
615387	NORTHERN BELL	J Commercial Fishing	TRITON IN		l Propulsion			1979	ULSD	375	48	0.3
615387	NORTHERN BELL	J Commercial Fishing	TRITON IN		2 Propulsion			1979	ULSD	375	48	0.3
615387		J Commercial Fishing	TRITON IN		3 auxiliary				ULSD	100	48	0.3
553713		J Commercial Fishing			l Propulsion				ULSD	425	48	0.3
553713		J Commercial Fishing			2 Propulsion				ULSD	425	48	0.3
553713		J Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
506694	Northern Eagle	Commercial Fishing			1 Propulsion	_			ULSD	3600	48	0.3
506694	Northern Eagle	Commercial Fishing			2 Propulsion	Bergen Di	ies(BRM 8		ULSD	3600	48	0.3
663457		C Commercial Fishing			l Propulsion				ULSD	1500	48	0.3
663457		C Commercial Fishing			2 Propulsion				ULSD	1500	48	0.3
663457		C Commercial Fishing			3 auxiliary	3.5.4.17	452.6		ULSD	900	48	0.3
521069	Northern Jaeger	Commercial Fishing			l Propulsion		453 C		ULSD	3680	48	0.3
521069	Northern Jaeger	Commercial Fishing	American Se		2 Propulsion	MAK	453 C	1989	ULSD	3680	48	0.3
511698		N Commercial Fishing			Propulsion				ULSD	300	48	0.3
511698		N Commercial Fishing			2 Propulsion 3 auxiliary				ULSD	300	48	0.3
511698 637744		N Commercial Fishing	THINENT		Propulsion			1001	ULSD	100	48	0.3
637744		RI Commercial Fishing RI Commercial Fishing			2 Propulsion				ULSD ULSD	1000 1000	48 48	0.3
637744		d Commercial Fishing			auxiliary				ULSD	900	48	0.3
248959		Commercial Fishing			Propulsion				ULSD	1250	48	0.3
248959		Commercial Fishing			2 Propulsion				ULSD	1250	48	0.3
248959		Commercial Fishing			3 auxiliary				ULSD	900	48	0.3
7926538		Pl Commercial Fishing	E I E I II I I		Propulsion			1713	ULSD	750	48	0.3
7926538		Pl Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
7926538		Pl Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
587816		Commercial Fishing	HANSEN E		l Propulsion			1977	ULSD	640	48	0.3
587816		Commercial Fishing			2 Propulsion				ULSD	640	48	0.3
587816		Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
602386	NORTHWIND	Commercial Fishing			l Propulsion				ULSD	338	48	0.3
602386	NORTHWIND	Commercial Fishing			2 Propulsion				ULSD	338	48	0.3
602386	NORTHWIND	Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
936017	NORTON SOUND	_			l Propulsion				ULSD	600	48	0.3
936017		Commercial Fishing			2 Propulsion				ULSD	600	48	0.3
936017	NORTON SOUND				3 auxiliary				ULSD	330	48	0.3
7202061	NOTORIOUS	Commercial Fishing		1	l Propulsion				ULSD	550	48	0.3
7202061	NOTORIOUS	Commercial Fishing		2	2 Propulsion				ULSD	550	48	0.3
7202061	NOTORIOUS	Commercial Fishing		3	3 auxiliary				ULSD	100	48	0.3
587551	NUSHAGAK SPIRI	Commercial Fishing	BELTZ	1	1 Propulsion			1977	ULSD	300	48	0.3
587551	NUSHAGAK SPIRI	Commercial Fishing	BELTZ	2	2 Propulsion			1977	ULSD	300	48	0.3
587551	NUSHAGAK SPIRI	Commercial Fishing			3 auxiliary			1977	ULSD	100	48	0.3
623210	OCEAN ALASKA	Commercial Fishing			1 Propulsion			1980	ULSD	475	48	0.3
623210	OCEAN ALASKA	Commercial Fishing			2 Propulsion				ULSD	475	48	0.3
623210	OCEAN ALASKA	Commercial Fishing	OCEAN AI	. 3	3 auxiliary			1980	ULSD	100	48	0.3

1021269 OCEAN CAPE Commercial Fishing NEAL 2 Populsion 1995 ULSD 125 48 678236 OCEAN FRESH Commercial Fishing 2 Populsion 1994 ULSD 300 48 678236 OCEAN FRESH Commercial Fishing 2 Populsion 1994 ULSD 300 48 678236 OCEAN FRESH Commercial Fishing 2 Populsion 1994 ULSD 300 48 678236 OCEAN FRESH Commercial Fishing 2 Populsion 1994 ULSD 300 48 678236 OCEAN FRESH Commercial Fishing THY GRO Depolation 1994 ULSD 300 48 678236 OCEAN FRESH Commercial Fishing THY GRO Depolation 1994 ULSD 300 48 678236 OCEAN FRESH Commercial Fishing THY GRO Depolation 1997 ULSD 100 48 6782333 OCEAN FRESH Commercial Fishing 2 Populsion 1977 ULSD 100 48 6782333 OCEAN HARVEST Commercial Fishing 2 Populsion 1932 ULSD 100 48 678233 OCEAN HARVEST Commercial Fishing 3 auxiliary 1992 ULSD 100 48 078232 OCEAN HOPT 3 Commercial Fishing 3 auxiliary 1992 ULSD 100 48 078232 OCEAN HOPT 3 Commercial Fishing 3 auxiliary 1992 ULSD 100 48 078232 OCEAN HOPT 3 Commercial Fishing 3 auxiliary 1992 ULSD 100 48 078232 OCEAN HOPT 3 Commercial Fishing 3 auxiliary 1992 ULSD 100 48 078232 OCEAN HOPT 3 Commercial Fishing 3 auxiliary 1992 ULSD 100 48 078232 OCEAN HOPT 3 Commercial Fishing 3 auxiliary 1992 ULSD 100 48 078232 OCEAN HOPT 3 Commercial Fishing 3 auxiliary 1992 ULSD 100 48 078232 OCEAN HOPT 3 Commercial Fishing 3 auxiliary 1992 ULSD 100 48 078232 OCEAN HOPT 3 Commercial Fishing 2 Populsion 1994 ULSD 100 48 078232 OCEAN HOPT 3 Commercial Fishing 2 Populsion 1994 ULSD 100					Engine	e							
1012109 OCEAN CAPP Commercial Fishing NIAL 2 Propulsion 1995 ULSD 125 48 678236 OCEAN FRIST Commercial Fishing 1 Propulsion 1994 ULSD 300 48 678236 OCEAN FRIST Commercial Fishing 2 Propulsion 1994 ULSD 301 48 678236 OCEAN FRIST Commercial Fishing 2 Propulsion 1994 ULSD 301 48 678236 OCEAN FRIST Commercial Fishing 1 Propulsion 1994 ULSD 301 48 678236 OCEAN FRIST Commercial Fishing 1 Propulsion 1994 ULSD 301 48 678236 OCEAN FRIST Commercial Fishing 1 Propulsion 1997 ULSD 100 48 678236 OCEAN FRIST OCEAN FRIST Commercial Fishing 1 Propulsion 1977 ULSD 100 48 6782333 OCEAN FRIST Commercial Fishing 2 Propulsion 1977 ULSD 100 48 67823333 OCEAN HARVISTI Commercial Fishing 2 Propulsion 1925 ULSD 425 48 OCEAN FRIST OCEAN FRIST	-		71	Name		Type	_	_	Year			Hours	
1922/20 OCEAN CAPTE Commercial Fishing NEAL 3 auxiliary 1995 ULSD 100 48 1678286 OCEAN FRUSH Commercial Fishing 1 Propulsion 1948 ULSD 900 48 1678286 OCEAN FRUSH Commercial Fishing 2 Propulsion 1948 ULSD 900 48 1678286 OCEAN FRUSH Commercial Fishing PURY CRO 1 Propulsion 1977 ULSD 165 48 1678286 OCEAN FRUSH Commercial Fishing PURY CRO 1 Propulsion 1977 ULSD 165 48 1678286 OCEAN FRUSH O			_			•							0.3
678256 OCJAN FRISTI Commercial Fishing 2 Propulsion 1944 UISD 900 48 678236 OCJAN FRISTI Commercial Fishing 2 Propulsion 1944 UISD 301 48 678236 OCJAN FRISTI Commercial Fishing FURY (RO 2 Propulsion 1977 UISD 425 48 678236 OCJAN FURY Commercial Fishing FURY (RO 2 Propulsion 1977 UISD 425 48 678236 OCJAN FURY Commercial Fishing FURY (RO 2 Propulsion 1977 UISD 425 48 678236 OCJAN FURY Commercial Fishing FURY (RO 2 Propulsion 1977 UISD 2016 48 17 17 17 17 17 17 17 1			_			•							0.3
678236 OCEAN PRISTI Commercial Fishing 2 Propulsion 1934 ULSD 300 48 506434 OCEAN PRISTI Commercial Fishing PURY GRO 1 Propulsion 1977 ULSD 165 48 506444 OCEAN PURY Commercial Fishing PURY GRO 2 Propulsion 1977 ULSD 165 48 506444 OCEAN PURY Commercial Fishing PURY GRO 2 Propulsion 1977 ULSD 100 48 5073333 OCEAN HAWKIST Commercial Fishing 1 Propulsion ULSD 200 48 5073333 OCEAN HAWKIST Commercial Fishing 2 Propulsion ULSD 200 48 5073333 OCEAN HAWKIST Commercial Fishing 2 Propulsion ULSD 200 48 5073333 OCEAN HAWKIST Commercial Fishing 2 Propulsion 1922 ULSD 425 48 5074			_	NEAL									0.3
59240 OCEAN FIRENT Commercial Fabring PLTAY (GR) Peppulsion 1977 ULSD 155 48 186441 OCEAN FURY Commercial Fabring PLTAY (GR) 2 Peppulsion 1977 ULSD 425 48 186441 OCEAN FURY Commercial Fabring PLTAY (GR) 2 Peppulsion 1977 ULSD 425 48 1878 18			_			•							0.3
Se6441 OCEAN FURY Commercial Fishing PURY GRO Deposition 1977 UISD 165 48 186441 OCEAN FURY Commercial Fishing FURY GRO 3 auxiliary 1977 UISD 100 48 Commercial Fishing FURY GRO 3 auxiliary 1977 UISD 100 48 Commercial Fishing Deposition UISD 200 48 Commercial Fishing 1 Propulsion UISD 200 48 Commercial Fishing 2 Propulsion UISD 200 48 Commercial Fishing 2 Propulsion UISD 200 48 Commercial Fishing 3 auxiliary UISD 100 48 Commercial Fishing 3 auxiliary UISD 100 48 Commercial Fishing 2 Propulsion 1982 UISD 425 48 Commercial Fishing 2 Propulsion 1982 UISD 100 48 Commercial Fishing 1 Propulsion 1982 UISD 100 48 Comme													0.3
S864H OCEAN FURY Commercial Fishing PURY GRO 2 Propulsion 1977 ULSD 425 48 18			_	ELIDV CDC	1								0.3
Se64H OCEAN FIREY Commercial Fishing CINY CRO 3 aoxiliary 1971 UISD 100 48 107513331 OCEAN HARVESTI Commercial Fishing 2 Propulsion UISD 200 48 107513331 OCEAN HARVESTI Commercial Fishing 3 aoxiliary UISD 100 48 107513331 OCEAN HARVESTI Commercial Fishing 2 Propulsion 1982 UISD 425 48 1080022 OCEAN HOPE 3 Commercial Fishing 2 Propulsion 1982 UISD 425 48 1080022 OCEAN HOPE 3 Commercial Fishing 2 Propulsion 1982 UISD 100 48 1022224 OCEAN HOPE 3 Commercial Fishing 2 Propulsion 1980 UISD 425 48 1022224 OCEAN HUNTER Commercial Fishing CICAN FIE 2 Propulsion 1980 UISD 425 48 1022224 OCEAN HUNTER Commercial Fishing OCEAN FIE 2 Propulsion 1980 UISD 425 48 1022224 OCEAN HUNTER Commercial Fishing OCEAN FIE 2 Propulsion 1980 UISD 425 48 1022224 OCEAN HUNTER Commercial Fishing 2 Propulsion 1980 UISD 425 48 1022224 OCEAN HUNTER Commercial Fishing 2 Propulsion UISD 750 48 102224 OCEAN KING Commercial Fishing 2 Propulsion UISD 750 48 102224 OCEAN KING Commercial Fishing 2 Propulsion UISD 750 48 102224 OCEAN KING Commercial Fishing 2 Propulsion UISD 750 48 102224 OCEAN KING Commercial Fishing 2 Propulsion UISD 750 48 102224 OCEAN KING Commercial Fishing 2 Propulsion 174 UISD 350 48 102224 OCEAN KING Commercial Fishing 2 Propulsion 174 UISD 350 48 102224 OCEAN KING Commercial Fishing 2 Propulsion 174 UISD 350 48 102224 OCEAN KING OCEAN KING Commercial Fishing 2 Propulsion 174 UISD 350 48 102224 OCEAN KING Commercial Fishing 2 Propulsion 174 UISD 350 48 102224 OCEAN KING Commercial Fishing 1 Propulsion 174 UISD 10224 OCEAN KING Commercial Fishing 1 Propulsion 175 UISD 10224 OCEAN KING Commercial Fishing 1 Propulsion 175 UISD 10224 OCEAN KING Commercial Fishing 1 Propulsion 175 UISD 10224 OCEAN KING Co													0.3
1953333 OCEAN HARVESTI Commercial Fishing 2 Peopulsion U.S.D 200 48 50 51 51 51 51 51 51 51			-			•							0.3
2 Propulsion U.S.D 200 48 5 6 6 6 6 6 6 6 6 6			_	TORT ORC					17//				0.3
Sandillary						1							0.3
80K90222 OCEAN HOPE 3 Commercial Fishing 2 Propulsion 1982 UISD 425 48 68 80K90222 OCEAN HOPE 3 Commercial Fishing 3 anxillary 1982 UISD 100 48 62 622244 OCEAN HUNTER Commercial Fishing OCEAN FI 2 Propulsion 1980 UISD 425 48 62 622244 OCEAN HUNTER Commercial Fishing OCEAN FI 2 Propulsion 1980 UISD 425 48 62 622244 OCEAN HUNTER Commercial Fishing OCEAN FI 2 Propulsion 1980 UISD 425 48 62 622244 OCEAN HUNTER Commercial Fishing OCEAN FI 2 Propulsion 1980 UISD 425 48 62 62 62 62 62 62 62 6						•							0.3
8806222 OCEAN HOPE 3 Commercial Fishing 2 Propulsion 1982 ULSD 425 48 622244 OCEAN HUNTER Commercial Fishing OCEAN FI 1 Propulsion 1980 ULSD 425 48 622244 OCEAN HUNTER Commercial Fishing OCEAN FI 1 Propulsion 1980 ULSD 425 48 622244 OCEAN HUNTER Commercial Fishing 3 auxiliary 1980 ULSD 40 48 622240 OCEAN KING Commercial Fishing 3 auxiliary 1180 ULSD 750 48 2591 OCEAN KING Commercial Fishing 3 auxiliary 1180 ULSD 750 48 7616242 OCEAN KING Commercial Fishing 1 Propulsion 1180 ULSD 750 48 7616242 OCEAN LEADER Commercial Fishing 1 Propulsion 1974 ULSD 80 48 7616242 OCEAN MAD Commercial Fishing 2 Propulsion 1978 ULSD 100 48 6 7616244 OCEAN MAD Commercial Fishing 3 auxiliary 1978 ULSD			_						1982				0.3
Sanciary 1920 LIND 100			_			•							0.3
622244 OCEAN HUNTER Commercial Fishing OCEAN FE 2 Propulsion 1980 ULSD 425 48 6 6 6 6 6 6 6 6 6			_			•							0.3
622244 OCEAN HUNTER Commercial Fishing OCEAN FE 2 Propulsion 1980 ULSD 425 48 48 48 48 425 48 48 48 48 48 48 48 4			_	OCEAN FI									0.3
202249 OCEAN HINTER Commercial Fishing CALAN FE Propulsion U.S.D 750 48 C. Carlo KING Commercial Fishing 2 Propulsion U.S.D 750 48 C. Carlo KING Commercial Fishing 2 Propulsion U.S.D 750 48 C. Carlo KING Commercial Fishing 3 auxiliary U.S.D 300 48 C. Carlo KING Commercial Fishing 3 auxiliary U.S.D 300 48 C. Carlo KING Commercial Fishing 1 Propulsion 174 U.S.D 300 48 C. Carlo KING Commercial Fishing 1 Propulsion 174 U.S.D 850 48 C. Carlo KING Commercial Fishing 1 Propulsion 174 U.S.D 850 48 C. Carlo KING Commercial Fishing 1 Propulsion 174 U.S.D 850 48 C. Carlo KING Commercial Fishing 1 Propulsion 174 U.S.D 300 48 C. Carlo KING Commercial Fishing 1 Propulsion 178 U.S.D 1000 48 C. Carlo KING Commercial Fishing 2 Propulsion 178 U.S.D 1000 48 C. Carlo KING Commercial Fishing 3 auxiliary 178 U.S.D 250 48 C. Carlo KING Commercial Fishing 2 Propulsion U.S.D 250 48 C. Carlo KING Commercial Fishing 2 Propulsion U.S.D 250 48 C. Carlo KING Commercial Fishing 2 Propulsion U.S.D 250 48 C. Carlo KING Commercial Fishing 2 Propulsion U.S.D 250 48 C. Carlo KING Commercial Fishing 2 Propulsion U.S.D 250 48 C. Carlo KING Commercial Fishing 2 Propulsion U.S.D 250 48 C. Carlo KING Commercial Fishing 2 Propulsion U.S.D 100 48 C. Carlo KING Commercial Fishing C. Carlo Pie 1 Propulsion U.S.D 100 48 C. Carlo KING Commercial Fishing C. Carlo Pie 1 Propulsion U.S.D 100 48 C. Carlo KING Commercial Fishing C. Carlo Pie 1 Propulsion U.S.D 100													0.3
2591	622324	OCEAN HUNTER							1980	ULSD	100	48	0.3
2591	2591	OCEAN KING	Commercial Fishing			1 Propulsion				ULSD	750	48	0.3
7615624 OCEAN LEADER Commercial Fishing 2 Propulsion 1974 UISD 850 48 C 7615624 OCEAN LEADER Commercial Fishing 2 Propulsion 1978 UISD 330 48 C 7615624 OCEAN LEADER Commercial Fishing 1 Propulsion 1978 UISD 1000 48 C 7615624 OCEAN MAID Commercial Fishing 1 Propulsion 1978 UISD 1000 48 C 7615624 OCEAN MAID Commercial Fishing 2 Propulsion 1978 UISD 1000 48 C 7615624 OCEAN MAID Commercial Fishing 3 auxiliary 1978 UISD 1000 48 C 7615624 OCEAN MAID Commercial Fishing 2 Propulsion 10150 250 48 C 7615624 OCEAN MARAUDI Commercial Fishing 2 Propulsion 10150 250 48 C 7615624 OCEAN MARAUDI Commercial Fishing 2 Propulsion 1984 UISD 100 48 C 767399 OCEAN PEACE Commercial Fishing OCEAN PE 2 Propulsion 1984 UISD 1125 48 C 767399 OCEAN PEACE Commercial Fishing OCEAN PE 2 Propulsion 1984 UISD 1125 48 C 767399 OCEAN PEACE Commercial Fishing OCEAN PE 2 Propulsion 1994 UISD 1125 48 C 767399 OCEAN PEACE Commercial Fishing OCEAN PE 2 Propulsion 1994 UISD 1125 48 C 767399 OCEAN PEACE Commercial Fishing OCEAN PE 2 Propulsion 1994 UISD 1125 48 C 767399 OCEAN PEACE Commercial Fishing OCEAN PE 2 Propulsion 1994 UISD 1125 48 C 767399 OCEAN PEACE Commercial Fishing OCEAN PE 2 Propulsion 1994 UISD 1125 48 C 767399 OCEAN PEARL Commercial Fishing BEBERLE 2 Propulsion 1991 UISD 1410 48 C 767399 OCEAN PEARL Commercial Fishing BEBERLE 2 Propulsion 1991 UISD 1410 48 C 767399 OCEAN PEARL Commercial Fishing BEBERLE 2 Propulsion 1994 UISD 750 48 C 767399 OCEAN PEARL Commercial Fishing BEBERLE 2 Propulsion 1994 UISD 750 48 C 767399 OCEAN PEARL Commercial Fishing PHOENIX 3 auxiliary 1994 UISD 750 48 C 767399 OCEAN PEARL Commercial Fishing OCEAN PEARL Commercial Fishing	2591	OCEAN KING	Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
7613624 OCEAN LEADER Commercial Fishing 2 Propulsion 1974 ULSD \$30 48 C 7613624 OCEAN MAID Commercial Fishing 1 Propulsion 1978 ULSD 1000 48 C 592441 OCEAN MAID Commercial Fishing 2 Propulsion 1978 ULSD 1000 48 C 7803152 OCEAN MARID Commercial Fishing 3 auxiliary 1978 ULSD 900 48 C 7803152 OCEAN MARAUDI- Commercial Fishing 1 Propulsion ULSD 250 48 C 7803152 OCEAN MARAUDI- Commercial Fishing 2 Propulsion ULSD 250 48 C 673399 OCEAN PEACE Commercial Fishing OCEAN PE 1 Propulsion 1984 ULSD 100 48 C 673399 OCEAN PEACE Commercial Fishing EBERLE 2 Propulsion 1984 ULSD 1125 48 C 677399 OCEAN PEACI Commercial Fishing EBERLE 2 Propulsion 1991 ULSD 400 48 C 966130	2591	OCEAN KING	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
7613624 OCEAN LADDR Commercial Fishing 3 auxiliary 1974 ULSD 330 48 C 592441 OCEAN MAID Commercial Fishing 2 Propulsion 1978 ULSD 1000 48 C 592441 OCEAN MAID Commercial Fishing 2 Propulsion 1978 ULSD 1000 48 C 7803152 OCEAN MARAUDE Commercial Fishing 1 Propulsion ULSD 250 48 C 7803152 OCEAN MARAUDE Commercial Fishing 2 Propulsion ULSD 250 48 C 677399 OCEAN PEACE Commercial Fishing OCEAN PE 3 auxiliary ULSD 100 48 C 677399 OCEAN PEACE Commercial Fishing OCEAN PE 2 Propulsion 1984 ULSD 100 48 C 677399 OCEAN PEACE Commercial Fishing CEEAN PE 2 Propulsion 1984 ULSD 100 48 C 677399 OCEAN PEACE Commercial Fishing CEEAN PE 2 Propulsion 190 ULSD 40 48 C 677399 </td <td>7613624</td> <td>OCEAN LEADER</td> <td>Commercial Fishing</td> <td></td> <td></td> <td>1 Propulsion</td> <td></td> <td></td> <td>1974</td> <td>ULSD</td> <td>850</td> <td>48</td> <td>0.3</td>	7613624	OCEAN LEADER	Commercial Fishing			1 Propulsion			1974	ULSD	850	48	0.3
1	7613624	OCEAN LEADER	Commercial Fishing			2 Propulsion			1974	ULSD	850	48	0.3
592441 OCEAN MAID Commercial Fishing 2 Propulsion 1978 ULSD 1000 48 C 7803152 OCEAN MARAUDI Commercial Fishing 1 Propulsion ULSD 250 48 C 7803152 OCEAN MARAUDI Commercial Fishing 2 Propulsion ULSD 250 48 C 7803152 OCEAN MARAUDI Commercial Fishing 2 Propulsion ULSD 250 48 C 677399 OCEAN PEACE Commercial Fishing OCEAN PE 2 Propulsion 1984 ULSD 1125 48 C 677399 OCEAN PEACE Commercial Fishing OCEAN PE 2 Propulsion 1984 ULSD 1125 48 C 677399 OCEAN PEACE Commercial Fishing EBERLE 3 auxiliary 1984 ULSD 100 48 C 966130 OCEAN PEARL Commercial Fishing EBERLE 2 Propulsion 1991 ULSD 410 48 C 296779 OCEAN PHOENIX Commercial Fishing PHOENIX 1 Propulsion 1964 ULSD 750 48 C 296779 OCEAN	7613624	OCEAN LEADER	Commercial Fishing			3 auxiliary			1974	ULSD	330	48	0.3
592441 OCEAN MAID Commercial Fishing 1 Propulsion 1978 UISD 900 48 C 7803152 OCEAN MARAUDI Commercial Fishing 2 Propulsion UISD 250 48 C 7803152 OCEAN MARAUDI Commercial Fishing 2 Propulsion UISD 250 48 C 7803152 OCEAN MARAUDI Commercial Fishing 2 Propulsion UISD 100 48 C 7803152 OCEAN MARAUDI Commercial Fishing OCEAN PE 1 Propulsion 1984 UISD 1125 48 C 77399 OCEAN PEACE Commercial Fishing OCEAN PE 2 Propulsion 1984 UISD 1125 48 C 77399 OCEAN PEACE Commercial Fishing OCEAN PE 2 Propulsion 1984 UISD 1125 48 C 77399 OCEAN PEACE Commercial Fishing OCEAN PE 2 Propulsion 1984 UISD 1125 48 C 77399 OCEAN PEACE Commercial Fishing EBERLE 1 Propulsion 1994 UISD 100 48 C 77399 OCEAN PEARL Commercial Fishing EBERLE 2 Propulsion 1991 UISD 410 48 C 77399 OCEAN PEARL Commercial Fishing EBERLE 2 Propulsion 1991 UISD 410 48 C 77399 OCEAN PEARL Commercial Fishing EBERLE 3 auxiliary 1991 UISD 410 48 C 77399 OCEAN PHOENIX Commercial Fishing EBERLE 3 auxiliary 1991 UISD 410 48 C 77399 OCEAN PHOENIX Commercial Fishing PHOENIX 3 auxiliary 1964 UISD 750 48 C 77399 OCEAN PHOENIX Commercial Fishing PHOENIX 3 auxiliary 1964 UISD 750 48 C 77399 OCEAN PROWLER Commercial Fishing OCEAN PR 2 Propulsion 1944 UISD 750 48 C 77399 OCEAN PROWLER Commercial Fishing OCEAN PR 2 Propulsion 1944 UISD 750 48 C 77399 OCEAN PROWLER Commercial Fishing OCEAN PR 2 Propulsion 1944 UISD 750 48 C 77399 OCEAN PROWLER Commercial Fishing 0 CEAN PR 2 Propulsion 1944 UISD 750 48 C 77399 OCEAN PROWLER Commercial Fishing 0 CEAN PR 2 Propulsion 1944 UISD 750 48 C 77399 OCEAN PROWLER Commercial Fishing 0 CEAN PR 2 Propulsion 1944 UISD 750 48 C 77399 OCEAN PR 2 Propulsion 1944 UISD 750 48 C 773999 OCEAN PR 2 Propulsion 1944 UISD 330 48	592441	OCEAN MAID	Commercial Fishing			1 Propulsion			1978	ULSD	1000	48	0.3
7803152 OCEAN MARAUDE Commercial Fishing 1 Propulsion ULSD 250 48 C 7803152 OCEAN MARAUDE Commercial Fishing 2 Propulsion ULSD 250 48 C 7803152 OCEAN MARAUDE Commercial Fishing OCEAN PE 1 Propulsion 1984 ULSD 1125 48 C 77399 OCEAN PEACE Commercial Fishing OCEAN PE 2 Propulsion 1984 ULSD 1125 48 C 77399 OCEAN PEACE Commercial Fishing OCEAN PE 2 Propulsion 1984 ULSD 1125 48 C 77399 OCEAN PEACE Commercial Fishing OCEAN PE 3 auxiliary 1984 ULSD 1125 48 C 77399 OCEAN PEACE Commercial Fishing OCEAN PE 3 auxiliary 1984 ULSD 100 48 C 77399 OCEAN PEACE Commercial Fishing EBERLE 1 Propulsion 1991 ULSD 410 48 C 77399 OCEAN PEACL Commercial Fishing EBERLE 2 Propulsion 1991 ULSD 410 48 C 77399 OCEAN PEARL Commercial Fishing EBERLE 3 auxiliary 1911 ULSD 100 48 C 77399 OCEAN PHOENIX Commercial Fishing PHOENIX 2 Propulsion 1964 ULSD 750 48 C 77399 OCEAN PHOENIX Commercial Fishing PHOENIX 2 Propulsion 1964 ULSD 750 48 C 77399 OCEAN PHOENIX Commercial Fishing PHOENIX 2 Propulsion 1964 ULSD 750 48 C 77399 OCEAN PROWLER Commercial Fishing PHOENIX 2 Propulsion 1964 ULSD 750 48 C 77399 OCEAN PROWLER Commercial Fishing OCEAN PR 2 Propulsion 1944 ULSD 750 48 C 77399 OCEAN PROWLER Commercial Fishing OCEAN PR 2 Propulsion 1944 ULSD 750 48 C 77399 OCEAN PROWLER Commercial Fishing OCEAN PR 3 auxiliary 1944 ULSD 750 48 C 77399 OCEAN PROWLER Commercial Fishing 2 Propulsion 1944 ULSD 750 48 C 77399 OCEAN PROWLER Commercial Fishing 2 Propulsion 1940 ULSD 750 48 C 77399 OCEAN PROWLER Commercial Fishing 2 Propulsion 1986 ULSD 20 48 C 77399 OCEAN ROYAL Commercial Fishing 2 Propulsion 1986 ULSD 20 48 C 77399 OCEAN ROYAL Commercial Fishing 2 Propulsion 1960 ULSD 100 48 C 77399 OCEAN ROYAL Commercial Fi	592441	OCEAN MAID	Commercial Fishing			2 Propulsion			1978	ULSD	1000	48	0.3
7803152 OCEAN MARAUDE Commercial Fishing 2 Propulsion UISD 250 48 C677399 OCEAN PEACE Commercial Fishing OCEAN PE 1 Propulsion 1984 UISD 1125 48 C677399 OCEAN PEACE Commercial Fishing OCEAN PE 2 Propulsion 1984 UISD 1125 48 C677399 OCEAN PEACE Commercial Fishing OCEAN PE 2 Propulsion 1984 UISD 1125 48 C677399 OCEAN PEACE Commercial Fishing OCEAN PE 2 Propulsion 1984 UISD 1904 1815 1815 1816 181	592441	OCEAN MAID	Commercial Fishing			3 auxiliary			1978	ULSD	900	48	0.3
7803152 OCEAN MARAUDI Commercial Fishing OCEAN PE 1 Propulsion 1984 ULSD 100 48 C677399 OCEAN PEACE Commercial Fishing OCEAN PE 2 Propulsion 1984 ULSD 1125 48 C677399 OCEAN PEACE Commercial Fishing OCEAN PE 3 auxiliary 1984 ULSD 1125 48 C677399 OCEAN PEACE Commercial Fishing OCEAN PE 3 auxiliary 1984 ULSD 900 48 C677399 OCEAN PEACE Commercial Fishing BERLE 1 Propulsion 1991 ULSD 410 48 C677399 OCEAN PEARL Commercial Fishing EBERLE 2 Propulsion 1991 ULSD 410 48 C7 C7 C7 C7 C7 C7 C7 C	7803152	OCEAN MARAUDI	E Commercial Fishing			1 Propulsion				ULSD	250	48	0.3
677399 OCEAN PEACE Commercial Fishing OCEAN PE 1 Propulsion 1984 ULSD 1125 48 0 677399 OCEAN PEACE Commercial Fishing OCEAN PE 2 Propulsion 1984 ULSD 102 48 0 677399 OCEAN PEACE Commercial Fishing EBERLE 1 Propulsion 1991 ULSD 410 48 0 966130 OCEAN PEARL Commercial Fishing EBERLE 2 Propulsion 1991 ULSD 410 48 0 966130 OCEAN PEARL Commercial Fishing BERELE 2 Propulsion 1991 ULSD 100 48 0 966779 OCEAN PHOENIX Commercial Fishing PHOENIX 1 Propulsion 1964 ULSD 750 48 0 296779 OCEAN PHOENIX Commercial Fishing PHOENIX 3 auxiliary 1964 ULSD 750 48 0 296779 OCEAN PHOENIX Commercial Fishing PHOENIX 3 auxiliary 1964 ULSD 750 48 0 632751 OCEAN PROWLER Commercial Fishing PHOENIX 3 auxiliary 1944 ULSD 750 48 0	7803152	OCEAN MARAUDI	E Commercial Fishing			2 Propulsion				ULSD	250	48	0.3
677399 OCEAN PEACE Commercial Fishing OCEAN PE 2 Propulsion 1984 ULSD 125 48 6 677399 OCEAN PEACE Commercial Fishing EBIRLE 1 Propulsion 1991 ULSD 40 48 6 966130 OCEAN PEARL Commercial Fishing EBIRLE 2 Propulsion 1991 ULSD 410 48 6 966130 OCEAN PEARL Commercial Fishing EBIRLE 2 Propulsion 1991 ULSD 410 48 6 296779 OCEAN PHOENIX Commercial Fishing PHOENIX 1 Propulsion 1964 ULSD 750 48 6 296779 OCEAN PHOENIX Commercial Fishing PHOENIX 2 Propulsion 1964 ULSD 750 48 6 296779 OCEAN PHOENIX Commercial Fishing PHOENIX 2 Propulsion 1964 ULSD 750 48 6 296779 OCEAN PROWLER Commercial Fishing PHOENIX 2 Propulsion 1944 ULSD 750 48 6 632751 OCEAN PROWLER Commercial Fishing PMECHAPR 1 Propulsion 1944 ULSD 750 48 6 <tr< td=""><td>7803152</td><td>OCEAN MARAUDI</td><td>E Commercial Fishing</td><td></td><td></td><td>3 auxiliary</td><td></td><td></td><td></td><td>ULSD</td><td>100</td><td>48</td><td>0.3</td></tr<>	7803152	OCEAN MARAUDI	E Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
677399 OCEAN PEACE Commercial Fishing CCEAN PE 3 auxiliary 1984 ULSD 900 48 0 966130 OCEAN PEARL Commercial Fishing EBERLE 1 Propulsion 1991 ULSD 410 48 0 966130 OCEAN PEARL Commercial Fishing EBERLE 2 Propulsion 1991 ULSD 100 48 0 966130 OCEAN PEARL Commercial Fishing EBERLE 3 auxiliary 1991 ULSD 100 48 0 296779 OCEAN PHOENIX Commercial Fishing PHOENIX 2 Propulsion 1964 ULSD 750 48 0 296779 OCEAN PHOENIX Commercial Fishing PHOENIX 3 auxiliary 1964 ULSD 750 48 0 296779 OCEAN PROWLER Commercial Fishing PHOENIX 3 auxiliary 1964 ULSD 750 48 0 302751 OCEAN PROWLER Commercial Fishing OCEAN PR 3 propulsion 1944 ULSD 750 48 0 4521089 Ocean Ranger Commercial Fishing OCEAN PR 3 auxiliary 1944 ULSD 750 48	677399	OCEAN PEACE	Commercial Fishing	OCEAN PE	1	1 Propulsion					1125	48	0.3
966130 OCEAN PEARL Commercial Fishing EBERLE 1 Propulsion 1991 ULSD 410 48 0 966130 OCEAN PEARL Commercial Fishing EBERLE 2 Propulsion 1991 ULSD 100 48 0 296779 OCEAN PHOENIX Commercial Fishing PHOENIX 1 Propulsion 1964 ULSD 750 48 0 296779 OCEAN PHOENIX Commercial Fishing PHOENIX 2 Propulsion 1964 ULSD 750 48 0 296779 OCEAN PHOENIX Commercial Fishing PHOENIX 3 auxiliary 1964 ULSD 750 48 0 632751 OCEAN PROWLER Commercial Fishing PHOENIX 3 auxiliary 1944 ULSD 750 48 0 632751 OCEAN PROWLER Commercial Fishing OCEAN PR 1 Propulsion 1944 ULSD 750 48 0 632751 OCEAN ROWLER Commercial Fishing 2 Propulsion ULSD 750 48 0 7521089 Ocean Ranger Commercial Fishing 2 Propulsion ULSD 750 48 0 7521089 Ocean Royal	677399	OCEAN PEACE				2 Propulsion			1984	ULSD	1125		0.3
966130 OCEAN PEARL Commercial Fishing EBERLE 2 Propulsion 1991 ULSD 410 48 0 966130 OCEAN PEARL Commercial Fishing EBERLE 3 auxiliary 1991 ULSD 100 48 0 296779 OCEAN PHOENIX Commercial Fishing PHOENIX 2 Propulsion 1964 ULSD 750 48 0 296779 OCEAN PHOENIX Commercial Fishing PHOENIX 2 Propulsion 1964 ULSD 750 48 0 632751 OCEAN PROWLER Commercial Fishing OCEAN PR 1 Propulsion 1944 ULSD 750 48 0 632751 OCEAN PROWLER Commercial Fishing OCEAN PR 2 Propulsion 1944 ULSD 750 48 0 632751 OCEAN PROWLER Commercial Fishing OCEAN PR 2 Propulsion 1944 ULSD 750 48 0 7521089 Ocean Ranger Commercial Fishing 1 Propulsion ULSD 750 48 0 7521089 Ocean Royer Commercial Fishing 2 Propulsion ULSD 750 48 0 602279		OCEAN PEACE			!								0.3
966130 OCEAN PEARL Commercial Fishing EBERLE 3 auxiliary 1991 ULSD 100 48 0 296779 OCEAN PHOENIX Commercial Fishing PHOENIX 2 Propulsion 1964 ULSD 750 48 0 296779 OCEAN PHOENIX Commercial Fishing PHOENIX 2 Propulsion 1964 ULSD 750 48 0 296779 OCEAN PHOENIX Commercial Fishing PHOENIX 3 auxiliary 1964 ULSD 330 48 0 632751 OCEAN PROWLER Commercial Fishing OCEAN PR 1 Propulsion 1944 ULSD 750 48 0 632751 OCEAN PROWLER Commercial Fishing OCEAN PR 2 Propulsion 1944 ULSD 750 48 0 7521089 Ocean Ranger Commercial Fishing 2 Propulsion ULSD 750 48 0 7521089 Ocean Ranger Commercial Fishing 2 Propulsion ULSD 750 48 0 7521089 Ocean Royac Commercial Fishing 3 auxiliary ULSD 750 48 0 7521089 Ocean Royac<		OCEAN PEARL	-			•							0.3
296779 OCEAN PHOENIX Commercial Fishing PHOENIX 1 Propulsion 1964 ULSD 750 48 C 296779 OCEAN PHOENIX Commercial Fishing PHOENIX 2 Propulsion 1964 ULSD 750 48 C 296779 OCEAN PHOENIX Commercial Fishing PHOENIX 3 auxiliary 1964 ULSD 330 48 C 296779 OCEAN PHOENIX Commercial Fishing OCEAN PR 1 Propulsion 1944 ULSD 750 48 C 2632751 OCEAN PROWLER Commercial Fishing OCEAN PR 2 Propulsion 1944 ULSD 750 48 C 2632751 OCEAN PROWLER Commercial Fishing OCEAN PR 2 Propulsion 1944 ULSD 750 48 C 2632751 OCEAN PROWLER Commercial Fishing OCEAN PR 2 Propulsion 1944 ULSD 330 48 C 2632751 OCEAN PROWLER Commercial Fishing OCEAN PR 2 Propulsion 1 Propulsion 1 ULSD 750 48 C 27521089 Ocean Ranger Commercial Fishing 2 Propulsion 1 Propulsion 1 ULSD 750 48 C 27521089 Ocean Ranger Commercial Fishing 2 Propulsion 1 Propulsion 1 ULSD 330 48 C 27521089 Ocean Ranger Commercial Fishing 3 auxiliary 1 ULSD 330 48 C 27521089 OCEAN ROYAL Commercial Fishing 1 Propulsion 1 Propulsion 1 1 Prop													0.3
296779 OCEAN PHOENIX Commercial Fishing PHOENIX 2 Propulsion 1964 ULSD 750 48 0 296779 OCEAN PHOENIX Commercial Fishing PHOENIX 3 auxiliary 1964 ULSD 330 48 0 632751 OCEAN PROWLER Commercial Fishing OCEAN PR 1 Propulsion 1944 ULSD 750 48 0 632751 OCEAN PROWLER Commercial Fishing OCEAN PR 2 Propulsion 1944 ULSD 750 48 0 632751 OCEAN PROWLER Commercial Fishing OCEAN PR 2 Propulsion 1944 ULSD 330 48 0 7521089 Ocean Ranger Commercial Fishing 1 Propulsion ULSD 750 48 0 7521089 Ocean Ranger Commercial Fishing 3 auxiliary ULSD 750 48 0 7521089 Ocean Ranger Commercial Fishing Americans Se 1 Propulsion ULSD 30 48 0 7521089 Ocean Royal Commercial Fishing Americans Se 1 Propulsion 1986 ULSD 20 48 0 602279			-										0.3
296779 OCEAN PHOENIX Commercial Fishing OHOENIX 3 auxiliary 1964 ULSD 330 48 C632751 OCEAN PROWLER Commercial Fishing OCEAN PR 1 Propulsion 1944 ULSD 750 48 C632751 OCEAN PROWLER Commercial Fishing OCEAN PR 2 Propulsion 1944 ULSD 750 48 C632751 OCEAN PROWLER Commercial Fishing OCEAN PR 3 auxiliary 1944 ULSD 330 48 C632751 OCEAN PROWLER Commercial Fishing OCEAN PR 3 auxiliary 1944 ULSD 330 48 C632751 OCEAN PROWLER Commercial Fishing OCEAN PR 3 auxiliary 1944 ULSD 330 48 C632751 OCEAN PROWLER Commercial Fishing 2 Propulsion ULSD 750 48 C632751 OCEAN PROWLER Commercial Fishing 2 Propulsion ULSD 750 48 C632751 OCEAN Ranger Commercial Fishing 2 Propulsion ULSD 750 48 C632751 OCEAN Ranger Commercial Fishing 3 auxiliary ULSD 330 48 C632751 OCEAN ROYAL Commercial Fishing 1 Propulsion Wartsila Vasa 12V32 1990 ULSD 6200 48 C602279 OCEAN ROYAL Commercial Fishing 2 Propulsion 1986 ULSD 220 48 C602279 OCEAN ROYAL Commercial Fishing OREGON 1 Propulsion 1986 ULSD 220 48 C602279 OCEAN ROYAL Commercial Fishing OREGON 1 Propulsion 1946 ULSD 300 48 C602279 OCEAN ROYAL Commercial Fishing OREGON 1 Propulsion 1946 ULSD 300 48 C602279 OCEAN ROYAL Commercial Fishing OREGON 1 Propulsion 1946 ULSD 300 48 C602279 OCEAN ROYAL Commercial Fishing OREGON 1 Propulsion 1946 ULSD 300 48 C602279 OCEAN ROYAL Commercial Fishing OREGON 1 Propulsion 1946 ULSD 300 48 C602279 OCEAN ROYAL Commercial Fishing OREGON 1 Propulsion 1946 ULSD 300 48 C602279 OCEAN ROYAL Commercial Fishing OREGON 1 Propulsion 1946 ULSD 300 48 C602279 OCEAN ROYAL Commercial Fishing OREGON 1 Propulsion 1946 ULSD 300 48 C602279 OCEAN ROYAL Commercial Fishing PETERSON 1 Propulsion 1946 ULSD 300 48 C602279 OCEAN ROYAL Commercial Fishing PETERSON 1 Propulsion 1940 ULSD 300 48			_			•							0.3
632751 OCEAN PROWLER Commercial Fishing OCEAN PR 1 Propulsion 1944 ULSD 750 48 632751 OCEAN PROWLER Commercial Fishing OCEAN PR 2 Propulsion 1944 ULSD 750 48 632751 OCEAN PROWLER Commercial Fishing OCEAN PR 3 auxiliary 1944 ULSD 330 48 632751 OCEAN PROWLER Commercial Fishing OCEAN PR 3 auxiliary 1944 ULSD 330 48 632751 OCEAN PROWLER Commercial Fishing 1 Propulsion ULSD 750 48 66 67521089 Ocean Ranger Commercial Fishing 2 Propulsion ULSD 750 48 66 67521089 Ocean Ranger Commercial Fishing 3 auxiliary ULSD 330 48 66 67521089 Ocean Ranger Commercial Fishing 3 auxiliary ULSD 330 48 66 67521089 OCEAN ROYAL Commercial Fishing 2 Propulsion Wartsla Vasa 12V32 1990 ULSD 6200 48 66 6752109 OCEAN ROYAL Commercial Fishing 2 Propulsion 1986 ULSD 220 48 67 67 67 67 67 67 67 6			_			•							0.3
G32751 OCEAN PROWLER Commercial Fishing OCEAN PR 2 Propulsion 1944 ULSD 750 48 632751 OCEAN PROWLER Commercial Fishing OCEAN PR 3 auxiliary 1944 ULSD 330 48 632751 OCEAN PROWLER Commercial Fishing 1 Propulsion ULSD 750 48 632751 OCEAN PROWLER Commercial Fishing 2 Propulsion ULSD 750 48 632751 OCEAN Ranger Commercial Fishing 2 Propulsion ULSD 750 48 632751 OCEAN Ranger Commercial Fishing 3 auxiliary ULSD 330 48 632751 OCEAN ROYAL Commercial Fishing American Se 1 Propulsion Wartsila Vasa 12V32 1990 ULSD 6200 48 63279 OCEAN ROYAL Commercial Fishing 1 Propulsion ULSD 1986 ULSD 220 48 63279 OCEAN ROYAL Commercial Fishing 2 Propulsion 1986 ULSD 1986 ULSD 220 48 63279 OCEAN ROYAL Commercial Fishing OREGON 1 Propulsion 1986 ULSD 100 48 63279 OCEAN ROYAL Commercial Fishing OREGON 1 Propulsion 1986 ULSD 100 48 63279 OCEAN ROYAL Commercial Fishing OREGON 1 Propulsion 1946 ULSD 300 48 63279 OCEAN ROYAL Commercial Fishing OREGON 1 Propulsion 1946 ULSD 300 48 63279 OCEAN ROYAL Commercial Fishing OREGON 1 Propulsion 1946 ULSD 300 48 63279 OCEAN ROYAL Commercial Fishing OREGON 2 Propulsion 1946 ULSD 300 48 63279 OCEAN ROYAL Commercial Fishing OREGON 3 auxiliary 1946 ULSD 300 48 63279 OCEAN ROYAL Commercial Fishing OREGON 3 auxiliary 1946 ULSD 300 48 63279 OCEAN ROYAL Commercial Fishing PETERSON 1 Propulsion 1949 ULSD 300 48 63279 OCEAN ROYAL Commercial Fishing PETERSON 2 Propulsion 1949 ULSD 300 48 63279 OCEAN ROYAL Commercial Fishing PETERSON 3 auxiliary 1949 ULSD 300 48 63279 OCEAN ROYAL Commercial Fishing PETERSON 3 auxiliary 1949 ULSD 300 48 63279 OCEAN ROYAL Commercial Fishing PETERSON 3 auxiliary 1949 ULSD 300 48 63279 OCEAN ROYAL Commercial Fishing PETERSON 3 auxiliary 1949 ULSD 300 48 63279 OCEAN RO													0.3
632751 OCEAN PROWLER Commercial Fishing OCEAN PR 3 auxiliary 1944 ULSD 330 48 0 7521089 Ocean Ranger Commercial Fishing 1 Propulsion ULSD 750 48 0 7521089 Ocean Ranger Commercial Fishing 2 Propulsion ULSD 750 48 0 7521089 Ocean Ranger Commercial Fishing 3 auxiliary ULSD 330 48 0 7521089 Ocean Rover Commercial Fishing 1 Propulsion Warstila Vasa 12V32 1990 ULSD 6200 48 0 602279 OCEAN ROYAL Commercial Fishing 1 Propulsion 1986 ULSD 220 48 0 602279 OCEAN ROYAL Commercial Fishing OREGON I 1 Propulsion 1986 ULSD 100 48 0 251138 OREGON Commercial Fishing OREGON I 1 Propulsion 1946 ULSD 300 48 0 251138 OREGON Commercial Fishing OREGON I 1 Propulsion 1946 ULSD 300						•							0.3
7521089 Ocean Ranger Commercial Fishing 1 Propulsion ULSD 750 48 C 7521089 Ocean Ranger Commercial Fishing 2 Propulsion ULSD 750 48 C 7521089 Ocean Ranger Commercial Fishing 3 auxiliary ULSD 330 48 C 7521080 Ocean Ranger Commercial Fishing 1 Propulsion Wartsila Vasa 12V32 1990 ULSD 600 48 C 602279 OCEAN ROYAL Commercial Fishing 2 Propulsion 1986 ULSD 220 48 C 602279 OCEAN ROYAL Commercial Fishing 2 Propulsion 1986 ULSD 20 48 C 602279 OCEAN ROYAL Commercial Fishing OREGON I 1 Propulsion 1986 ULSD 20 48 C 251138 OREGON Commercial Fishing OREGON I 1 Propulsion 1946 ULSD 300 48 C 251138 OREGON Commercial Fishing OREGON I 2 Propulsion ULSD 300			U										0.3
7521089 Ocean Ranger Commercial Fishing 2 Propulsion ULSD 750 48 Commercial Fishing 7521089 Ocean Ranger Commercial Fishing 3 auxiliary ULSD 330 48 Commercial Fishing 7303968 Ocean Rover Commercial Fishing American Se 1 Propulsion Vasa 12V32 1990 ULSD 600 48 Commercial Fishing 602279 OCEAN ROYAL Commercial Fishing 2 Propulsion 1986 ULSD 20 48 Commercial Fishing 602279 OCEAN ROYAL Commercial Fishing OREGON I 1 Propulsion 1986 ULSD 100 48 Commercial Fishing OREGON I 1 Propulsion 1946 ULSD 300 48 Commercial Fishing OREGON I 2 Propulsion 1946 ULSD 300 48 Commercial Fishing OREGON I 2 Propulsion 1946 ULSD 300 48 Commercial Fishing OREGON I 2 Propulsion 1946 ULSD 300 48 Commercial Fishing OREGON I 2 Propulsion 1946 ULSD 300 48 Commercial Fishing OREGON I 2 Propulsion 1946 ULSD 300			_	OCEAN PR					1944				0.3
7521089 Ocean Ranger Commercial Fishing 3 auxiliary ULSD 330 48 C 7303968 Ocean Rover Commercial Fishing American Se 1 Propulsion 1 990 ULSD 620 48 6 602279 OCEAN ROYAL Commercial Fishing 1 Propulsion 1986 ULSD 220 48 6 602279 OCEAN ROYAL Commercial Fishing 2 Propulsion 1986 ULSD 220 48 6 602279 OCEAN ROYAL Commercial Fishing 3 auxiliary 1986 ULSD 100 48 6 251138 OREGON Commercial Fishing OREGON I 1 Propulsion 1946 ULSD 300 48 6 251138 OREGON Commercial Fishing OREGON I 2 Propulsion 1946 ULSD 300 48 6 251138 OREGON Commercial Fishing OREGON I 2 Propulsion 1946 ULSD 300 48 6 251138 OREGON Commercial Fishing OREGON I			_										0.3
7303968 Ocean Rover Commercial Fishing American Se 1 Propulsion Wartsila Vasa 12V32 1990 ULSD 6200 48 602279 602279 OCEAN ROYAL Commercial Fishing 2 Propulsion 1986 ULSD 220 48 602279 OCEAN ROYAL Commercial Fishing 2 Propulsion 1986 ULSD 120 48 602279 OCEAN ROYAL Commercial Fishing OREGON I 1 Propulsion 1986 ULSD 100 48 60 251138 OREGON Commercial Fishing OREGON I 2 Propulsion 1946 ULSD 300 48 60 251138 OREGON Commercial Fishing OREGON I 2 Propulsion 1946 ULSD 300 48 60 251138 OREGON Commercial Fishing OREGON I 3 auxiliary 1946 ULSD 300 48 60 9158173 OSPREY 1 Commercial Fishing 1 Propulsion ULSD 750 48 60 9158173 OSPREY 1 Commercial Fishing PETERSON 1 Propulsion 1969 ULSD 70 <			_			•							0.3
602279 OCEAN ROYAL Commercial Fishing 1 Propulsion 1986 ULSD 220 48 60 602279 OCEAN ROYAL Commercial Fishing 2 Propulsion 1986 ULSD 220 48 60 602279 OCEAN ROYAL Commercial Fishing 3 auxiliary 1986 ULSD 100 48 60 251138 OREGON Commercial Fishing OREGON I 1 Propulsion 1946 ULSD 300 48 60 251138 OREGON Commercial Fishing OREGON I 2 Propulsion 1946 ULSD 300 48 60 251138 OREGON Commercial Fishing OREGON I 3 auxiliary 1946 ULSD 300 48 60 9158173 OSPREY 1 Commercial Fishing 1 Propulsion ULSD 750 48 60 9158173 OSPREY 1 Commercial Fishing PETERSON 1 Propulsion ULSD 750 48 60 9158173 OSPREY 1 Commercial Fishing PETERSON 1 Propulsion 1969 ULSD 100 48 60 <td></td> <td>O</td> <td>_</td> <td>A</td> <td></td> <td></td> <td>W/a ata:1a</td> <td>V 12V/22</td> <td>1000</td> <td></td> <td></td> <td></td> <td></td>		O	_	A			W/a ata:1a	V 12V/22	1000				
602279 OCEAN ROYAL Commercial Fishing 2 Propulsion 1986 ULSD 220 48 60 602279 OCEAN ROYAL Commercial Fishing 3 auxiliary 1986 ULSD 100 48 60 251138 OREGON Commercial Fishing OREGON I 1 Propulsion 1946 ULSD 300 48 60 251138 OREGON Commercial Fishing OREGON I 2 Propulsion 1946 ULSD 300 48 60 251138 OREGON Commercial Fishing OREGON I 3 auxiliary 1946 ULSD 300 48 60 251138 OREGON Commercial Fishing OREGON I 3 auxiliary 1946 ULSD 100 48 60 9158173 OSPREY 1 Commercial Fishing 2 Propulsion ULSD 750 48 60 9158173 OSPREY 1 Commercial Fishing PETERSON 1 Propulsion ULSD 330 48 60 518937 PACIFIC CHALLEN Commercial Fishing PETERSON 1 Propulsion 1969 ULSD 1000 48 60 <					;	1	wartsha	v asa 12 v 32					0.3
602279 OCEAN ROYAL Commercial Fishing 3 auxiliary 1986 ULSD 100 48 0 251138 OREGON Commercial Fishing OREGON I 1 Propulsion 1946 ULSD 300 48 0 251138 OREGON Commercial Fishing OREGON I 2 Propulsion 1946 ULSD 300 48 0 251138 OREGON Commercial Fishing OREGON I 3 auxiliary 1946 ULSD 100 48 0 9158173 OSPREY I Commercial Fishing 1 Propulsion ULSD 750 48 0 9158173 OSPREY I Commercial Fishing 2 Propulsion ULSD 750 48 0 9158173 OSPREY I Commercial Fishing 2 Propulsion ULSD 750 48 0 9158173 OSPREY I Commercial Fishing PETERSON 1 Propulsion 1969 ULSD 330 48 0 518937 PACIFIC CHALLEN Commercial Fishing PETERSON 2 Propulsion 1969 ULSD 1000 48 0 67823						•							0.3
251138 OREGON Commercial Fishing OREGON I 1 Propulsion 1946 ULSD 300 48 C 251138 OREGON Commercial Fishing OREGON I 2 Propulsion 1946 ULSD 300 48 C 251138 OREGON Commercial Fishing OREGON I 3 auxiliary 1946 ULSD 100 48 C 9158173 OSPREY 1 Commercial Fishing 2 Propulsion ULSD 750 48 C 9158173 OSPREY 1 Commercial Fishing 2 Propulsion ULSD 750 48 C 9158173 OSPREY 1 Commercial Fishing 2 Propulsion ULSD 30 48 C 9158173 OSPREY 1 Commercial Fishing 2 Propulsion ULSD 330 48 C 518937 PACIFIC CHALLEN Commercial Fishing PETERSON 1 Propulsion 1969 ULSD 1000 48 C 678237 PACIFIC EXPLORE Commercial Fishing B & N FISH 1 Propulsion 1984 ULSD 900 48 C 678237 <			U			•							0.3
251138 OREGON Commercial Fishing OREGON I 2 Propulsion 1946 ULSD 300 48 0 251138 OREGON Commercial Fishing OREGON I 3 auxiliary 1946 ULSD 100 48 0 9158173 OSPREY 1 Commercial Fishing 1 Propulsion ULSD 750 48 0 9158173 OSPREY 1 Commercial Fishing 2 Propulsion ULSD 750 48 0 9158173 OSPREY 1 Commercial Fishing 2 Propulsion ULSD 330 48 0 9158173 OSPREY 1 Commercial Fishing 3 auxiliary ULSD 330 48 0 9158173 OSPREY 1 Commercial Fishing PETERSON 1 Propulsion 1969 ULSD 300 48 0 518937 PACIFIC CHALLEN Commercial Fishing PETERSON 2 Propulsion 1969 ULSD 900 48 0 518937 PACIFIC EXPLORE Commercial Fishing B & N FISH 1 Propulsion 1984 ULSD 900 48 0 678237				OREGONI	Į.								0.3
251138 OREGON Commercial Fishing OREGON I 3 auxiliary 1946 ULSD 100 48 0 9158173 OSPREY 1 Commercial Fishing 1 Propulsion ULSD 750 48 0 9158173 OSPREY 1 Commercial Fishing 2 Propulsion ULSD 750 48 0 9158173 OSPREY 1 Commercial Fishing 3 auxiliary ULSD 330 48 0 518937 PACIFIC CHALLEN Commercial Fishing PETERSON 1 Propulsion 1969 ULSD 1000 48 0 518937 PACIFIC CHALLEN Commercial Fishing PETERSON 2 Propulsion 1969 ULSD 1000 48 0 678237 PACIFIC EXPLORE Commercial Fishing B & N FISH 1 Propulsion 1984 ULSD 900 48 0 678237 PACIFIC EXPLORE Commercial Fishing B & N FISH 2 Propulsion 1984 ULSD 900 48 0 678237 PACIFIC EXPLORE Commercial Fishing B & N FISH 3 auxiliary 1984 ULSD 930 48 0 561934 PACIFI													0.3
9158173 OSPREY 1 Commercial Fishing 1 Propulsion ULSD 750 48 0 9158173 OSPREY 1 Commercial Fishing 2 Propulsion ULSD 750 48 0 9158173 OSPREY 1 Commercial Fishing 3 auxiliary ULSD 330 48 0 518937 PACIFIC CHALLEN Commercial Fishing PETERSON 1 Propulsion 1969 ULSD 1000 48 0 518937 PACIFIC CHALLEN Commercial Fishing PETERSON 2 Propulsion 1969 ULSD 900 48 0 518937 PACIFIC EXPLORE Commercial Fishing B & N FISH 1 Propulsion 1969 ULSD 900 48 0 678237 PACIFIC EXPLORE Commercial Fishing B & N FISH 1 Propulsion 1984 ULSD 900 48 0 678237 PACIFIC EXPLORE Commercial Fishing B & N FISH 2 Propulsion 1984 ULSD 330 48 0 561934 PACIFIC FURY Commercial Fishing FURY GRO 1 Propulsion 1974 ULSD 750 48 0 561934 <td< td=""><td></td><td></td><td>-</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.3</td></td<>			-			1							0.3
9158173 OSPREY 1 Commercial Fishing 2 Propulsion ULSD 750 48 0 9158173 OSPREY 1 Commercial Fishing 3 auxiliary ULSD 330 48 0 518937 PACIFIC CHALLEN Commercial Fishing PETERSON 1 Propulsion 1969 ULSD 1000 48 0 518937 PACIFIC CHALLEN Commercial Fishing PETERSON 2 Propulsion 1969 ULSD 900 48 0 518937 PACIFIC EXPLORE Commercial Fishing B & N FISH 1 Propulsion 1969 ULSD 900 48 0 678237 PACIFIC EXPLORE Commercial Fishing B & N FISH 1 Propulsion 1984 ULSD 900 48 0 678237 PACIFIC EXPLORE Commercial Fishing B & N FISH 2 Propulsion 1984 ULSD 900 48 0 678237 PACIFIC EXPLORE Commercial Fishing B & N FISH 3 auxiliary 1984 ULSD 330 48 0 561934 PACIFIC FURY Commercial Fishing FURY GRO 1 Propulsion 1974 ULSD 750 48 0 561934			_						1740				0.3
9158173 OSPREY 1 Commercial Fishing 3 auxiliary ULSD 330 48 0 518937 PACIFIC CHALLEN Commercial Fishing PETERSON 1 Propulsion 1969 ULSD 1000 48 0 518937 PACIFIC CHALLEN Commercial Fishing PETERSON 2 Propulsion 1969 ULSD 1000 48 0 518937 PACIFIC CHALLEN Commercial Fishing PETERSON 3 auxiliary 1969 ULSD 900 48 0 678237 PACIFIC EXPLORE Commercial Fishing B & N FISH 1 Propulsion 1984 ULSD 900 48 0 678237 PACIFIC EXPLORE Commercial Fishing B & N FISH 2 Propulsion 1984 ULSD 900 48 0 678237 PACIFIC EXPLORE Commercial Fishing B & N FISH 3 auxiliary 1984 ULSD 330 48 0 678237 PACIFIC FURY Commercial Fishing FURY GRO 1 Propulsion 1974 ULSD 750 48 0 561934 PACIFIC FURY Commercial Fishing FURY GRO 2 Propulsion 1974 ULSD 750 48 0 5619			_			1							0.3
518937PACIFIC CHALLEN Commercial Fishing PETERSON1 Propulsion1969 ULSD100048C518937PACIFIC CHALLEN Commercial Fishing PETERSON2 Propulsion1969 ULSD100048C518937PACIFIC CHALLEN Commercial Fishing PETERSON3 auxiliary1969 ULSD90048C678237PACIFIC EXPLORE Commercial Fishing B & N FISH1 Propulsion1984 ULSD90048C678237PACIFIC EXPLORE Commercial Fishing B & N FISH2 Propulsion1984 ULSD90048C678237PACIFIC EXPLORE Commercial Fishing B & N FISH3 auxiliary1984 ULSD33048C678237PACIFIC EXPLORE Commercial Fishing FURY GRO1 Propulsion1974 ULSD75048C561934PACIFIC FURYCommercial Fishing FURY GRO2 Propulsion1974 ULSD75048C561934PACIFIC FURYCommercial Fishing FURY GRO3 auxiliary1974 ULSD75048C561934PACIFIC GLACIER Commercial Fishing GLACIER I1 Propulsion1988 ULSD33048C933627PACIFIC GLACIER Commercial Fishing GLACIER I1 Propulsion1988 ULSD330096C933627PACIFIC GLACIER Commercial Fishing GLACIER I2 Propulsion1988 ULSD330096C			_										0.3
518937 PACIFIC CHALLEN Commercial Fishing PETERSON 2 Propulsion 1969 ULSD 1000 48 0 518937 PACIFIC CHALLEN Commercial Fishing PETERSON 3 auxiliary 1969 ULSD 900 48 0 678237 PACIFIC EXPLORE Commercial Fishing B & N FISH 1 Propulsion 1984 ULSD 900 48 0 678237 PACIFIC EXPLORE Commercial Fishing B & N FISH 2 Propulsion 1984 ULSD 900 48 0 678237 PACIFIC EXPLORE Commercial Fishing B & N FISH 3 auxiliary 1984 ULSD 330 48 0 561934 PACIFIC FURY Commercial Fishing FURY GRO 1 Propulsion 1974 ULSD 750 48 0 561934 PACIFIC FURY Commercial Fishing FURY GRO 2 Propulsion 1974 ULSD 750 48 0 561934 PACIFIC FURY Commercial Fishing FURY GRO 3 auxiliary 1974 ULSD 330 48 0 933627 PACIFIC GLACIER Commercial Fishing GLACIER F 1 Propulsion 1988 ULSD 3300 96 0 <tr< td=""><td></td><td></td><td></td><td>PETERSON</td><td></td><td></td><td></td><td></td><td>1969</td><td></td><td></td><td></td><td>0.3</td></tr<>				PETERSON					1969				0.3
518937 PACIFIC CHALLEN Commercial Fishing PETERSON 3 auxiliary 1969 ULSD 900 48 0 678237 PACIFIC EXPLORE Commercial Fishing B & N FISH 1 Propulsion 1984 ULSD 900 48 0 678237 PACIFIC EXPLORE Commercial Fishing B & N FISH 2 Propulsion 1984 ULSD 900 48 0 678237 PACIFIC EXPLORE Commercial Fishing B & N FISH 3 auxiliary 1984 ULSD 330 48 0 561934 PACIFIC FURY Commercial Fishing FURY GRO 1 Propulsion 1974 ULSD 750 48 0 561934 PACIFIC FURY Commercial Fishing FURY GRO 2 Propulsion 1974 ULSD 750 48 0 561934 PACIFIC GLACIER Commercial Fishing FURY GRO 3 auxiliary 1974 ULSD 330 48 0 933627 PACIFIC GLACIER Commercial Fishing GLACIER I 1 Propulsion 1988 ULSD 3300 96 0 933627 PACIFIC GLACIER Commercial Fishing GLACIER I 2 Propulsion 1988 ULSD 3300 96 0			_			1							0.3
678237 PACIFIC EXPLORE Commercial Fishing B & N FISH 1 Propulsion 1984 ULSD 900 48 60 678237 PACIFIC EXPLORE Commercial Fishing B & N FISH 2 Propulsion 1984 ULSD 900 48 60 678237 PACIFIC EXPLORE Commercial Fishing B & N FISH 3 auxiliary 1984 ULSD 330 48 60 561934 PACIFIC FURY Commercial Fishing FURY GRO 1 Propulsion 1974 ULSD 750 48 60 561934 PACIFIC FURY Commercial Fishing FURY GRO 2 Propulsion 1974 ULSD 750 48 60 561934 PACIFIC FURY Commercial Fishing FURY GRO 3 auxiliary 1974 ULSD 330 48 60 933627 PACIFIC GLACIER Commercial Fishing GLACIER I 1 Propulsion 1988 ULSD 3300 96 60 933627 PACIFIC GLACIER Commercial Fishing GLACIER I 2 Propulsion 1988 ULSD 3300 96 60			_										0.3
678237 PACIFIC EXPLORE Commercial Fishing B & N FISH 2 Propulsion 1984 ULSD 900 48 0 678237 PACIFIC EXPLORE Commercial Fishing B & N FISH 3 auxiliary 1984 ULSD 330 48 0 561934 PACIFIC FURY Commercial Fishing FURY GRO 1 Propulsion 1974 ULSD 750 48 0 561934 PACIFIC FURY Commercial Fishing FURY GRO 2 Propulsion 1974 ULSD 750 48 0 561934 PACIFIC FURY Commercial Fishing FURY GRO 3 auxiliary 1974 ULSD 330 48 0 933627 PACIFIC GLACIER Commercial Fishing GLACIER I 1 Propulsion 1988 ULSD 3300 96 0 933627 PACIFIC GLACIER Commercial Fishing GLACIER I 2 Propulsion 1988 ULSD 3300 96 0													0.3
678237 PACIFIC EXPLORE Commercial Fishing B & N FISH 3 auxiliary 1984 ULSD 330 48 6 561934 PACIFIC FURY Commercial Fishing FURY GRO 1 Propulsion 1974 ULSD 750 48 6 561934 PACIFIC FURY Commercial Fishing FURY GRO 2 Propulsion 1974 ULSD 750 48 6 561934 PACIFIC FURY Commercial Fishing FURY GRO 3 auxiliary 1974 ULSD 330 48 6 933627 PACIFIC GLACIER Commercial Fishing GLACIER I 1 Propulsion 1988 ULSD 3300 96 6 933627 PACIFIC GLACIER Commercial Fishing GLACIER I 2 Propulsion 1988 ULSD 3300 96 6			_			•							0.3
561934PACIFIC FURYCommercial Fishing FURY GRO1 Propulsion1974 ULSD750480561934PACIFIC FURYCommercial Fishing FURY GRO2 Propulsion1974 ULSD750480561934PACIFIC FURYCommercial Fishing FURY GRO3 auxiliary1974 ULSD330480933627PACIFIC GLACIER Commercial Fishing GLACIER I1 Propulsion1988 ULSD3300960933627PACIFIC GLACIER Commercial Fishing GLACIER I2 Propulsion1988 ULSD3300960													0.3
561934PACIFIC FURYCommercial Fishing FURY GRO2 Propulsion1974 ULSD750480561934PACIFIC FURYCommercial Fishing FURY GRO3 auxiliary1974 ULSD330480933627PACIFIC GLACIER Commercial Fishing GLACIER I1 Propulsion1988 ULSD3300960933627PACIFIC GLACIER Commercial Fishing GLACIER I2 Propulsion1988 ULSD3300960			-										0.3
561934 PACIFIC FURY Commercial Fishing FURY GRO 3 auxiliary 1974 ULSD 330 48 0 933627 PACIFIC GLACIER Commercial Fishing GLACIER I 1 Propulsion 1988 ULSD 3300 96 0 933627 PACIFIC GLACIER Commercial Fishing GLACIER I 2 Propulsion 1988 ULSD 3300 96 0			_			•							0.3
933627PACIFIC GLACIER Commercial Fishing GLACIER I1 Propulsion1988 ULSD3300960933627PACIFIC GLACIER Commercial Fishing GLACIER I2 Propulsion1988 ULSD3300960													0.3
933627 PACIFIC GLACIER Commercial Fishing GLACIER F 2 Propulsion 1988 ULSD 3300 96			-										0.3
			_			•							0.3
	933627		_			3 auxiliary					900		0.3

				Engine	e							
Vessel ID	Vessel Name	Туре	Owner Name	ID User	Engine Type	Engine MFR	Engine Model	Engine Year	Fuel	HP	Annual Hours	Load
5268231	PACIFIC HARVEST	_			1 Propulsion				ULSD	750		0.3
5268231	PACIFIC HARVEST	_			2 Propulsion				ULSD	750	48	0.3
5268231	PACIFIC HARVEST	_			3 auxiliary				ULSD	330		0.3
92105	PACIFIC LAD 1	Commercial Fishing			1 Propulsion				ULSD	750		0.3
92105	PACIFIC LAD 1	Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
92105	PACIFIC LAD 1	Commercial Fishing			3 auxiliary			4.070	ULSD	330	48	0.3
598959	PACIFIC MAIDEN				1 Propulsion				ULSD	350	48	0.3
598959 598959	PACIFIC MAIDEN	_			2 Propulsion				ULSD ULSD	350 100	48 48	0.3
560501	PACIFIC MAIDEN	Commercial Fishing			3 auxiliary 1 Propulsion				ULSD	425	48	0.3
560501		Commercial Fishing			2 Propulsion				ULSD	425	48	0.3
560501		Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
5268308	PACIFIC OCEAN	Commercial Fishing			1 Propulsion			17/4	ULSD	750	48	0.3
5268308	PACIFIC OCEAN	Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
5268308	PACIFIC OCEAN	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
697280	PACIFIC PRINCE	Commercial Fishing			1 Propulsion			1986	ULSD	1000	48	0.3
697280	PACIFIC PRINCE	Commercial Fishing			2 Propulsion				ULSD	1000	48	0.3
697280	PACIFIC PRINCE	Commercial Fishing			3 auxiliary				ULSD	900	48	0.3
679774	PACIFIC QUEEN	Commercial Fishing			1 Propulsion				ULSD	550	48	0.3
679774	PACIFIC QUEEN	Commercial Fishing			2 auxiliary				ULSD	330	48	0.3
8124230	PACIFIC SOUNDE	_			1 Propulsion			1977	ULSD	150	48	0.3
8124230	PACIFIC SOUNDE	_			2 auxiliary				ULSD	100	48	0.3
7742358	PACIFIC STAR	Commercial Fishing			1 Propulsion			1974	ULSD	1500	48	0.3
7742358	PACIFIC STAR	Commercial Fishing			2 Propulsion			1974	ULSD	1500	48	0.3
7742358	PACIFIC STAR	Commercial Fishing			3 auxiliary			1974	ULSD	330	48	0.3
555058	PACIFIC VIKING	Commercial Fishing	TRIDENT S		1 Propulsion	CAT	3512	1988	ULSD	1300	48	0.3
555058	PACIFIC VIKING	Commercial Fishing	TRIDENT S		2 auxiliary	CAT	3406	1992	ULSD	450	48	0.3
555058	PACIFIC VIKING	Commercial Fishing			3 auxiliary	CAT	3406		ULSD	450	48	0.3
536161	PAPADO 2	Commercial Fishing			1 Propulsion				ULSD	1125	48	0.3
536161	PAPADO 2	Commercial Fishing			2 auxiliary				ULSD	900	48	0.3
7437630	PARAGON	Commercial Fishing			1 Propulsion				ULSD	1150	48	0.3
7437630	PARAGON	Commercial Fishing			2 auxiliary				ULSD	900	48	0.3
597612	PATRICIA LEE	Commercial Fishing			1 Propulsion			1978	ULSD	800	48	0.3
597612	PATRICIA LEE	Commercial Fishing			2 Propulsion			1978	ULSD	800	48	0.3
597612	PATRICIA LEE	Commercial Fishing			3 auxiliary			1978	ULSD	330	48	0.3
597532	PAVLOF	Commercial Fishing	PAVLOF FI		1 Propulsion			1979	ULSD	660	48	0.3
597532	PAVLOF	Commercial Fishing	PAVLOF FI		2 Propulsion			1979	ULSD	660	48	0.3
597532	PAVLOF	Commercial Fishing	PAVLOF FI		3 auxiliary			1979	ULSD	100	48	0.3
6708484	PEGGY JO	Commercial Fishing			1 Propulsion			1966	ULSD	550	48	0.3
6708484	PEGGY JO	Commercial Fishing			2 Propulsion				ULSD	550		0.3
6708484	PEGGY JO	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
982610	PERSEVERANCE	Commercial Fishing			1 Propulsion				ULSD	350	48	0.3
982610	PERSEVERANCE	Commercial Fishing			2 Propulsion				ULSD	350	48	0.3
982610	PERSEVERANCE	Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
1075512	PINNACLE	Commercial Fishing			1 Propulsion				ULSD	1000	48	0.3
1075512	PINNACLE	Commercial Fishing			2 Propulsion				ULSD	1000	48	0.3
1075512	PINNACLE	Commercial Fishing			3 auxiliary				ULSD	900		0.3
609940	POLAR LADY	Commercial Fishing			1 Propulsion				ULSD	325	48	0.3
609940	POLAR LADY	Commercial Fishing			2 Propulsion			1979	ULSD	325	48	0.3
523613	POLAR PRINCE	Commercial Fishing			1 Propulsion				ULSD	750	48	0.3
523613	POLAR PRINCE	Commercial Fishing			2 Propulsion			4.070	ULSD	750		0.3
609940	POLAR PRINCE	Commercial Fishing			3 auxiliary			19/9	ULSD	100		0.3
523613	POLAR QUEEN	Commercial Fishing			3 auxiliary			1070	ULSD	330		0.3
589317 589317	POLAR SEA POLAR SEA	Commercial Fishing Commercial Fishing			1 Propulsion 2 Propulsion				ULSD ULSD	425 425	48 48	0.3
589317		Commercial Fishing			3 auxiliary				ULSD			0.3
210960	POLAR SEA POLARIS	Commercial Fishing			1 Propulsion			19/0	ULSD	100 175	48	0.3
210960	POLARIS	Commercial Fishing			2 Propulsion				ULSD	175	48	0.3
210960	POLARIS	Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
293151	PRIBILOF	Commercial Fishing			1 Propulsion			1054	ULSD	750		0.3
293151	PRIBILOF	Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
293151	PRIBILOF	Commercial Fishing			3 auxiliary				ULSD	330		0.3
8016524	PROWLER	Commercial Fishing	-		1 Propulsion			1734	ULSD	750		0.3
8016524	PROWLER	Commercial Fishing			2 Propulsion				ULSD	750		0.3
8016524	PROWLER	Commercial Fishing			3 auxiliary				ULSD	330		0.3
394194	QUEENS REACH	Commercial Fishing			1 Propulsion				ULSD	750		0.3
394194	QUEENS REACH	Commercial Fishing			2 Propulsion				ULSD	750		0.3
U/ 11/T	Zerra to krateri	Commercial i forming			- 110puision					750	70	0.5

				Engine	2							
Vessel ID	Vessel Name	**	Owner Name	ID User	Engine Type	Engine MFR	Engine Model	Engine Year	Fuel			Load
394194	QUEENS REACH	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
604314	QUEST	Commercial Fishing			1 Propulsion				ULSD	1000	48	0.3
604314	QUEST	Commercial Fishing			2 Propulsion				ULSD	1000	48	0.3
604314	QUEST	Commercial Fishing	DAINIED IN		3 auxiliary				ULSD	330	48	0.3
538431 538431	RAINIER RAINIER	Commercial Fishing Commercial Fishing			1 Propulsion 2 Propulsion				ULSD ULSD	425 425	48 48	0.3 0.3
538431	RAINIER	Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
8856259	RAMBLIN ROSE	Commercial Fishing	KAIINEK II		1 Propulsion				ULSD	350	48	0.3
8856259	RAMBLIN ROSE	Commercial Fishing			2 Propulsion				ULSD	350	48	0.3
8856259	RAMBLIN ROSE	Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
629499	RAVEN	Commercial Fishing			1 Propulsion				ULSD	175	48	0.3
629499	RAVEN	Commercial Fishing			2 Propulsion				ULSD	175	48	0.3
629499	RAVEN	Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
697637	REBECCA IRENE	Commercial Fishing	REBECCA		1 Propulsion				ULSD	900		0.3
697637	REBECCA IRENE	Commercial Fishing			2 Propulsion				ULSD	900	48	0.3
697637	REBECCA IRENE	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
319724	RED SKY 1	Commercial Fishing			1 Propulsion				ULSD	150		0.3
319724	RED SKY 1	Commercial Fishing			2 Propulsion				ULSD	150	48	0.3
319724	RED SKY 1	Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
516256	RELIANCE	Commercial Fishing	RELIANCE	E	1 Propulsion			1968	ULSD	725	48	0.3
516256	RELIANCE	Commercial Fishing	RELIANCE	E	2 Propulsion			1968	ULSD	725	48	0.3
516256	RELIANCE	Commercial Fishing			3 auxiliary			1968	ULSD	330	48	0.3
4162	REPUBLIC	Commercial Fishing			1 Propulsion				ULSD	200	48	0.3
4162	REPUBLIC	Commercial Fishing			2 Propulsion				ULSD	200	48	0.3
4162	REPUBLIC	Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
223688	RESOLUTE	Commercial Fishing			1 Propulsion				ULSD	750	48	0.3
223688	RESOLUTE	Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
223688	RESOLUTE	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
7710745	RM THORSTENSO	Ol Commercial Fishing			1 Propulsion				ULSD	750	48	0.3
7710745	RM THORSTENSO	Ol Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
7710745	RM THORSTENSO	Ol Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
246619	ROBERT S	Commercial Fishing			1 Propulsion			1944	ULSD	143	48	0.3
246619	ROBERT S	Commercial Fishing			2 Propulsion			1944	ULSD	143	48	0.3
246619	ROBERT S	Commercial Fishing	PORT HILI		3 auxiliary			1944	ULSD	100	48	0.3
591632	ROBERTA M	Commercial Fishing			1 Propulsion				ULSD	380	48	0.3
591632	ROBERTA M	Commercial Fishing	ROBERTA		2 Propulsion				ULSD	380	48	0.3
591632	ROBERTA M	Commercial Fishing			3 auxiliary			1978	ULSD	100	48	0.3
944290	ROGUE	Commercial Fishing			1 Propulsion				ULSD	350	48	0.3
944290	ROGUE	Commercial Fishing			2 Propulsion				ULSD	350	48	0.3
944290	ROGUE	Commercial Fishing			3 auxiliary				ULSD	100		0.3
555403	ROLLO	Commercial Fishing			1 Propulsion				ULSD	450		0.3
555403	ROLLO	Commercial Fishing			2 Propulsion				· ULSD	450		0.3
555403	ROLLO	Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
624371		N Commercial Fishing			1 Propulsion				ULSD	630	48	0.3
624371		N Commercial Fishing			2 Propulsion				ULSD	630	48	0.3
624371		N Commercial Fishing			3 auxiliary				ULSD	330		0.3
559271		C Commercial Fishing			1 Propulsion				ULSD	425		0.3
559271		C Commercial Fishing	ROYAL AT		2 Propulsion			19/4	ULSD	425	48	0.3
6810184		N Commercial Fishing			1 Propulsion				ULSD	750	48	0.3
6810184		N Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
6810184		N Commercial Fishing	EORDE		3 auxiliary			1070	ULSD	330		0.3
521927 521927	ROYAL PACIFIC	Commercial Fishing Commercial Fishing			1 Propulsion 2 Propulsion				ULSD	360		0.3
521927	ROYAL PACIFIC ROYAL PACIFIC	Commercial Fishing			3 auxiliary				ULSD	360 100	48 48	0.3
542375	ROYAL VIKING	Commercial Fishing			1 Propulsion		D398		ULSD	1000	48	0.3
542375	ROYAL VIKING	Commercial Fishing			2 auxiliary	CAT			ULSD	450		0.3
542375	ROYAL VIKING	Commercial Fishing			3 auxiliary	CAT			ULSD	450		0.3
648763	SABRINA	Commercial Fishing	THILITIAL		1 Propulsion	W11	J-		ULSD	200		0.3
648763	SABRINA	Commercial Fishing			2 Propulsion				ULSD	200		0.3
648763	SABRINA	Commercial Fishing			3 auxiliary				ULSD	100		0.3
313111		Commercial Fishing			1 Propulsion			1701	ULSD	750	48	0.3
313111		Commercial Fishing			2 Propulsion				ULSD	750		0.3
313111		Commercial Fishing			3 auxiliary				ULSD	330		0.3
5280667	SAOOK BAY	Commercial Fishing			1 Propulsion				ULSD	750		0.3
5280667	SAOOK BAY	Commercial Fishing			2 Propulsion				ULSD	750		0.3
5280667	SAOOK BAY	Commercial Fishing			3 auxiliary				ULSD	330		0.3
239651	SATURN	Commercial Fishing			1 Propulsion				ULSD	200		0.3
		Sommercian i isimig								200	10	٥.

-				Engine								
			Owner	ID	Engine	Engine	Engine	Engine			Annual	
Vessel ID	Vessel Name	7.1	Name	User	Type	MFR	Model	Year	Fuel	HP		Load
239651	SATURN	Commercial Fishing			2 Propulsion				ULSD	200	48	0.3
239651	SATURN	Commercial Fishing			auxiliary				ULSD	100	48	0.3
625096	SAVANNAH RAY	Commercial Fishing			Propulsion				ULSD	425	48	0.3
625096	SAVANNAH RAY	Commercial Fishing			2 Propulsion				ULSD	425	48	0.3
625096	SAVANNAH RAY	Commercial Fishing			3 auxiliary			4070	ULSD	100	48	0.3
7933529	SCANDIES ROSE	Commercial Fishing			Propulsion				ULSD	240	48	0.3
7933529 39296	SCANDIES ROSE SEA BIRD	Commercial Fishing			2 auxiliary Propulsion				ULSD ULSD	100 600	48 48	0.3
39296	SEA BIRD	Commercial Fishing Commercial Fishing			2 auxiliary				ULSD	330	48	0.3
249301	SEA LION	Commercial Fishing	TRIDENT		Propulsion				ULSD	325	48	0.3
249301	SEA LION	Commercial Fishing			2 Propulsion				ULSD	325	48	0.3
249301	SEA LION	Commercial Fishing			auxiliary				ULSD	100	48	0.3
7048271	SEA STAR	Commercial Fishing	110121111		Propulsion			1710	ULSD	750	48	0.3
7048271	SEA STAR	Commercial Fishing			2 auxiliary				ULSD	330	48	0.3
628959	SEA STORM	Commercial Fishing	SEA STORM		Propulsion			1980	ULSD	875	48	0.3
628959	SEA STORM	Commercial Fishing			2 Propulsion				ULSD	875	48	0.3
628959	SEA STORM	Commercial Fishing			auxiliary				ULSD	330	48	0.3
573519	SEA TRADER	Commercial Fishing			Propulsion				ULSD	675	48	0.3
573519	SEA TRADER	Commercial Fishing			2 auxiliary				ULSD	330	48	0.3
563829	SEA WARRIOR	Commercial Fishing	THREE RIV		Propulsion			1975	ULSD	470	48	0.3
563829	SEA WARRIOR	Commercial Fishing			2 Propulsion				ULSD	470	48	0.3
563829	SEA WARRIOR	Commercial Fishing			auxiliary				ULSD	100	48	0.3
609823	SEA WOLF	Commercial Fishing			Propulsion			1979	ULSD	855	48	0.3
609823	SEA WOLF	Commercial Fishing			2 Propulsion			1979	ULSD	855	48	0.3
609823	SEA WOLF	Commercial Fishing			auxiliary			1979	ULSD	330	48	0.3
7433907	SEAFISHER	Commercial Fishing			Propulsion				ULSD	375	48	0.3
7433907	SEAFISHER	Commercial Fishing		2	2 Propulsion				ULSD	375	48	0.3
7433907	SEAFISHER	Commercial Fishing			auxiliary				ULSD	100	48	0.3
517242	SEAFREEZE ALAS	Commercial Fishing	SEAFREEZ	1	Propulsion			1968	ULSD	1500	48	0.3
517242	SEAFREEZE ALASI				2 Propulsion			1968	ULSD	1500	48	0.3
517242	SEAFREEZE ALAS	Commercial Fishing	SEAFREEZ	3	3 auxiliary			1968	ULSD	900	48	0.3
904767	SEATTLE ENTERP	Commercial Fishing	TRIDENT S	1	Propulsion			1973	ULSD	1950	48	0.3
904767	SEATTLE ENTERP				2 Propulsion			1973	ULSD	1950	48	0.3
904767	SEATTLE ENTERP	Commercial Fishing	TRIDENT S	3	3 auxiliary			1973	ULSD	900	48	0.3
250279	SELDOVIA	Commercial Fishing			Propulsion				ULSD	250	48	0.3
250279	SELDOVIA	Commercial Fishing		2	2 Propulsion				ULSD	250	48	0.3
250279	SELDOVIA	Commercial Fishing		3	3 auxiliary				ULSD	100	48	0.3
6422602	SENA II	Commercial Fishing			Propulsion				ULSD	750	48	0.3
6422602	SENA II	Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
6422602	SENA II	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
7940247	SEVEN DAUGHTE	U			Propulsion				ULSD	750	48	0.3
7940247	SEVEN DAUGHTE				2 Propulsion				ULSD	750	48	0.3
7940247	SEVEN DAUGHTE	U			auxiliary				ULSD	330	48	0.3
914477	SEYMOUR	Commercial Fishing			Propulsion				ULSD	160	48	0.3
914477	SEYMOUR	Commercial Fishing			2 Propulsion				ULSD	160	48	0.3
914477	SEYMOUR	Commercial Fishing			3 auxiliary			1987	ULSD	100		0.3
6621648	SHARLENE K	Commercial Fishing			Propulsion				ULSD	340		0.3
6621648	SHARLENE K	Commercial Fishing			2 Propulsion				ULSD	340		0.3
6621648	SHARLENE K	Commercial Fishing			3 auxiliary			107	ULSD	100	48	0.3
7308774	SHELLFISH	Commercial Fishing			Propulsion				ULSD	325	48	0.3
7308774	SHELLFISH	Commercial Fishing			2 Propulsion				ULSD	325	48	0.3
7308774	SHELLFISH	Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
9054377	SIBERIAN SEA	Commercial Fishing			Propulsion				ULSD	650		0.3
9054377	SIBERIAN SEA	Commercial Fishing			2 Propulsion				ULSD	650	48	0.3
9054377	SIBERIAN SEA	Commercial Fishing	DDEVVAA		B auxiliary				ULSD	330		0.3
547726 547726	SILVER DOLPHIN SILVER DOLPHIN	_			Propulsion Propulsion				ULSD ULSD	425 425	48 48	0.3
547726	SILVER DOLPHIN				auxiliary				ULSD	100		0.3
8836273	SNOPAC INNOVA	U	DIVINIXAA		Propulsion			17/3	ULSD	750		0.3
8836273	SNOPAC INNOVA	U			2 Propulsion				ULSD	750		0.3
8836273	SNOPAC INNOVA	_			auxiliary				ULSD	330		0.3
391861	SNOW DRIFT	Commercial Fishing	NO 162 SE		Propulsion				ULSD	750		0.3
391861	SNOW DRIFT SNOW DRIFT	Commercial Fishing			2 Propulsion				ULSD	750		0.3
391861	SNOW DRIFT SNOW DRIFT	Commercial Fishing			auxiliary				ULSD	330		0.3
383423		Commercial Fishing	110 102 3E/		Propulsion				ULSD	750		0.3
383423	SNOW QUEEN	Commercial Fishing			2 Propulsion				ULSD			0.3
383423	SNOW QUEEN	_							ULSD	750 330	48	0.3
JUJ44J	SNOW QUEEN	Commercial Fishing			3 auxiliary				ULSD	550	40	0.3

				Engine	<u> </u>							
Vessel ID	Vessel Name	Туре	Owner Name	ID User	Engine Type	Engine MFR	Engine Model	Engine Year	Fuel	HP	Annual Hours	Load
29310	SOUTHERN RIDO	GI Commercial Fishing			1 Propulsion			1975	ULSD	750		0.3
29310		GI Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
29310		GF Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
625927		D Commercial Fishing	-		1 Propulsion				ULSD	800	48	0.3
625927		D Commercial Fishing	-		2 Propulsion				ULSD	800	48	0.3
625927		D Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
518545	ST JUDE	Commercial Fishing			1 Propulsion				ULSD ULSD	450	48	0.3
518545 518545	ST JUDE	Commercial Fishing			2 Propulsion				ULSD	450 100	48 48	0.3 0.3
393998	ST JUDE STAR	Commercial Fishing			3 auxiliary 1 Propulsion			1909	ULSD	750	48	0.3
393998	STAR	Commercial Fishing Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
393998	STAR	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
561651	STAR FISH	Commercial Fishing			1 Propulsion			1974	ULSD	510	48	0.3
561651	STAR FISH	Commercial Fishing			2 Propulsion				ULSD	510		0.3
561651	STAR FISH	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
8807284	STARBOUND	Commercial Fishing			1 Propulsion				ULSD	2500	48	0.3
8807284	STARBOUND	Commercial Fishing			2 Propulsion				ULSD	2500	48	0.3
8807284	STARBOUND	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
7819228	STARLITE	Commercial Fishing			1 Propulsion				ULSD	550	48	0.3
7819228	STARLITE	Commercial Fishing			2 Propulsion			1978	ULSD	550	48	0.3
7819228	STARLITE	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
638851	SULTAN	Commercial Fishing			1 Propulsion				ULSD	600	48	0.3
638851	SULTAN	Commercial Fishing	SULTAN F		2 Propulsion			1981	ULSD	600	48	0.3
638851	SULTAN	Commercial Fishing			3 auxiliary			1981	ULSD	330	48	0.3
CZ4548	SUN MAIDEN	Commercial Fishing			1 Propulsion				ULSD	750	48	0.3
CZ4548	SUN MAIDEN	Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
CZ4548	SUN MAIDEN	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
2574403	SUNNYVALE	Commercial Fishing			1 Propulsion				ULSD	400	48	0.3
2574403	SUNNYVALE	Commercial Fishing			2 Propulsion				ULSD	400	48	0.3
2574403	SUNNYVALE	Commercial Fishing			3 auxiliary				ULSD		48	0.3
251957	SUNWARD	Commercial Fishing			1 Propulsion				ULSD	110	48	0.3
251957	SUNWARD	Commercial Fishing			2 Propulsion				ULSD	110	48	0.3
251957	SUNWARD	Commercial Fishing			3 auxiliary				ULSD		48	0.3
6928553	TAMANGO	Commercial Fishing			1 Propulsion				ULSD	750	48	0.3
6928553	TAMANGO	Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
6928553	TAMANGO	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
249682	TEBENKOF	Commercial Fishing			1 Propulsion				ULSD	636	48	0.3
249682	TEBENKOF	Commercial Fishing			2 Propulsion				ULSD	636	48	0.3
249682	TEBENKOF	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
611985	TEMPEST	Commercial Fishing			1 Propulsion				ULSD	750	48	0.3
611985	TEMPEST	Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
611985	TEMPEST	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
620538	TEMPO SEA	Commercial Fishing			1 Propulsion				ULSD	270	48	0.3
620538	TEMPO SEA	Commercial Fishing			2 auxiliary			4000	ULSD	100	48	0.3
654362	TENACIOUS	Commercial Fishing			1 Propulsion				ULSD	270	48	0.3
654362	TENACIOUS	Commercial Fishing			2 auxiliary				ULSD	100		0.3
8852356 8852356	TIME BANDIT	Commercial Fishing			1 Propulsion				ULSD	425		0.3 0.3
8852356	TIME BANDIT TIME BANDIT	Commercial Fishing Commercial Fishing			2 Propulsion 3 auxiliary				ULSD ULSD	425 330	48 48	0.3
967015	TINA B	Commercial Fishing			1 Propulsion			1991	ULSD	750	48	0.3
967015	TINA B	Commercial Fishing			2 Propulsion				ULSD	750		0.3
967015	TINA B	Commercial Fishing			3 auxiliary				ULSD	330		0.3
596514	TRAILBLAZER	Commercial Fishing			1 Propulsion			1978	ULSD	750		0.3
596514	TRAILBLAZER	Commercial Fishing			2 Propulsion				ULSD	750		0.3
596514	TRAILBLAZER	Commercial Fishing			3 auxiliary				ULSD	330		0.3
929356	TRAVELER	Commercial Fishing			1 Propulsion				ULSD	650		0.3
929356	TRAVELER	Commercial Fishing			2 Propulsion				ULSD	650		0.3
929356	TRAVELER	Commercial Fishing			3 auxiliary				ULSD	330		0.3
513354	TUXEDNI	Commercial Fishing			1 Propulsion				ULSD	245		0.3
513354	TUXEDNI	Commercial Fishing			2 Propulsion				ULSD	245	48	0.3
513354	TUXEDNI	Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
604439	U S INTREPID	Commercial Fishing			1 Propulsion				ULSD	1600	48	0.3
604439	U S INTREPID	Commercial Fishing			2 Propulsion				ULSD	1600	48	0.3
604439	U S INTREPID	Commercial Fishing			3 auxiliary				ULSD	900		0.3
		-										0.3
	UNIMAK	Commercial Fishing	UNIMAK F	1	1 Propulsion			1981	ULSD	1500	48	U.,)
637693 637693	UNIMAK UNIMAK	Commercial Fishing Commercial Fishing			1 Propulsion 3 auxiliary				ULSD ULSD	1500 900		0.3

-				Engine	<u> </u>							
Vessel ID	Vessel Name	**	Name	ID User	Engine Type	Engine MFR	Engine Model	Engine Year	Fuel			Load
611520	US LIBERATOR	Commercial Fishing			2 Propulsion				ULSD	850		0.3
611520	US LIBERATOR	Commercial Fishing			3 auxiliary				ULSD	330		0.3
611225	VAERDAL	Commercial Fishing			1 Propulsion				ULSD	725	48	0.3
611225 611225	VAERDAL VAERDAL	Commercial Fishing Commercial Fishing			2 Propulsion 3 auxiliary				ULSD ULSD	725 330	48 48	0.3
522574	VALIANT	Commercial Fishing			1 Propulsion				ULSD	480	48	0.3
522574	VALIANT	Commercial Fishing			2 Propulsion				ULSD	480	48	0.3
522574	VALIANT	Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
384011	VAMPY 1	Commercial Fishing			1 Propulsion				ULSD	750	48	0.3
384011	VAMPY 1	Commercial Fishing			2 Propulsion			1978	ULSD	750	48	0.3
384011	VAMPY 1	Commercial Fishing			3 auxiliary			1978	ULSD	330	48	0.3
210906	VANSEE	Commercial Fishing	ODEGAAR		1 Propulsion			1913	ULSD	250	48	0.3
210906	VANSEE	Commercial Fishing	ODEGAAR		2 auxiliary			1913	ULSD	100	48	0.3
611642	VESTERAALEN	Commercial Fishing			1 Propulsion				ULSD	600	48	0.3
611642	VESTERAALEN	Commercial Fishing			2 Propulsion				ULSD	600	48	0.3
611642	VESTERAALEN	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
565017	VIKING	Commercial Fishing			1 Propulsion				ULSD	884	48	0.3
565017	VIKING	Commercial Fishing			2 Propulsion				ULSD	884	48	0.3
565017	VIKING	Commercial Fishing	VIKING LF		3 auxiliary 1 Propulsion			19/4	ULSD	330	48	0.3
7803114 7803114		F Commercial Fishing F Commercial Fishing			2 Propulsion				ULSD ULSD	750 750	48 48	0.3
7803114		F Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
8802404		S Commercial Fishing			1 Propulsion				ULSD	750	48	0.3
8802404		S Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
8802404		S Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
605228		E Commercial Fishing	ROYAL VII		1 Propulsion			1979	ULSD	600	48	0.3
605228	VIKING EXPLORE	E Commercial Fishing	ROYAL VII		2 Propulsion			1979	ULSD	600	48	0.3
605228	VIKING EXPLORE	E Commercial Fishing	ROYAL VII		3 auxiliary			1979	ULSD	330	48	0.3
817566	VIKING MOON	Commercial Fishing			1 Propulsion				ULSD	750	48	0.3
817566	VIKING MOON	Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
817566	VIKING MOON	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
8989147	VIKING PRIDE	Commercial Fishing			1 Propulsion				ULSD	750	48	0.3
8989147	VIKING PRIDE	Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
8989147	VIKING PRIDE	Commercial Fishing	ICICLE CE		3 auxiliary			107	ULSD	330	48	0.3
508212 508212	VIKING QUEEN	Commercial Fishing Commercial Fishing			1 Propulsion 2 Propulsion				ULSD ULSD	350 350	48 48	0.3
508212	VIKING QUEEN VIKING QUEEN	Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
593623	VIKING STAR	Commercial Fishing			1 Propulsion				ULSD	183	48	0.3
593623	VIKING STAR	Commercial Fishing			2 Propulsion				ULSD	183	48	0.3
593623	VIKING STAR	Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
7919858	VIKING STORM	Commercial Fishing			1 Propulsion				ULSD	750	48	0.3
7919858	VIKING STORM	Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
7919858	VIKING STORM	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
640544	WASSILIE B	Commercial Fishing			1 Propulsion				ULSD	750	48	0.3
640544	WASSILIE B	Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
640544	WASSILIE B	Commercial Fishing			3 auxiliary				ULSD	330		0.3
1043151	WENDY SEA	Commercial Fishing			1 Propulsion				ULSD	750		0.3
1043151	WENDY SEA	Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
1043151	WENDY SEA	Commercial Fishing Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
368913 368913	WESTERLY WESTERLY	Commercial Fishing			1 Propulsion 2 Propulsion				ULSD ULSD	750 750	48 48	0.3
368913	WESTERLY	Commercial Fishing			3 auxiliary				ULSD	330		0.3
524423	WESTERN DAWN	0	OLSEN		1 Propulsion			1970	ULSD	640		0.3
524423		Commercial Fishing			2 Propulsion				ULSD	640		0.3
524423		Commercial Fishing			3 auxiliary				ULSD	330		0.3
3066273	WESTERN INVEST	Γ Commercial Fishing			1 Propulsion				ULSD	750		0.3
3066273	WESTERN INVEST	Γ Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
3066273		Γ Commercial Fishing			3 auxiliary				ULSD	330		0.3
322411	WESTERN KING	Commercial Fishing			1 Propulsion				ULSD	750	48	0.3
322411	WESTERN KING	Commercial Fishing			2 Propulsion				ULSD	750	48	0.3
322411	WESTERN KING	Commercial Fishing			3 auxiliary				ULSD	330	48	0.3
585926		I Commercial Fishing			1 Propulsion				ULSD	425		0.3
585926		I Commercial Fishing			2 Propulsion				ULSD	425	48	0.3
585926		I Commercial Fishing			3 auxiliary				ULSD	100		0.3
223931	WESTWARD	Commercial Fishing			1 Propulsion				ULSD	150		0.3
223931	WESTWARD	Commercial Fishing			2 Propulsion				ULSD	150		0.3
223931	WESTWARD	Commercial Fishing	I ACIFIC C		3 auxiliary			1924	ULSD	100	48	0.3

				Engine	e							
Vessel ID	Vessel Name	Type	Owner Name	ID User	Engine Type	Engine MFR	Engine Model	Engine Year	Fuel	HP		Load
615165	WESTWARD 1	Commercial Fishing			1 Propulsion				ULSD	750		0.3
615165	WESTWARD 1	Commercial Fishing			2 Propulsion				ULSD	750		0.3
615165	WESTWARD 1	Commercial Fishing			3 auxiliary				ULSD	330		0.3
7743467	WESTWARD WIND	_			1 Propulsion				ULSD	650		0.3
7743467 7743467	WESTWARD WIND WESTWARD WIND				2 Propulsion 3 auxiliary				ULSD ULSD	650 330	48 48	0.3
7316408	WHALE	Commercial Fishing		ļ	1 Propulsion			19/6	ULSD	480	48	0.3
7316408	WHALE	Commercial Fishing			2 Propulsion				ULSD	480	48	0.3
7316408	WHALE	Commercial Fishing			3 auxiliary				ULSD	400	48	0.3
583100	WIDE BAY	Commercial Fishing			1 Propulsion			1977	ULSD	230	48	0.3
583100	WIDE BAY	Commercial Fishing			2 Propulsion				ULSD	230	48	0.3
583100	WIDE BAY	Commercial Fishing			3 auxiliary				ULSD	100	48	0.3
1077274	WILD SALMON	Commercial Fishing			1 Propulsion				ULSD	600	48	0.3
1077274	WILD SALMON	Commercial Fishing			2 Propulsion				ULSD	600	48	0.3
1077274	WILD SALMON	Commercial Fishing			3 auxiliary				ULSD	330		0.3
594470	WIZARD	Commercial Fishing			1 Propulsion			1978	ULSD	600	48	0.3
594470	WIZARD	Commercial Fishing			2 Propulsion			1978	ULSD	600	48	0.3
594470	WIZARD	Commercial Fishing			3 auxiliary			1978	ULSD	330	48	0.3
524422	YANKEE CLIPPER	Commercial Fishing	CAIN		1 Propulsion			1969	ULSD	360	48	0.3
524422	YANKEE CLIPPER	Commercial Fishing	CAIN		2 Propulsion			1969	ULSD	360	48	0.3
524422	YANKEE CLIPPER	Commercial Fishing	CAIN		3 auxiliary			1969	ULSD	100	48	0.3
628313	ZENITH	Commercial Fishing	ZENITH FI		1 Propulsion			1980	ULSD	425	48	0.3
628313	ZENITH	Commercial Fishing			2 Propulsion				ULSD	425	48	0.3
628313	ZENITH	Commercial Fishing			3 auxiliary			1980	ULSD	100	48	0.3
9183556	ZODIAK	Commercial Fishing			1 Propulsion				ULSD	718	48	0.3
9183556	ZODIAK	Commercial Fishing			2 Propulsion				ULSD	718	48	0.3
9183556	ZODIAK	Commercial Fishing			3 auxiliary			4050	ULSD	24.5	48	0.3
1219885	ZORRO	Commercial Fishing			1 Propulsion				ULSD	215	48	0.3
1219885	ZORRO	Commercial Fishing			2 Propulsion				ULSD	215	48	0.3
1219885	ZORRO	Commercial Fishing			3 auxiliary				ULSD	2000	48	0.3
D231868 600818	AQUA EXPRESS	Excursion Excursion	AQUA EXP		1 Propulsion	Catanillan	3208T		ULSD	2990 325	2500 500	0.42 0.42
234281	BEAVER CARMELITA	Excursion	ARGOSY L EVANS MA		1 Propulsion1 Propulsion	Catepillar	32061		ULSD ULSD	330	800	0.42
944434	CELEBRATIONS	Excursion	ARGOSY L		1 Propulsion	Cummins	6BT5.9		ULSD	210		0.42
944434	CELEBRATIONS	Excursion	ARGOSY L		2 Propulsion	Cummins	6BT5.9		ULSD	210	879	0.42
944434	CELEBRATIONS	Excursion	ARGOSY L		3 auxiliary	Yanmar	4JH26-TNE		ULSD	40	879	0.42
PSECL	CHAMPAGNE LAD		ARGOSY L		1 Propulsion		-		ULSD	210		0.42
PSECL	CHAMPAGNE LAD		ARGOSY L		2 Propulsion	John Deere			ULSD	210		0.42
PSECL	CHAMPAGNE LAD		ARGOSY L		3 auxiliary	Toyota	M984K		ULSD	40		0.43
253102	CHARLES N. CURT		MT RAINIE		1 Propulsion	Detroit			ULSD	320		0.42
253102	CHARLES N. CURT		MT RAINIE		2 Propulsion				ULSD	320		0.42
253102	CHARLES N. CURT		MT RAINIE		3 auxiliary				ULSD	40	300	0.43
956275	CHARLIE WELLS	Excursion	HERRON N		1 Propulsion			1992	ULSD	180	3000	0.42
956275	CHARLIE WELLS	Excursion	HERRON N		2 Propulsion			1992	ULSD	180	3000	0.42
1109391	Destiny	Excursion	WATERWA		1 Propulsion			1992	ULSD	750	208	0.42
1109391	Destiny	Excursion	WATERWA		2 Propulsion			1992	ULSD	750	208	0.42
1109391	Destiny	Excursion	WATERWA		3 auxiliary			1985	ULSD	56	60	0.43
520222	EMERALD STAR	Excursion	WATERWA		1 Propulsion			1992	ULSD	155	824	0.42
520222	EMERALD STAR	Excursion	WATERWA		2 Propulsion				ULSD	155		0.42
520222	EMERALD STAR	Excursion	WATERWA		3 auxiliary				ULSD	13		0.43
921107	FAIRHAVEN	Excursion	PACIFIC CI		1 Propulsion				ULSD	120		0.42
685462	FREMONT AVENU		SEATTLE F		1 Propulsion				ULSD	133		0.42
571306	GOODTIME II	Excursion	ARGOSY L		1 Propulsion	Catepillar	D343		ULSD	365		0.42
571306	GOODTIME II	Excursion	ARGOSY L		2 Propulsion	Catepillar	D343		ULSD	365	2083	0.42
571306	GOODTIME II	Excursion	ARGOSY L		3 auxiliary	Shibaura	3H3XL2		ULSD	27	912	0.43
571306	GOODTIME II	Excursion	ARGOSY L		4 auxiliary	Shibaura	3H3XL2		ULSD	22		0.43
594261	GOODTIME III	Excursion	ARGOSY L		1 Propulsion	Catepillar	3408		ULSD	365	1371	0.42
594261	GOODTIME III	Excursion	ARGOSY L		2 Propulsion	Catepillar	3408		ULSD	365		0.42
594261	GOODTIME III	Excursion	ARGOSY L		3 auxiliary	Kubota	F2803-BGE		ULSD	36		0.43
594261	GOODTIME III	Excursion	ARGOSY L		4 auxiliary	Isusu	BV-4LE1T		ULSD	36		0.43
1064771 DSEINI	HUMPBACK INISDIPATION	Excursion	R W MILLE		1 Propulsion				ULSD	210		0.42
PSEIN 550549	INSPIRATION		LAKE UNI		1 Propulsion				Gasolin			0.42
559548 559548	ISLAND CAPER	Excursion	ISLAND M.		1 Propulsion				ULSD	725 725	500 500	0.42
559548	ISLAND CAPER	Excursion	ISLAND M.		2 Propulsion				ULSD	725 725	500	0.42
559548 IDB	ISLAND CAPER ISLAND DIVER	Excursion Excursion	ISLAND M. BANDITO		3 Propulsion 1 Propulsion				ULSD ULSD	725 315	500 250	0.42 0.42
603440	ISLAND EXPLORE		AGGERGA		1 Propulsion				ULSD	800		0.42
003440	TOLINID EAFLOKE.	LACUISIOII	MODERGA		1 1 10 puision			1992	ULSD	000	1500	0.42

				Engine	e							
Vessel ID	Vessel Name	Туре	Owner Name	ID User	Engine Type	Engine MFR	Engine Model	Engine Year	Fuel	HP	Annual Hours	Load
603440	ISLAND EXPLORE	Excursion	AGGERGA		2 Propulsion			1992	ULSD	800	1500	0.42
603440	ISLAND EXPLORE		AGGERGA		3 auxiliary				ULSD	20		0.43
PSEIE	ISLAND EXPRESS		ISLAND EX		1 Propulsion				ULSD	315		0.42
PSEIE	ISLAND EXPRESS		ISLAND EX		2 Propulsion				ULSD	315	1000	0.42
PSEIEII	ISLAND EXPRESS I		ISLAND EX		1 Propulsion				ULSD	315		0.42
PSEIEII	ISLAND EXPRESS I		ISLAND EX		2 Propulsion				ULSD	315		0.42
PSEIS	ISLAND SPIRIT	Excursion	NEW DIME		1 Propulsion				ULSD	2200	1000	0.42
525654 525654	JAMAL	Excursion Excursion	JAMAL CH		1 Propulsion				ULSD ULSD	325 40	100 100	0.42 0.43
525654	JAMAL JAMAL	Excursion	JAMAL CH		2 auxiliary 3 auxiliary				ULSD	54		0.43
PSEK	KITTIWAKE	Excursion	JAMAL CH. SAN JUAN		1 Propulsion				ULSD	250	1000	0.43
594991	KOINONIA	Excursion	HEETER		1 Propulsion				ULSD	425		0.42
594991	KOINONIA	Excursion	HEETER		2 Propulsion				ULSD	425	400	0.42
543871	LADY MARY	Excursion	ARGOSY L		1 Propulsion	John Deere	6068SFM		ULSD	236		0.42
543871	LADY MARY	Excursion	ARGOSY L		2 Propulsion	John Deere			ULSD	236		0.42
543871	LADY MARY	Excursion	ARGOSY L		3 auxiliary	Cummins	4B-3.9		ULSD	20		0.43
543871	LADY MARY	Excursion	ARGOSY L		4 auxiliary	John Deere			ULSD	27	1068	0.43
1033659	Maritime Instrcutor	Excursion	Seattle Marit			-	V-3412		ULSD	800	264	0.42
1033659	Maritime Instrcutor	Excursion	Seattle Marit		2 Propulsion	Caterpillar			ULSD	800	264	0.42
908725	MATCH MAKER	Excursion	CRISTAL C		1 Propulsion	Surre			ULSD	320	1000	0.42
908725	MATCH MAKER	Excursion	CRISTAL C		2 Propulsion				ULSD	320	1000	0.42
908725	MATCH MAKER	Excursion	CRISTAL C		3 auxiliary				ULSD	24		0.43
593090	MY GIRL	Excursion	BROWNS P		1 Propulsion				ULSD	350		0.42
593090	MY GIRL	Excursion	BROWNS P		2 Propulsion				ULSD	350	480	0.42
593090	MY GIRL	Excursion	BROWNS P		3 auxiliary				ULSD	34		0.43
504847	Naknak	Excursion	BANDITO		1 Propulsion			1992	ULSD	215	300	0.42
PSEOQ	OCEAN QUEST	Excursion	BANDITO		1 Propulsion			1992	ULSD	250		0.42
698903	OLYMPAS	Excursion	THE UNDI		1 Propulsion				ULSD	495	800	0.42
1055060	OLYMPIC STAR	Excursion	WATERWA		1 Propulsion			1992	ULSD	230	740	0.42
1055060	OLYMPIC STAR	Excursion	WATERWA		2 Propulsion			1992	ULSD	230	740	0.42
1055060	OLYMPIC STAR	Excursion	WATERWA		3 auxiliary			1985	ULSD	27	60	0.43
1000079	ORCA SONG	Excursion	ORCA SON		1 Propulsion			1992	ULSD	1650	800	0.42
553780	ORCAS EXPRESS	Excursion	ORCAS ISL		1 Propulsion			2005	ULSD	150	1095	0.42
553780	ORCAS EXPRESS	Excursion	ORCAS ISL		2 Propulsion			2005	ULSD	150	1095	0.42
1051053	PARACLETE	Excursion	HEETER		1 Propulsion			2002	ULSD	318	2800	0.42
1051053	PARACLETE	Excursion	HEETER		2 Propulsion			2002	ULSD	318	2800	0.42
1033607	PAUL JOHANSEN	Excursion	PORT MAD		1 Propulsion			1992	ULSD	264	500	0.42
1079075	PELAGIC	Excursion	PELAGIC C		1 Propulsion			2001	ULSD	480	600	0.42
PSEPL	PLOVER	Excursion	DRAYTON		1 Propulsion			1992	ULSD	120	600	0.42
PSEPO	Popeye	Excursion	SEBRING N		1 Propulsion				ULSD	350	500	0.42
976735	QUEENS LAUNCH	Excursion	ARGOSY L		1 Propulsion	Perkins	LD20663U	1992	ULSD	85	446	0.42
RAV1	Raven	Excursion	ARGOSY L		1 Propulsion	Suzuki	DF250		Gasolin			0.42
1093282	ROYAL ARGOSY	Excursion	ARGOSY L		1 Propulsion	Komatsu	SA6P170-A-		ULSD	700	916	0.42
1093282	ROYAL ARGOSY	Excursion	ARGOSY L		2 Propulsion	Komatsu	SA6P170-A-		ULSD	700	1775	0.42
1093282	ROYAL ARGOSY	Excursion	ARGOSY L		3 auxiliary	Komatsu	SA6D140-1		ULSD	40	295	0.43
1093282	ROYAL ARGOSY	Excursion	ARGOSY L		4 auxiliary	Komatsu	SA6D140-1		ULSD	54		0.43
1093282	ROYAL ARGOSY	Excursion	ARGOSY L		5 auxiliary	John Deere	4045T		ULSD	47		0.43
601283	SALVAGER I	Excursion	BALLARD		1 Propulsion				ULSD	370		0.42
601283	SALVAGER I	Excursion	BALLARD		2 Propulsion				ULSD	370		0.42
514506	SAMPAN	Excursion	BANDITO		1 Propulsion				ULSD	350	600	0.42
PSESH	SEA HAWK	Excursion	SAN JUAN		1 Propulsion				ULSD	160		0.42
PSES	Seeker	Excursion	ANCHOR I		1 Propulsion				ULSD	300		0.42
PSES	Seeker	Excursion	ANCHOR I		2 Propulsion				ULSD	300		0.42
PSES	Seeker	Excursion	ANCHOR I		3 auxiliary				ULSD	27	285	0.43
282387	SIGHTSEER	Excursion	ARGOSY L		1 Propulsion		D343		ULSD	365	910	0.42
282387	SIGHTSEER	Excursion	ARGOSY L		2 auxiliary	John Deere			ULSD	47	426	0.43
916587	SPIRIT OF SEATTL		ARGOSY L		1 Propulsion	Catepillar	3408 B		ULSD	445	1828	0.42
916587	SPIRIT OF SEATTL		ARGOSY L		2 Propulsion	Catepillar	3408 B		ULSD	445		0.42
916587	SPIRIT OF SEATTL		ARGOSY L		3 auxiliary	John Deere			ULSD	40	926	0.43
916587	SPIRIT OF SEATTL		ARGOSY L		4 auxiliary	John Deere	42391		ULSD	40		0.43
578880	SQUITO	Excursion	Tom Averna		1 Propulsion				ULSD	180		0.42
578880	SQUITO	Excursion	Tom Averna		2 Propulsion				ULSD	180		0.42
579981	STELLAR SEA	Excursion	SALISH SE.		1 Propulsion				ULSD	235	1000	0.42
579981	STELLAR SEA	Excursion	SALISH SE.		2 Propulsion				ULSD	235		0.42
1025644	SYLVAN SPIRIT	Excursion	HEETER		1 Propulsion				ULSD	300		0.42
1025644 DSETT	SYLVAN SPIRIT	Excursion	HEETER		2 Propulsion				ULSD	300		0.42
PSETI	THE ISLANDER	Excursion	LAKE UNI		1 Propulsion			1992	ULSD	180	500	0.42

				Engine								
Vessel ID	Vessel Name	Type	Owner Name	ID User	Engine Type	Engine MFR	Engine Model	Engine Year	Fuel	HP	Annual Hours	Load
1081068	TYLER M	Excursion	SEBRING	Ŋ	1 Propulsion			1992	ULSD	350	500	0.42
1060642	UNITY	Excursion	LAKE UNI		1 Propulsion				Gasoline	450	10	0.42
633786	VICTORIA EXPRE		VICTORIA		1 Propulsion				ULSD	485	500	0.42
633786	VICTORIA EXPRE		VICTORIA		2 Propulsion				ULSD	485	500	0.42
633786	VICTORIA EXPRE		VICTORIA		3 Propulsion				ULSD	485	500	0.42
633786	VICTORIA EXPRE		VICTORIA		4 auxiliary				ULSD	150	500	0.43
605959	VICTORIA EXPRE		VICTORIA		1 Propulsion				ULSD	510	500	0.42
605959	VICTORIA EXPRE		VICTORIA VICTORIA		2 Propulsion				ULSD	510 510	500 500	0.42 0.42
605959 605959	VICTORIA EXPRE VICTORIA EXPRE		VICTORIA		3 Propulsion 4 Propulsion				ULSD ULSD	510	500	0.42
605959	VICTORIA EXPRE		VICTORIA		5 auxiliary				ULSD	150	500	0.42
572980	VICTORIA STAR2		PACIFIC C		1 Propulsion				ULSD	600	2000	0.42
572980	VICTORIA STAR2		PACIFIC C		2 Propulsion				ULSD	600	2000	0.42
572980	VICTORIA STAR2		PACIFIC C		3 Propulsion				ULSD	600	2000	0.42
572980	VICTORIA STAR2		PACIFIC C		4 auxiliary				ULSD	40	2000	0.43
PSEVS	VIKING STAR	Excursion	VIKING C		1 Propulsion			1992	ULSD	760	1500	0.42
222170	VIRGINIA V	Excursion	THE STEA	1	1 Propulsion			1992	ULSD	400	500	0.42
222170	VIRGINIA V	Excursion	THE STEA	1	2 auxiliary			1985	ULSD	27	500	0.43
222170	VIRGINIA V	Excursion	THE STEA	1	3 auxiliary			1985	ULSD	40	500	0.43
539994	WESTERN PRINCE	E Excursion	WESTERN		1 Propulsion			1992	ULSD	316	900	0.42
539994	WESTERN PRINCE	E Excursion	WESTERN		2 Propulsion				ULSD	316	900	0.42
PSFC	CALLAHAN	Ferry	WASHING		1 Propulsion		8V71		ULSD	300	2600	0.34
PSFC	CALLAHAN	Ferry	WASHING		2 Propulsion		8V71		ULSD	300	2600	0.34
PSFC	CALLAHAN	Ferry	WASHING		3 auxiliary	Lugger			ULSD	16	2600	0.43
214872	CARLISLE II	Ferry	KITSAP TI		1 Propulsion	O.F.	EED) MAEE		ULSD	330	4000	0.34
636551	Cathlamet	Ferry	Washington		1 Propulsion		7FDM12EF		ULSD	2500	6494	0.34
636551	Cathlamet	Ferry	Washington		2 Propulsion		7FDM12EF		ULSD	2500 400	6494 7015	0.34 0.43
636551 636551	Cathlamet Cathlamet	Ferry Ferry	Washington Washington		3 auxiliary 4 auxiliary	Detroit Detroit	Series 60 DI Series 60 DI		ULSD ULSD	400	5851	0.43
636551	Cathlamet	Ferry	Washington		5 auxiliary	Detroit	Series 60 DI		ULSD	400	1089	0.43
636551	Cathlamet	Ferry	Washington		6 auxiliary	Detroit	6V71		ULSD	168	24	0.43
636551	Cathlamet	Ferry	Washington		7 boiler	Seattle Boile			ULSD	60	1500	0.43
636551	Cathlamet	Ferry	Washington		8 boiler	Seattle Boile			ULSD	60	1500	0.43
999032	Chelan	Ferry	Washington		1 Propulsion	GE	7FDM12EF		ULSD	2500	4867	0.34
999032	Chelan	Ferry	Washington		2 Propulsion	GE	7FDM12EF	2005	ULSD	2500	4867	0.34
999032	Chelan	Ferry	Washington		3 auxiliary	Detroit	Series 60 DI	2003	ULSD	400	3968	0.43
999032	Chelan	Ferry	Washington		4 auxiliary	Detroit	Series 60 DI	2003	ULSD	400	2012	0.43
999032	Chelan	Ferry	Washington		5 auxiliary	Detroit	Series 60 DI		ULSD	400	2035	0.43
999032	Chelan	Ferry	Washington		6 auxiliary	Detroit	6V71		ULSD	168	24	0.43
999032	Chelan	Ferry	Washington		7 boiler	Seattle Boile			ULSD	60	1000	0.43
999032	Chelan	Ferry	Washington		8 boiler	Seattle Boile			ULSD	60	1000	0.43
1228643	Chetzemoka	Ferry	Washington		1 Propulsion		12-710		ULSD	3000	4561	0.34
1228643	Chetzemoka Chetzemoka	Ferry	Washington		2 Propulsion		12-710		ULSD	3000	4561	0.34 0.43
1228643 1228643	Chetzemoka	Ferry Ferry	Washington Washington		3 auxiliary 4 auxiliary	Detroit Detroit	Series 60 DI Series 60 DI		ULSD ULSD			0.43
1228643	Chetzemoka	Ferry	Washington		5 boiler	Weil McLai			ULSD	60		0.43
1228643	Chetzemoka	Ferry	Washington		6 boiler	Weil McLai			ULSD	60		0.43
1023545	Christine Anderson	Ferry	COUNTY		1 Propulsion	***************************************			ULSD	960	5150	0.34
1023545	Christine Anderson	Ferry	COUNTY		2 Propulsion				ULSD	960	5150	0.34
1023545	Christine Anderson	Ferry	COUNTY		3 auxiliary				ULSD	99	2760	0.43
1023545	Christine Anderson	Ferry	COUNTY		4 auxiliary				ULSD	99	2760	0.43
PSFCa	СОНО	Ferry	BLACK BA]	1 Propulsion	EMD	12V	1994	ULSD	2600	1350	0.34
PSFCa	COHO	Ferry	BLACK BA	1	2 Propulsion			1994	ULSD	2600	1350	0.34
PSFE	EAGLE	Ferry	HORLUCK		1 Propulsion			1994	ULSD	500	4000	0.34
537794	EL Bartlett	Ferry	Seattle Mari	t	1 Propulsion	Fairbanks N	4 38D 81/8		ULSD	1500	384	0.34
537794	EL Bartlett	Ferry	Seattle Mari	t	2 Propulsion	Fairbanks N	4 38D 81/8	1969	ULSD	1500	384	0.34
537794	EL Bartlett	Ferry	Seattle Mari		3 auxiliary	Cummins	NT855G3M		ULSD	200	384	0.43
537794	EL Bartlett	Ferry	Seattle Mari		4 auxiliary	Cummins	NT855G3M		ULSD	200	384	0.43
1117163	Elsie M II	Ferry	HAT ISLA		1 Propulsion				ULSD	400	3000	0.34
512324	Elwha	Ferry	Washington		1 Propulsion		645F7B		ULSD	2550	5958	0.34
512324	Elwha	Ferry	Washington		2 Propulsion		645F7B		ULSD	2550	5958	0.34
512324	Elwha	Ferry	Washington		3 Propulsion		645F7B		ULSD	2550	5958	0.34
512324	Elwha Elwha	Ferry	Washington		4 Propulsion		645F7B		ULSD	2550	5958 185	0.34
512324 512324	Elwha Elwha	Ferry Ferry	Washington Washington		5 auxiliary 6 auxiliary	Cat Cat	3412 3406		ULSD ULSD	451 451	185 24	0.43 0.43
512324	Elwha	Ferry	Washington		7 boiler	Weil McLai			ULSD	60	2000	0.43
512324	Elwha	Ferry	Washington		8 boiler	Weil McLai			ULSD	60	2000	0.43
5.2521					. Dones	,, c 1,1C1./d1	/ 7	1//1		00	2000	0.15

				Engin	e								
Vessel ID	Vessel Name	Type	Owner Name	ID User		Engine Type	Engine MFR	Engine Model	Engine Year	Fuel	HP	Annual Hours	Load
268732	Evergreen State	Ferry	Washington			Propulsion	Stork Werks			ULSD	1250	4141	0.34
268732	Evergreen State	Ferry	Washington			Propulsion	Stork Werks			ULSD	1250	4141	0.34
268732	Evergreen State	Ferry	Washington			auxiliary	Cummins	NTA 855		ULSD	425	48	0.43
268732	Evergreen State	Ferry	Washington			auxiliary		NTA 855		ULSD	425	28	0.43
268732	Evergreen State	Ferry	Washington			boiler	Weil McLain	BL-1088-SF		ULSD	60	24	0.43
PSFGS	Glacier Spirit	Ferry	Puget Sound			Propulsion		127TA 40		ULSD	1300	800	0.34
601686	GUEMES ISLAND	•	Skagit Count			Propulsion	Cummins	KTA-19		ULSD	540 540	6000 6000	0.34
601686 601686	GUEMES ISLAND	,	Skagit Count			Propulsion Propulsion	Cummins Cummins	KTA-19 KTA-19		ULSD ULSD	540	0000	0.34 0.34
601686	GUEMES ISLAND I	*	Skagit Count Skagit Count			auxiliary	Cat	K1A-19		ULSD	54	0	0.34
1034230	Hat Express	Ferry	HAT ISLAN			,	Detroit Dies	16,02		ULSD	1100	1100	0.43
1034230	Hat Express	Ferry	HAT ISLAN			Propulsion	Detroit Dies			ULSD	1100	1100	0.34
508159	Hiyu	Ferry	Washington			Propulsion	CAT	D 379		ULSD	430		0.34
508159	Hiyu	Ferry	Washington			Propulsion	CAT	D379		ULSD	430		0.34
508159	Hiyu	Ferry	Washington			auxiliary	Cummins	4BT 3.9G2		ULSD	102	0	0.43
508159	Hiyu	Ferry	Washington			auxiliary	Cummins	4BT 3.9G2		ULSD	102	0	0.43
508159	Hiyu	Ferry	Washington			auxiliary	Cummins	4BT 3.9		ULSD	82	0	0.43
508159	Hiyu	Ferry	Washington			boiler	Way Wolf	2128 - 8C		ULSD	60	0	0.43
508160	Hyak	Ferry	Washington			Propulsion	EMD	645F7B		ULSD	2000	6264	0.34
508160	Hyak	Ferry	Washington			Propulsion	EMD	645F7B		ULSD	2000	6264	0.34
508160	Hyak	Ferry	Washington			Propulsion	EMD	645F7B		ULSD	2000	6264	0.34
508160	Hyak	Ferry	Washington			Propulsion	EMD	645F7B		ULSD	2000	6264	0.34
508160	Hyak	Ferry	Washington			auxiliary	Detroit	Series 50 DI	1999	ULSD	134	4651	0.43
508160	Hyak	Ferry	Washington			auxiliary	Cat	3412		ULSD	451	3620	0.43
508160	Hyak	Ferry	Washington			auxiliary	Cat	3412		ULSD	451	2457	0.43
508160	Hyak	Ferry	Washington			auxiliary	Detroit	6V92		ULSD	355	24	0.43
508160	Hyak	Ferry	Washington			boiler	Weil McLain	ı		ULSD	60	750	0.43
508160	Hyak	Ferry	Washington	1		boiler	Weil McLain	ı	1999	ULSD	60	750	0.43
574608	ISLAND COMMUT	l Ferry	ISLAND CO		1	Propulsion			1994	ULSD	400	2000	0.34
574608	ISLAND COMMUT	l Ferry	ISLAND CO			Propulsion			1994	ULSD	400	2000	0.34
624022	Issaquah	Ferry	Washington			Propulsion	GE	7FDM12EF	2003	ULSD	2500	6836	0.34
624022	Issaquah	Ferry	Washington		2	Propulsion	GE	7FDM12EF	2003	ULSD	2500	6836	0.34
624022	Issaquah	Ferry	Washington		3	auxiliary	Detroit	Series 60 DI	2003	ULSD	400	6842	0.43
624022	Issaquah	Ferry	Washington		4	auxiliary	Detroit	Series 60 DI	2003	ULSD	400	3562	0.43
624022	Issaquah	Ferry	Washington		5	auxiliary	Detroit	Series 60 DI	2003	ULSD	400	3484	0.43
624022	Issaquah	Ferry	Washington		6	auxiliary	Detroit	Series 60 DI	2003	ULSD	168	24	0.43
624022	Issaquah	Ferry	Washington		7	boiler	Seattle Boile	SDW50M	2003	ULSD	60	1700	0.43
624022	Issaquah	Ferry	Washington		8	boiler	Seattle Boile	SDW50M	2003	ULSD	60	1700	0.43
508604	Kaleetan	Ferry	Washington		1	Propulsion	EMD	645 E5	1999	ULSD	2000	5471	0.34
508604	Kaleetan	Ferry	Washington		2	Propulsion	EMD	645 E5	1999	ULSD	2000	5471	0.34
508604	Kaleetan	Ferry	Washington		3	Propulsion	EMD	645 E5	1999	ULSD	2000	5471	0.34
508604	Kaleetan	Ferry	Washington		4	Propulsion	EMD	645 E5	1999	ULSD	2000	5471	0.34
508604	Kaleetan	Ferry	Washington		5	auxiliary	Detroit	Series 60 DI		ULSD	400	5821	0.43
508604	Kaleetan	Ferry	Washington			auxiliary	Detroit	Series 60 DI		ULSD	400	3045	0.43
508604	Kaleetan	Ferry	Washington			auxiliary	Detroit	Series 60 DI		ULSD	400	3035	0.43
508604	Kaleetan	Ferry	Washington			auxiliary	Detroit	6V92		ULSD	355	44	0.43
508604	Kaleetan	Ferry	Washington			boiler	Weil McLain			ULSD	60		0.43
508604	Kaleetan	Ferry	Washington	1		boiler	Weil McLain			ULSD	60	1500	0.43
1229902	Kennewick	Ferry	Washington			Propulsion	EMD	710G7C-T2		ULSD	3000	4060	0.34
1229902	Kennewick	Ferry	Washington			Propulsion	EMD	710G7C-T2		ULSD	3000	4060	0.34
1229902	Kennewick	Ferry	Washington			auxiliary	Detroit	Series 60 DI		ULSD			0.43
1229902	Kennewick	Ferry	Washington			auxiliary	Detroit	Series 60 DI		ULSD			0.43
1229902	Kennewick	Ferry	Washington			boiler	Weil McLain			ULSD	60		0.43
1229902	Kennewick	Ferry	Washington			boiler	Weil McLain			ULSD	60		0.43
630023	Kitsap	Ferry	Washington			Propulsion	GE	7FDM12EF		ULSD	2500	5882	0.34
630023	Kitsap	Ferry	Washington			Propulsion	GE	7FDM12EF		ULSD	2500	5882	0.34
630023	Kitsap	Ferry	Washington			auxiliary	Detroit	Series 60 DI		ULSD	400		0.43
630023	Kitsap	Ferry	Washington			auxiliary	Detroit	Series 60 DI		ULSD	400		0.43
630023	Kitsap	Ferry	Washington			auxiliary	Detroit	Series 60 DI		ULSD	400	5588	0.43
630023	Kitsap	Ferry	Washington			auxiliary	Detroit	Series 60 DI		ULSD	168	24	0.43
630023	Kitsap	Ferry	Washington			boiler	Seattle Boile			ULSD	60	3000	0.43
630023	Kitsap	Ferry	Washington			boiler	Seattle Boile			ULSD	60	3000	0.43
627507	Kittitas	Ferry	Washington			Propulsion	GE	7FDM12EF		ULSD	2500	4772	0.34
627507	Kittitas	Ferry	Washington			Propulsion	GE .	7FDM12EF		ULSD	2500		0.34
627507	Kittitas	Ferry	Washington			auxiliary	Detroit	Series 60 DI		ULSD	400		0.43
627507	Kittitas	Ferry	Washington			auxiliary	Detroit	Series 60 DI		ULSD	400		0.43
627507	Kittitas	Ferry	Washington		5	auxiliary	Detroit	Series 60 DI	2003	ULSD	400	3142	0.43

				Engin	e							
Vessel ID	Vessel Name	Type	Owner Name	ID User	Engine Type	Engine MFR	Engine Model	Engine Year	Fuel	HP		Load
627507	Kittitas	Ferry	Washington		6 auxiliary	Detroit	Series 6V71		ULSD	168	36	0.43
627507	Kittitas	Ferry	Washington		7 boiler	Seattle Boile			ULSD	60		0.43
627507	Kittitas	Ferry	Washington		8 boiler	Seattle Boile			ULSD	60		0.43
277872	Klahowya	Ferry	Washington		1 Propulsion		645 7B		ULSD	1250	5739	0.34
277872	Klahowya	Ferry	Washington		2 Propulsion		645 7B		ULSD	1250	5739	0.34
277872	Klahowya	Ferry	Washington		3 auxiliary	Cummins	NTA 855		ULSD	325	61	0.43
277872 277872	Klahowya Klahowya	Ferry Ferry	Washington Washington		4 auxiliary 5 boiler	Cummins Weil McLai	NTA 855		ULSD ULSD	325 60	31 0	0.43 0.43
PSFML	MARY L	Ferry	HORLUCK		1 Propulsion		11		ULSD	400	4000	0.43
678705	MCNEIL	Ferry	WASHING		1 Propulsion		8V71		ULSD	300	2900	0.34
678705	MCNEIL	Ferry	WASHING		2 Propulsion		8V71		ULSD	300	2900	0.34
678705	MCNEIL	Ferry	WASHING		3 auxiliary	Lugger	0 7 7 1		ULSD	16	2900	0.43
510289	NEIL HENLY	Ferry	MCNEIL IS		1 Propulsion		D343		ULSD	335	2600	0.34
510289	NEIL HENLY	Ferry	MCNEIL IS		2 Propulsion		D343		ULSD	335	2600	0.34
510289	NEIL HENLY	Ferry	MCNEIL IS		3 auxiliary	Kato			ULSD	27	2600	0.43
510289	NEIL HENLY	Ferry	MCNEIL IS		4 auxiliary	Yanmar			ULSD	30		0.43
1061310	Puyallup	Ferry	Washington		1 Propulsion		710 G7B		ULSD	3300	6717	0.34
1061310	Puyallup	Ferry	Washington		2 Propulsion		710 G7B		ULSD	3300	6717	0.34
1061310	Puyallup	Ferry	Washington		3 Propulsion		710 G7B		ULSD	3300	6717	0.34
1061310	Puyallup	Ferry	Washington		4 Propulsion		710 G7B	1999	ULSD	3300	6717	0.34
1061310	Puyallup	Ferry	Washington		5 auxiliary	Cat	3412		ULSD	719	1691	0.43
1061310	Puyallup	Ferry	Washington		6 auxiliary	Cat	3412	1999	ULSD	831	202	0.43
1061310	Puyallup	Ferry	Washington		7 boiler	Weil McLai	n 888	1999	ULSD	60	600	0.43
1061310	Puyallup	Ferry	Washington		8 boiler	Weil McLai	n 888	1999	ULSD	60	600	0.43
PSFRH	Red Head	Ferry	Puget Sound	1	1 Propulsion			1994	ULSD	900	800	0.34
251646	Rhododendron	Ferry	Washington		3 auxiliary	Cummins	6CTA8.3-G	1990	ULSD	277	5088	0.43
251646	Rhododendron	Ferry	Washington		4 auxiliary	Cummins	6CTA8.3-G	1990	ULSD	277	847	0.43
251646	Rhododendron	Ferry	Washington		5 auxiliary	Cummins	6BT5.9	1990	ULSD	166	25	0.43
251646	Rhododendron	Ferry	Washington		6 boiler	Weil McLai	n H1088WS	1990	ULSD	60	2500	0.43
251646	Rhodondendron	Ferry	Washington		1 Propulsion	Wartsilla	624 TS	1990	ULSD	1086	6218	0.34
251646	Rhodondendron	Ferry	Washington		2 Propulsion	Wartsilla	624 TS	1990	ULSD	1086	6218	0.34
1229903	Salish	Ferry	Washington		1 Propulsion	EMD	710G7C-T2	2007	ULSD	3000	2707	0.34
1229903	Salish	Ferry	Washington		2 Propulsion	EMD	710G7C-T2	2007	ULSD	3000	2707	0.34
1229903	Salish	Ferry	Washington		3 auxiliary	Detroit	Series 60 DI	2006	ULSD			0.43
1229903	Salish	Ferry	Washington		4 auxiliary	Detroit	Series 60 DI	2006	ULSD			0.43
1229903	Salish	Ferry	Washington		5 boiler	Weil McLai	n 88	2006	ULSD	60		0.43
1229903	Salish	Ferry	Washington		6 boiler	Weil McLai	n 88	2006	ULSD	60		0.43
662478	Sealth	Ferry	Washington		1 Propulsion		7FDM12EF	2004	ULSD	2500	5438	0.34
662478	Sealth	Ferry	Washington		2 Propulsion		7FDM12EF		ULSD	2500	5438	0.34
662478	Sealth	Ferry	Washington		3 auxiliary	Detroit	Series 60 DI		ULSD	400		0.43
662478	Sealth	Ferry	Washington		4 auxiliary	Detroit	Series 60 DI		ULSD	400	796	0.43
662478	Sealth	Ferry	Washington		5 auxiliary	Detroit	Series 60 DI		ULSD	400	4821	0.43
662478	Sealth	Ferry	Washington		6 auxiliary	Detroit	Series 6V71		ULSD	168	24	0.43
662478	Sealth	Ferry	Washington		7 boiler	Seattle Boile			ULSD	60	1200	0.43
662478	Sealth	Ferry	Washington		8 boiler	Seattle Boile			ULSD	60	1200	0.43
544785	Spokane	Ferry	Washington		1 Propulsion		645 F7B		ULSD	2875	6311	0.34
544785	Spokane	Ferry	Washington		2 Propulsion		645 F7B		ULSD	2875	6311	0.34
544785	Spokane	Ferry	Washington		3 Propulsion		645 F7B		ULSD	2875	6311	0.34
544785	Spokane	Ferry	Washington		4 Propulsion		645 F7B		ULSD	2875	6311	0.34
544785	Spokane	Ferry	Washington		5 auxiliary	Detroit	Series 60 DI		ULSD	400	6393	0.43
544785	Spokane	Ferry	Washington		6 auxiliary	Cummins	KTA38		ULSD	1210		0.43
544785	Spokane	Ferry	Washington		7 auxiliary	Cummins	KTA38		ULSD	1210	3087	0.43
544785	Spokane	Ferry	Washington		8 auxiliary	Detroit	Series 60 DI		ULSD	400		0.43
544785	Spokane	Ferry	Washington		9 boiler		n PL-1194S/F		ULSD	60	3000	0.43
544785	Spokane	Ferry	Washington		10 boiler 1 Propulsion		n PL-1194S/F		ULSD	60	3000	0.43
PSFS	STEILICOOM	Ferry	WASHING		2 auxiliary	Cummins	6 Cyl.		ULSD	250		0.34
PSFS 1052576	STEILICOOM	Ferry	WASHING Washington		2 auxiliary 1 Propulsion	EMD	710 G7B		ULSD ULSD	20 3300	500 5345	0.43 0.34
1052576	Tacoma	Ferry			2 Propulsion		710 G7B 710 G7B			3300	5345 5345	
	Tacoma	Ferry	Washington		3 Propulsion				ULSD	3300	5345 5345	0.34
1052576	Tacoma	Ferry	Washington		•		710 G7B		ULSD	3300	5345 5345	0.34
1052576	Tacoma	Ferry	Washington		4 Propulsion		710 G7B		ULSD	3300 710	5345	0.34
1052576	Tacoma	Ferry	Washington		5 auxiliary	Cat	3412		ULSD	719		0.43
1052576	Tacoma	Ferry	Washington		6 auxiliary	Cat	3412		ULSD	831	46 300	0.43
1052576	Tacoma	Ferry	Washington		7 boiler 8 boiler	Weil McLai			ULSD	60	300	0.43
1052576	Tacoma	Ferry	Washington			Weil McLai			ULSD	1250	300 5707	0.43
278437	Tillikum	Ferry	Washington		1 Propulsion 2 Propulsion		645 7B		ULSD	1250	5707 5707	0.34
278437	Tillikum	Ferry	Washington		2 Fropulsion	EMI	645 7B	1939	ULSD	1250	5707	0.34

				Engine	:							
		_	Owner	ID	Engine	Engine	Engine	Engine			Annual	
Vessel ID	Vessel Name	Type	Name	User	Type	MFR	Model	Year	Fuel	HP		Load
278437	Tillikum	Ferry	Washington		3 auxiliary	Cummins	NTA 855		ULSD	425	249	0.43
278437	Tillikum	Ferry	Washington		4 auxiliary	Cummins	NTA 855		ULSD	325	33	0.43
278437	Tillikum	Ferry	Washington		5 boiler	Weil McLain			ULSD	60	100	0.43
8520757	Victoria Clipper	Ferry	Victoria Clip		1 Propulsion	MTU	16V396T74I		ULSD	2500	1000	0.34
8520757	Victoria Clipper	Ferry	Victoria Clip		2 Propulsion	MTU	16V396T74I		ULSD	2500	1000	0.34
965831	Victoria Clipper III	Ferry	Victoria Clip		1 Propulsion	Detroit	16V149TI	1989	ULSD	1600	1200	0.34
965831	Victoria Clipper III	Ferry	Victoria Clip	2	2 Propulsion	Detroit	16V149TI	1989	ULSD	1600	1200	0.34
991479	Victoria Clipper IV	Ferry	Victoria Clip		1 Propulsion	MTU	16V396T74I	1993	ULSD	4400	2000	0.34
991479	Victoria Clipper IV	Ferry	Victoria Clip	2	2 Propulsion	MΤU	16V396T74I	1993	ULSD	4000	2000	0.34
546382	Walla Walla	Ferry	Washington		1 Propulsion	EMD	645 F7B	2005	ULSD	2875	5988	0.34
546382	Walla Walla	Ferry	Washington	2	2 Propulsion	EMD	645 F7B	2005	ULSD	2875	5988	0.34
546382	Walla Walla	Ferry	Washington		3 Propulsion	EMD	645 F7B	2005	ULSD	2875	5988	0.34
546382	Walla Walla	Ferry	Washington	4	4 Propulsion	EMD	645 F7B	2005	ULSD	2875	5988	0.34
546382	Walla Walla	Ferry	Washington		5 auxiliary	Detroit	Series 60 DI	2002	ULSD	400	3103	0.43
546382	Walla Walla	Ferry	Washington		6 auxiliary	Cummins	KTA38	2002	ULSD	1210	529	0.43
546382	Walla Walla	Ferry	Washington		7 auxiliary	Cummins	KTA38		ULSD	1210	2731	0.43
546382	Walla Walla	Ferry	Washington		8 auxiliary	Detroit	Series 60 DI		ULSD	400	24	0.43
546382	Walla Walla	Ferry	Washington		boiler		PL-1194S/F		ULSD	60	1000	0.43
546382	Walla Walla	Ferry	Washington) boiler		PL-1194S/F		ULSD	60	1000	0.43
		•	_		1 Propulsion	EMD				3300		0.34
1061309	Wenatchee Wenatchee	Ferry	Washington		2 Propulsion		710 G7B		ULSD			
1061309		Ferry	Washington			EMD	710 G7B		ULSD	3300	6176	0.34
1061309	Wenatchee	Ferry	Washington		3 Propulsion	EMD	710 G7B		ULSD	3300		0.34
1061309	Wenatchee	Ferry	Washington		4 Propulsion	EMD	710 G7B		ULSD	3300	6176	0.34
1061309	Wenatchee	Ferry	Washington		5 auxiliary	Cat	3412		ULSD	719		0.43
1061309	Wenatchee	Ferry	Washington		6 auxiliary	Cat	3412		ULSD	831	131	0.43
1061309	Wenatchee	Ferry	Washington		7 boiler				ULSD	60	300	0.43
1061309	Wenatchee	Ferry	Washington	:	8 boiler			1998	ULSD	60	300	0.43
288249	WHATCOM CHIEF	Ferry	WHATCOM		1 Propulsion	Cat		2004	ULSD	360	6000	0.34
288249	WHATCOM CHIEF	Ferry	WHATCOM	2	2 Propulsion	Cat		2004	ULSD	360	6000	0.34
288249	WHATCOM CHIEF	Ferry	WHATCOM		3 auxiliary			2004	ULSD	20	3250	0.43
288249	WHATCOM CHIEF	Ferry	WHATCOM	4	4 auxiliary			2004	ULSD	13	3250	0.43
511823	Yakima	Ferry	Washington		1 Propulsion	EMD	645 E5	2000	ULSD	2000	4788	0.34
511823	Yakima	Ferry	Washington	2	2 Propulsion	EMD	645 E5	2000	ULSD	2000	4788	0.34
511823	Yakima	Ferry	Washington		3 Propulsion	EMD	645 E5	2000	ULSD	2000	4788	0.34
511823	Yakima	Ferry	Washington		4 Propulsion	EMD	645 E5		ULSD	2000	4788	0.34
511823	Yakima	Ferry	Washington		5 auxiliary	Detroit	Series 60 DI		ULSD	400		0.43
511823	Yakima	Ferry	Washington		6 auxiliary	Detroit	Series 60 DI		ULSD	400		0.43
511823	Yakima	Ferry	Washington		7 auxiliary	Detroit	Series 60 DI		ULSD	400	3099	0.43
511823	Yakima	Ferry	Washington		8 auxiliary	Detroit	Series 6V71		ULSD	355	23	0.43
511823	Yakima	Ferry	Washington		boiler	Weil McLain			ULSD	60	1000	0.43
511823	Yakima	Ferry	Washington) boiler	Weil McLain			ULSD	60	1000	0.43
WMEC 618		Government	USCG		1 Propulsion	Alco	251CE		ULSD	2500	40	0.51
WMEC 618		Government	USCG		2 Propulsion	Alco	251CE		ULSD	2500	40	0.51
PSGAD	Adelie	Government	USCG		1 Propulsion	MTU	8V396TE94		ULSD	1500	2000	0.51
PSGAD	Adelie	Government	USCG						ULSD	1500	2000	0.51
					2 Propulsion	WITO	8V396TE94					
231095	Alki	Government	Seattle Fire I		1 Propulsion				ULSD	500		0.51
231095	Alki	Government	Seattle Fire I		2 Propulsion				ULSD	500		0.51
231095	Alki	Government	Seattle Fire I		3 auxiliary				ULSD	160		0.43
231095	Alki	Government	Seattle Fire I		4 auxiliary				ULSD	160	7	0.43
231095	Alki	Government	Seattle Fire I		5 auxiliary				ULSD	160		0.43
231095	Alki	Government	Seattle Fire I		6 auxiliary				ULSD	160		0.43
231095	Alki	Government	Seattle Fire I		7 auxiliary				ULSD	160		0.43
231095	Alki	Government	Seattle Fire I		8 auxiliary			1940	ULSD	160	57	0.43
231095	Alki	Government	Seattle Fire I	9	9 auxiliary			1940	ULSD	160	193	0.43
231095	Alki	Government	Seattle Fire I	10) auxiliary			1940	ULSD	160	8	0.43
231095	Alki	Government	Seattle Fire I	1	1 auxilia r y			1940	ULSD	160	45	0.43
231095	Alki	Government	Seattle Fire I	12	2 auxiliary			1940	ULSD	160	45	0.43
231095	Alki	Government	Seattle Fire I	1.	3 auxiliary			1940	ULSD	160	45	0.43
231095	Alki	Government	Seattle Fire I	14	4 auxiliary			1940	ULSD	160	45	0.43
231095	Alki	Government	Seattle Fire I		5 auxiliary				ULSD	160		0.43
231095	Alki	Government	Seattle Fire I		auxiliary				ULSD	160		0.43
WPB 87301		Government	USCG		1 Propulsion	MTU	MTU 8V396		ULSD	1500	1800	0.51
WPB 87301		Government	USCG			MTU	MTU 8V396		ULSD	1500	1800	0.51
WPB 87354		Government	USCG		1 Propulsion	MTU	MTU 8V396		ULSD	1500	1800	0.51
WIID 07334							MTU 8V396		ULSD	1500	1800	0.51
W/DR 97254	BlueShark						WILL (10 V 37)	ואספו	ULOD			U.31
WPB 87354		Government	USCG Seattle Fire I		2 Propulsion	11110						
WPB 87354 674678 674678	BlueShark Chief Seattle Chief Seattle	Government Government	Seattle Fire I Seattle Fire I		Propulsion Propulsion Propulsion			1984	ULSD ULSD	1000 1000	339 339	0.51 0.51

				Engin	e								
Vessel ID	Vessel Name	Type	Owner Name	ID User		Engine Type	Engine MFR	Engine Model	Engine Year	Fuel	HP	Annual Hours	Load
674678	Chief Seattle	Government	Seattle Fire I		3	Propulsion			1984	ULSD	1000	339	0.51
674678	Chief Seattle	Government	Seattle Fire I			auxiliary				ULSD	140	255	0.43
674678	Chief Seattle	Government	Seattle Fire I			auxiliary		TT		ULSD	140	226	0.43
CG044937	Cuttyhunk	Government	USCG			Propulsion		V16		ULSD	2880	1200	0.51
CG044937 7333195	Cuttyhunk	Government Government	USCG NOAA			Propulsion Propulsion		V16		ULSD ULSD	2880 534	1200 50	0.51 0.51
7333195	David Starr Jordan David Starr Jordan	Government	NOAA			Propulsion	White Supe			ULSD	534	50	0.51
PSGDB	DAWN BREAKER	Government	STATE OF			Propulsion	winte oupe	1101		ULSD	175	200	0.51
PSGDB	DAWN BREAKER		STATE OF			Propulsion				ULSD	175	200	0.51
PSGDM1	DOC MEDIC 1	Government	WASHING'		1	Propulsion	Chevy	350	1988	Gasoline	300	150	0.51
PSGDP2	DOC PATROL 2	Government	WASHING		1	Propulsion	Mercruiser	350	1988	Gasoline	300	250	0.51
PSGDP3	DOC PATROL 3	Government	WASHING			Propulsion	Mercruiser	350		Gasoline	300	250	0.51
PSGDP5	DOC PATROL 5	Government	WASHING			Propulsion	Chevy	350		Gasoline	300	250	0.51
F0418	Engine I	Government	Seattle Fire I			Propulsion				ULSD	715	122	0.51
F0418	Engine I	Government	Seattle Fire I			Propulsion				ULSD	715 19	123 39	0.51 0.43
F0418 F0418	Engine I Engine I	Government Government	Seattle Fire I Seattle Fire I			auxiliary auxiliary				ULSD ULSD	19	39	0.43
WAGB 20	Healy	Government	USCG	•		Propulsion	Sulzer	Sulzer 12Z		ULSD	1500	1800	0.51
WAGB 20	Healy	Government	USCG			Propulsion		Sulzer 12Z		ULSD	1500	1800	0.51
CG060360	Henry Blake	Government	USCG			Propulsion		3508		ULSD	2880	1200	0.51
CG060360	Henry Blake	Government	USCG		2	Propulsion	CAT	3508	1988	ULSD	2880	1200	0.51
CG830693	John H. Cobb	Government	NOAA		1	Propulsion	FM		1988	ULSD	325	50	0.51
PSGK	KIMBERLY	Government	WASHING			Propulsion	GM	V12-71	1988	ULSD	400	2700	0.51
PSGK	KIMBERLY	Government	WASHING			Propulsion		V12-71		ULSD	400	2700	0.51
PSGK	KIMBERLY	Government	WASHING			auxiliary	GM	361S		ULSD	43	2700	0.43
F0419	Leschi	Government	Seattle Fire I			Propulsion				ULSD	1555	193	0.51
F0419 F0419	Leschi Leschi	Government Government	Seattle Fire I Seattle Fire I			Propulsion auxiliary				ULSD ULSD	1555 1555	193 22	0.51 0.43
F0419	Leschi	Government	Seattle Fire I			auxiliary				ULSD	1555	21	0.43
F0419	Leschi	Government	Seattle Fire I			auxiliary				ULSD	174	115	0.43
F0419	Leschi	Government	Seattle Fire I			auxiliary				ULSD	174	127	0.43
CG325332	McArthur II	Government	NOAA			Propulsion	GE			ULSD	800	50	0.51
CG325332	McArthur II	Government	NOAA		2	Propulsion	GE		1985	ULSD	800	50	0.51
CG044855	Mellon	Government	USCG		1	Propulsion	F-M	38TD8	1988	ULSD	3500	40	0.51
CG044855	Mellon	Government	USCG			Propulsion		38TD8		ULSD	3500	40	0.51
CG004637	Midgett	Government	USCG			Propulsion		38TD8		ULSD	3500	40	0.51
CG004637	Midgett	Government	USCG			Propulsion		38TD8		ULSD	3500	40	0.51
508932 PSGM	Miller Freeman MILLEWA	Government Government	NOAA Washing			Propulsion Propulsion		V12		ULSD ULSD	2200 400	50 2200	0.51 0.51
PSGM	MILLEWA	Government	WASHING'			Propulsion		V12 V12		ULSD	400	2200	0.51
PSGM	MILLEWA	Government	WASHING'			auxiliary	GM	27		ULSD	40	2200	0.43
PSGM	MILLEWA	Government	WASHING'			auxiliary	GM	27		ULSD	40	2200	0.43
PSGMR	Mount Rainier	Government	NOAA		1	Propulsion	EMD		1968	ULSD	1200	50	0.51
PSGMR	Mount Rainier	Government	NOAA		2	Propulsion	EMD			ULSD	1200	50	0.51
CG608131	Osprey	Government	USCG			Propulsion		8V396TE9		ULSD	1600	1800	0.51
CG608131	Osprey	Government	USCG			Propulsion	MTU	8V396TE9		ULSD	1600	1800	0.51
SPP1 SPP1	Patrol 1	Government	Seattle Police			Propulsion				ULSD ULSD	375	1083	0.51
SPP1 SPP15	Patrol 1 Patrol 15	Government Government	Seattle Police Seattle Police			Propulsion Propulsion				Gasoline	375 300	1083 192	0.51 0.51
SPP16	Patrol 16	Government	Seattle Police			Propulsion				Gasoline	80	50	0.51
SPP2	Patrol 2	Government	Seattle Polic			Propulsion				ULSD	587	100	0.51
SPP2	Patrol 2	Government	Seattle Polic			Propulsion				ULSD	587	100	0.51
SPP3	Patrol 3	Government	Seattle Police	t	1	Propulsion			2009	Gasoline	225	729	0.51
SPP3	Patrol 3	Government	Seattle Police	t	2	Propulsion			2009	Gasoline	225	729	0.51
SPP4	Patrol 4	Government	Seattle Police			Propulsion				ULSD	660	1400	0.51
SPP4	Patrol 4	Government	Seattle Polic			Propulsion				ULSD	660	1400	0.51
SPP4	Patrol 4	Government	Seattle Polic			auxiliary				ULSD	425	1400	0.43
SPP5 SPP6	Patrol 5 Patrol 6	Government	Seattle Police Seattle Police			Propulsion Propulsion				Gasoline Gasoline	250 250	192	0.51 0.51
SPP6 SPP6	Patrol 6	Government	Seattle Police			1				Gasoline	250	50	0.51
SPP6 SPP6	Patrol 6	Government Government	Seattle Police			Propulsion Propulsion				Gasoline		50 50	0.51
SPP7	Patrol 7	Government	Seattle Polic			Propulsion				Gasoline	140	636	0.51
SPP8	Patrol 8	Government	Seattle Polic			Propulsion				Gasoline	140	286	0.51
SPPX1	Patrol X1	Government	Seattle Polic			Propulsion				Gasoline		40	0.51
605216	PEGGY N	Government	WASHING		1	Propulsion	Detroit	8V71	1988	ULSD	700	2500	0.51
605216	PEGGY N	Government	WASHING			Propulsion		8V71		ULSD	700	2500	0.51
605216	PEGGY N	Government	WASHING		3	Propulsion	Detroit	8V71	1988	ULSD	700	2500	0.51

Vessel ID	Vessel Name	Type	Owner Name	Engin ID User	e Engine Type	Engine MFR	Engine Model	Engine Year	Fuel	HP	Annual Hours	Load
605216	PEGGY N	Government	WASHING	Osci	4 auxiliary	Detroit	271		ULSD	40	2500	0.43
605216	PEGGY N	Government	WASHING		5 auxiliary	Detroit	271		ULSD	40	2500	0.43
	Polar Sea	Government	USCG		1 Propulsion	ALCO	F-M - ALCO		ULSD	1500	1800	0.51
	Polar Sea	Government	USCG		2 Propulsion		F-M - ALCO		ULSD	1500	1800	0.51
WAGB 10		Government	USCG		1 Propulsion		F-M - ALCO		ULSD	1500	1800	0.51
WAGB 10		Government	USCG		2 Propulsion		F-M - ALCO		ULSD	1500	1800	0.51
WPB 87368			USCG		1 Propulsion		MTU 8V396		ULSD			0.51
		Government	USCG		1	MTU	MTU 8V396		ULSD	1500 1500	1800	0.51
WPB 87368		Government			2 Propulsion						1800	
WPB 87374		Government	USCG		1 Propulsion		MTU 8V396		ULSD	1500	1800	0.51
WPB 87374		Government	USCG		2 Propulsion	MTU	MTU 8V396		ULSD	1500	1800	0.51
PSGSL	Sea Lion	Government	USCG		1 Propulsion		8V396TE94		ULSD	1500	1800	0.51
PSGSL	Sea Lion	Government	USCG		2 Propulsion	MTU	8V396TE94		ULSD	1500	1800	0.51
WPB 87358		Government	USCG		1 Propulsion	MTU	MTU 8V396		ULSD	1500	1800	0.51
WPB 87358		Government	USCG		2 Propulsion	MTU	MTU 8V396		ULSD	1500	1800	0.51
WPB 87366	•	Government	USCG		1 Propulsion	MTU	MTU 8V396		ULSD	1500	1800	0.51
WPB 87366	•	Government	USCG		2 Propulsion	MTU	MTU 8V396		ULSD	1500	1800	0.51
	WA DNR Enforce		STATE OF		1 Propulsion		4-Stroke		Gasolin		200	0.51
	WA DNR Enforce		STATE OF		1 Propulsion		4-Stroke		Gasolin		200	0.51
WADNRE1	WA DNR Enforce	eme Government	STATE OF		1 Propulsion		4-Stroke	2001	Gasolin	250	200	0.51
WADNRE1	WA DNR Enforce	me Government	STATE OF		1 Propulsion		4-Stroke	2001	Gasolin	250	200	0.51
WADNRE1	WA DNR Enforce	eme Government	STATE OF		1 Propulsion		4-Stroke	2001	Gasolin	250	200	0.51
WADNRE1	WA DNR Enforce	eme Government	STATE OF		1 Propulsion		4-Stroke	2001	Gasolin	250	200	0.51
WADNRE1	WA DNR Enforce	eme Government	STATE OF		1 Propulsion		4-Stroke	2001	Gasolin	250	200	0.51
WADNRE1	WA DNR Enforce	me Government	STATE OF		1 Propulsion		4-Stroke	2001	Gasolin	250	200	0.51
WADNRE1	WA DNR Enforce	me Government	STATE OF		1 Propulsion		4-Stroke	2001	Gasolin	250	200	0.51
WADNRE2	WA DNR Enforce	eme Government	STATE OF		1 Propulsion		4-Stroke	2001	Gasolin	250	200	0.51
	WA DNR Enforce		STATE OF		1 Propulsion		4-Stroke		Gasolin		200	0.51
	WA DNR Enforce		STATE OF		1 Propulsion		4-Stroke		Gasolin		200	0.51
	WA DNR Enforce		STATE OF		1 Propulsion		4-Stroke		Gasolin		200	0.51
	WA DNR Enforce		STATE OF		1 Propulsion		4-Stroke		Gasolin		200	0.51
	WA DNR Enforce		STATE OF		1 Propulsion		4-Stroke		Gasolin		200	0.51
	WA DNR Enforce		STATE OF		1 Propulsion		4-Stroke		Gasolin		200	0.51
	WA DNR Enforce		STATE OF		1 Propulsion		4-Stroke		Gasolin		200	0.51
PSGW	Wahoo	Government	USCG		1 Propulsion	MTU	8V396TE94		ULSD	1500	1800	0.51
526883	Alison S				•					300		0.31
	Alison S	Harbor Tug	Island Tug &		1 Propulsion	5			ULSD	300	1200	
526883		Harbor Tug	Island Tug &		2 Propulsion	John Deere			ULSD		1200	0.31
526883	Alison S	Harbor Tug	Island Tug &		3 Propulsion	John Deere			ULSD	300	1200	0.31
526883	Alison S	Harbor Tug	Island Tug &		4 auxiliary	GM	671		ULSD	100	600	0.43
526883	Alison S	Harbor Tug	Island Tug &		5 auxiliary	GM	671		ULSD	100	600	0.43
502662	Alyssa Ann	Harbor Tug	Harley Marir		1 Propulsion	EMD			ULSD	1050	1968	0.31
502662	Alyssa Ann	Harbor Tug	Harley Marir		2 Propulsion	EMD			ULSD	1050	1977	0.31
502662	Alyssa Ann	Harbor Tug	Harley Marir		3 auxiliary				ULSD	95	4009	0.43
502662	Alyssa Ann	Harbor Tug	Harley Marir		4 auxiliary			1978	ULSD	95	4283	0.43
WDE6211	Bandit	Harbor Tug	Campbell Ma		1 Propulsion				ULSD	470	200	0.31
WDF2810	Blarney	Harbor Tug	Campbell Ma		1 Propulsion			1984	ULSD	2150	750	0.31
WDF2810	Blarney	Harbor Tug	Campbell Ma		2 auxiliary	Caterpillar	3304		ULSD	80	350	0.43
WDF2810	Blarney	Harbor Tug	Campbell Ma		3 auxiliary	Caterpillar	3304		ULSD	80	350	0.43
WDF2810	Blarney	Harbor Tug	Campbell Ma		4 auxiliary	Caterpillar	3304		ULSD	201	50	0.43
PSHTB	Blueberry	Harbor Tug	Fremont Tug		1 Propulsion	GM	671	1977	ULSD	165	500	0.31
PSHTB	Blueberry	Harbor Tug	Fremont Tug		2 Propulsion	GM	671	1977	ULSD	165	500	0.31
292934	Brian S	Harbor Tug	Harley Marir		1 Propulsion	EMD	12-645-E2		ULSD		639	0.31
292934	Brian S	Harbor Tug	Harley Marir		2 Propulsion	EMD	12-645-E2		ULSD		644	0.31
292934	Brian S	Harbor Tug	Harley Marin		3 auxiliary	Detroit	Apr-71		ULSD		1131	0.43
292934	Brian S	Harbor Tug	Harley Marir		4 auxiliary	Detroit	Apr-71		ULSD		755	0.43
CG058217	Camano	Harbor Tug	Dunlap Tow		1 Propulsion	CAT	3306DITA	1984	ULSD	220	832	0.31
583332	Catherine Quigg	Harbor Tug	Harley Marir		1 Propulsion	Detroit	12-149		ULSD	675	272	0.31
583332	Catherine Quigg	Harbor Tug	Harley Marir		2 Propulsion	Detroit	12-149		ULSD	675	246	0.31
583332	Catherine Quigg	Harbor Tug	Harley Marir		3 auxiliary	Detroit	12-149 Apr-71		ULSD	50	659	0.43
583332	, 00	U			4 auxiliary	Detroit	-		ULSD			0.43
	Catherine Quigg	Harbor Tug	Harley Marir		-		Jun-71			50 340	987	
529534	Cedar King	Harbor Tug	Dunlap Tow		1 Propulsion	CAT	343		ULSD	340	2150	0.31
7514236	CF Campbell	Harbor Tug	Harley Marir		1 Propulsion	Caterpillar	3516B		ULSD	2200	3613	0.31
7514236	CF Campbell	Harbor Tug	Harley Marir		2 Propulsion	Caterpillar	3516B		ULSD	2200	3586	0.31
7514236	CF Campbell	Harbor Tug	Harley Marir		3 auxiliary	GM	Jun-71		ULSD	95	3729	0.43
7514236	CF Campbell	Harbor Tug	Harley Marir		4 auxiliary	GM	Jun-71		ULSD	95	5041	0.43
263365	Dixie	Harbor Tug	Fremont Tug		1 Propulsion	Cummins		1951	ULSD	500	500	0.31
								40.4	TILCD	450	4.50	0.24
1187285	Driftwood Driftwood	Harbor Tug	Campbell Ma		1 Propulsion			1945	ULSD	450	150	0.31

		an .	Owner	Engin ID	Engine	Engine	Engine	Engine	ъ.		Annual	
Vessel ID	Vessel Name	Type	Name	User	Type	MFR Catagoillan	Model	Year	Fuel ULSD			Load
588535 588535	Eagle Eagle	Harbor Tug Harbor Tug	Harley Marin Harley Marin		1 Propulsio 2 Propulsio	1	3512B 3512B		ULSD	1500 1500	2282 2282	0.31
588535	Eagle	Harbor Tug	Harley Marir		3 auxiliary	Detroit	Jun-71		ULSD	95	3897	0.43
588535	Eagle	Harbor Tug	Harley Marin		4 auxiliary	Detroit	Jun-71		ULSD	95	4107	0.43
521907	Ernest Campbell	Harbor Tug	Harley Marin		1 Propulsio		12-645-E2		ULSD	1500	1378	0.31
521907	Ernest Campbell	Harbor Tug	Harley Marin		2 Propulsio		12-645-E2		ULSD	1500	1367	0.31
521907	Ernest Campbell	Harbor Tug	Harley Marin		3 auxiliary	Detroit	Jun-71	1969	ULSD	95	1702	0.43
521907	Ernest Campbell	Harbor Tug	Harley Marir		4 auxiliary	Detroit	Jun-71	1969	ULSD	95	1285	0.43
PSHTF	Fidalge	Harbor Tug	Dunlap Tow	,	1 Propulsio	on CAT	3406	1998	ULSD	365	4368	0.31
PSHTF	Fidalge	Harbor Tug	Dunlap Tow	,	2 Propulsio	on Cat	3406	1998	ULSD	365	4368	0.31
636922	Flyer	Harbor Tug	Western Tov	:	1 Propulsio	on Cummins	1150	1981	ULSD	400	1200	0.31
WN8626RF	F General Lee	Harbor Tug	Fremont Tu	1	1 Propulsio	on Detroit	671	1995	ULSD	165	500	0.31
	General Lee	Harbor Tug	Fremont Tu	1	2 Propulsio		671	1995	ULSD	165	500	0.31
639797	Gladys M	Harbor Tug	Manson Cor	1	1 Propulsion		3508 MARL		ULSD	1000	3893	0.31
639797	Gladys M	Harbor Tug	Manson Cor		2 Propulsio	•	3508 MARL		ULSD	1000	3893	0.31
639797	Gladys M	Harbor Tug	Manson Cor		3 auxiliary	Toyota	M-33C.2		ULSD	48	2592	0.43
639797	Gladys M	Harbor Tug	Manson Cor		4 auxiliary	Toyota	M-33C.2		ULSD	48	2612	0.43
639797	Gladys M	Harbor Tug	Manson Cor		5 auxiliary	Caterpillar	3054 CIPU		ULSD	120	243	0.43
512190	Grace	Harbor Tug	Fremont Tu		1 Propulsio		D200	1968	ULSD	365	500	0.31
507652	Grizzly	Harbor Tug	Harley Marin		1 Propulsio				ULSD		700	0.31
507652	Grizzly	Harbor Tug	Harley Marin		2 Propulsio		D398		ULSD		700	0.31
507652 507652	Grizzly	Harbor Tug	Harley Marin		3 auxiliary		4045TF280		ULSD		183	0.43
564341	Grizzly	Harbor Tug	Harley Marin Manson Cor		4 auxiliary 1 Propulsio	-	2509 MAP	2001	ULSD ULSD	1000	186 2518	0.43
564341	Harry M Harry M	Harbor Tug Harbor Tug	Manson Cor		2 Propulsio	•	3508 MAR 3508 MAR		ULSD	1000	2479	0.31
564341	Harry M	Harbor Tug	Manson Cor		3 auxiliary		es 6-71 (1063-7		ULSD	180	532	0.43
564341	Harry M	Harbor Tug	Manson Cor		4 auxiliary		es 6-71 (1063-7		ULSD	180	7685	0.43
249861	Helen S	Harbor Tug	Island Tug 8		1 Propulsio		D348		ULSD	800	0	0.43
249861	Helen S	Harbor Tug	Island Tug 8		2 auxiliary	GM	671		ULSD	100	0	0.43
249861	Helen S	Harbor Tug	Island Tug 8		3 auxiliary	GM	671		ULSD	100	0	0.43
506094	Hornet	Harbor Tug	Western Tox		1 Propulsio		3406		ULSD	365	1000	0.31
524599	Hunter D	Harbor Tug	Harley Marin		1 Propulsio		3516A		ULSD		3823	0.31
524599	Hunter D	Harbor Tug	Harley Marir		2 Propulsio		3516A		ULSD		3823	0.31
524599	Hunter D	Harbor Tug	Harley Marii		3 auxiliary	Detroit	Jun-71		ULSD		4213	0.43
524599	Hunter D	Harbor Tug	Harley Marin		4 auxiliary	Detroit	Jun-71		ULSD		4634	0.43
299737	Island Breeze	Harbor Tug	Island Tug 8		1 Propulsio	on Cummins		1999	ULSD	550	1200	0.31
299737	Island Breeze	Harbor Tug	Island Tug 8		2 Propulsio	on Cummins		1999	ULSD	550	1200	0.31
299737	Island Breeze	Harbor Tug	Island Tug 8		3 auxiliary	GM	671	1999	ULSD	100	600	0.43
299737	Island Breeze	Harbor Tug	Island Tug &		4 auxiliary	GM	671		ULSD	100	600	0.43
299614	Island Champion	Harbor Tug	Island Tug 8		1 Propulsio		3606		ULSD	2800	1200	0.31
299614	Island Champion	Harbor Tug	Island Tug 8		2 auxiliary	GM	671		ULSD	100	600	0.43
299614	Island Champion	Harbor Tug	Island Tug 8		3 auxiliary	GM	671		ULSD	100	600	0.43
290759	Island Chief	Harbor Tug	Island Tug 8		1 Propulsio		398		ULSD	900	1200	0.31
290759	Island Chief	Harbor Tug	Island Tug 8		2 Propulsio		398		ULSD	900	1200	0.31
290759	Island Chief	Harbor Tug	Island Tug 8		3 auxiliary	GM	671		ULSD	100	600	0.43
290759 648423	Island Chief Island Eagle	Harbor Tug Harbor Tug	Island Tug & Island Tug &		4 auxiliary 1 Propulsio	GM on Detroit Die	671		ULSD ULSD	100 400	600 1200	0.43 0.31
648423	Island Eagle	Harbor Tug	Island Tug &		2 Propulsio				ULSD	400	1200	0.31
648423	Island Eagle	Harbor Tug	Island Tug 8		3 auxiliary	GM	671		ULSD	100	600	0.43
648423	Island Eagle	Harbor Tug	Island Tug 8		4 auxiliary	GM	671		ULSD	100	600	0.43
501938	Island Mist	Harbor Tug	Island Tug 8		1 Propulsio				ULSD	400	1200	0.31
501938	Island Mist	Harbor Tug	Island Tug 8		2 Propulsio				ULSD	400	1200	0.31
501938	Island Mist	Harbor Tug	Island Tug 8		3 Propulsio				ULSD	400	1200	0.31
501938	Island Mist	Harbor Tug	Island Tug 8		4 auxiliary	GM	671		ULSD	100	600	0.43
501938	Island Mist	Harbor Tug	Island Tug 8		5 auxiliary	GM	671		ULSD	100	600	0.43
510653	Island Scout	Harbor Tug	Island Tug 8		1 Propulsio		3512B		ULSD	1500	1200	0.31
510653	Island Scout	Harbor Tug	Island Tug 8		2 Propulsio		3512B		ULSD	1500	1200	0.31
510653	Island Scout	Harbor Tug	Island Tug 8		3 auxiliary	GM	671		ULSD	100	600	0.43
510653	Island Scout	Harbor Tug	Island Tug 8		4 auxiliary	GM	671	1999	ULSD	100	600	0.43
640554	Island Spirit	Harbor Tug	Island Tug 8		1 Propulsio		3512B	1981	ULSD	1250	1200	0.31
640554	Island Spirit	Harbor Tug	Island Tug 8		2 Propulsio	on CAT	3512B	1981	ULSD	1250	1200	0.31
640554	Island Spirit	Harbor Tug	Island Tug 8		3 auxiliary	GM	671	1981	ULSD	100	600	0.43
640554	Island Spirit	Harbor Tug	Island Tug 8		4 auxiliary	GM	671	1981	ULSD	100	600	0.43
294666	Island Storm	Harbor Tug	Island Tug 8		1 Propulsio	on CAT	3412	1964	ULSD	600	1200	0.31
294666	Island Storm	Harbor Tug	Island Tug 8		2 Propulsio	on CAT	3412	1964	ULSD	600	1200	0.31
294666	Island Storm	Harbor Tug	Island Tug 8		3 auxiliary	GM	671		ULSD	100	600	0.43
294666	Island Storm	Harbor Tug	Island Tug 8		4 auxiliary	GM	671	1964	ULSD	100	600	0.43

			Owner	Engine ID	Engine	Engine	Engine	Engine			Annual	
Vessel ID	Vessel Name	Type	Name	User	Type 1 Propulsion	MFR	Model	Year	Fuel	HP		Load
537733 537733	James T Quigg James T Quigg	Harbor Tug Harbor Tug	Harley Marin Harley Marin		2 Propulsion	EMD EMD	L12-645-E2 R12-645-E2		ULSD ULSD		2130 2130	0.31
537733	James T Quigg	Harbor Tug	Harley Marii		3 auxiliary	Detroit	Apr-71		ULSD		2954	0.43
537733	James T Quigg	Harbor Tug	Harley Marin		4 auxiliary	Detroit	Jun-71		ULSD		5386	0.43
PSHTJ	Jeep	Harbor Tug	Fremont Tu		1 Propulsion		<i>J</i>	1999	ULSD	135	500	0.31
527549	Lela Joy	Harbor Tug	Harley Marin		1 Propulsion	Cummins	QSKTA38-N		ULSD	1200	3521	0.31
527549	Lela Joy	Harbor Tug	Harley Marin	:	2 Propulsion	Cummins	QSKTA38-N	1	ULSD	1200	3591	0.31
527549	Lela Joy	Harbor Tug	Harley Marin		3 auxiliary	5	4045TFM01		ULSD	95	4171	0.43
527549	Lela Joy	Harbor Tug	Harley Marin		4 auxiliary	5	4045TFM01		ULSD	95	4553	0.43
507942	Lisa M	Harbor Tug	Manson Cor		1 Propulsion				ULSD	318		0.31
507942 507942	Lisa M Lisa M	Harbor Tug Harbor Tug	Manson Cor Manson Cor		2 Propulsion 3 Propulsion				ULSD ULSD	318 140		0.31
571211	Olympic Scout	Harbor Tug	Harley Marin		1 Propulsion		D-399	1993	ULSD	140	2003	0.31
571211	Olympic Scout	Harbor Tug	Harley Marin		2 Propulsion	1			ULSD		2007	0.31
571211	Olympic Scout	Harbor Tug	Harley Marin		3 auxiliary		4045TFM75		ULSD		4230	0.43
571211	Olympic Scout	Harbor Tug	Harley Marin		4 auxiliary	-	4045TFM75		ULSD		4531	0.43
522088	Pacific	Harbor Tug	Western Tov		1 Propulsion	CAT	3508	1999	ULSD	775	3000	0.31
522088	Pacific	Harbor Tug	Western Tov	:	2 Propulsion	CAT	3508	1999	ULSD	775	3000	0.31
522088	Pacific	Harbor Tug	Western Tox	:	3 auxiliary	CAT		2000	ULSD	120	1750	0.43
522088	Pacific	Harbor Tug	Western Tov		4 auxiliary	CAT	C 4.4		ULSD	80	1750	0.43
5072905	Patricia S	Harbor Tug	Island Tug 8		1 Propulsion		3512		ULSD	1200	1200	0.31
5072905	Patricia S	Harbor Tug	Island Tug 8		2 Propulsion		3512		ULSD	1200	1200	0.31
5072905	Patricia S	Harbor Tug	Island Tug 8		3 auxiliary	GM	671		ULSD	100		0.43
5072905	Patricia S Peter M	Harbor Tug	Island Tug &		4 auxiliary	GM Catanaillan	671		ULSD	100		0.43
1072688 1072688	Peter M Peter M	Harbor Tug Harbor Tug	Manson Cor Manson Cor		1 Propulsion 2 Propulsion	•	3516B 3516B		ULSD ULSD	2000 2000	1550 1551	0.31
1072688	Peter M	Harbor Tug	Manson Cor		3 Propulsion	1		1997	ULSD	180		0.31
1072688	Peter M	Harbor Tug	Manson Cor		4 auxiliary	Detroit Dies	5		ULSD	180		0.43
1072688	Peter M	Harbor Tug	Manson Cor		5 auxiliary	Detroit Dies	5		ULSD	140		0.43
572463	Port Gardner	Harbor Tug	Dunlap Tow		1 Propulsion		1	1972	ULSD	220	600	0.31
928453	Port Susan	Harbor Tug	Dunlap Tow		1 Propulsion		3408 DITA	1984	ULSD	365	2496	0.31
530828	Pull-and-Be-Damned	Harbor Tug	Dunlap Tow	,	1 Propulsion	CAT	3306DITA	1985	ULSD	220	1248	0.31
275287	Quilceda	Harbor Tug	Dunlap Tow			Detroit Dies			ULSD	340	2080	0.31
275287	Quilceda	Harbor Tug	Dunlap Tow		2 Propulsion				ULSD	340		0.31
585319	Rosario	Harbor Tug	Dunlap Tow		1 Propulsion		KTA38		ULSD	850		0.31
585319	Rosario	Harbor Tug	Dunlap Tow		2 Propulsion		KTA38		ULSD	850		0.31
585319 585319	Rosario	Harbor Tug	Dunlap Tow		3 auxiliary	Perkins Detroit Dies	6354 s 371		ULSD ULSD	95 52		0.43 0.43
247040	Rosario Ruby VIII	Harbor Tug Harbor Tug	Dunlap Tow Campbell M		4 auxiliary 1 Propulsion	Detroit Dies	5 3/1	1960	ULSD	500		0.43
247040	Ruby VIII	Harbor Tug	Campbell M		2 auxiliary				ULSD	10		0.43
578032	Samish	Harbor Tug	Dunlap Tow		1 Propulsion	CAT	3508	1977	ULSD	855	4000	0.31
578032	Samish	Harbor Tug	Dunlap Tow		2 Propulsion		3508		ULSD	855	4000	0.31
578032	Samish	Harbor Tug	Dunlap Tow	,	3 auxiliary	CAT	3304NA	1977	ULSD	70	2500	0.43
578032	Samish	Harbor Tug	Dunlap Tow	,	4 auxiliary	Perkins	6-354	1976	ULSD	95	1500	0.43
1038778	Southport	Harbor Tug	Manson Cor		1 auxiliary	Caterpillar	3208		ULSD	230	0	0.43
571411	Taurus	Harbor Tug	Dunlap Tow		1 auxiliary	Detroit Dies			ULSD	105		0.43
571411	Taurus	Harbor Tug	Dunlap Tow		2 auxiliary	Detroit Dies			ULSD	60		0.43
571411	Taurus	Harbor Tug	Dunlap Tow		3 auxiliary	Detroit Dies			ULSD	1125		0.43
571411 571411	Taurus Taurus	Harbor Tug Harbor Tug	Dunlap Tow Dunlap Tow		4 Propulsion 5 Propulsion		399 399		ULSD ULSD	1125 1125	1392 1392	0.31
PSHTV	Vulcan	Harbor Tug	Dunlap Tow		1 Propulsion		3508		ULSD	705		0.31
PSHTV	Vulcan	Harbor Tug	Dunlap Tow		2 Propulsion		3508		ULSD	705		0.31
PSHTV	Vulcan	Harbor Tug	Dunlap Tow		3 auxiliary	CAT	3304NA		ULSD	140		0.43
PSHTV	Vulcan	Harbor Tug	Dunlap Tow		4 auxiliary	Perkins	6-354		ULSD	95	1500	0.43
514329	Wasp	Harbor Tug	Western Tov		1 Propulsion		3408		ULSD	800		0.31
514329	Wasp	Harbor Tug	Western Tox		2 Propulsion	CAT	3408	1982	ULSD	800	2500	0.31
514329	Wasp	Harbor Tug	Western Tov		3 auxiliary	John Deere			ULSD	55		0.43
984759	West Point	Harbor Tug	Western Tov		1 Propulsion		3412		ULSD	600		0.31
984759	West Point	Harbor Tug	Western Tov		2 Propulsion		3412		ULSD	600		0.31
984759	West Point	Harbor Tug	Western Tov		3 auxiliary	CAT	3304		ULSD	120		0.43
918736	Westrac	Harbor Tug	Western Tov		1 Propulsion		3512		ULSD	1200	4000	0.31
918736	Westrac	Harbor Tug	Western Tox		2 Propulsion		3512 3304		ULSD	1200		0.31
918736 918736	Westrac Westrac	Harbor Tug Harbor Tug	Western Tov Western Tov		3 auxiliary 4 auxiliary	CAT Duetz	3304		ULSD ULSD	120 120		0.43 0.43
110/30					•		3512		ULSD			0.43
1033438	Westrac II	Harbor Luc	Western Los								4500	
1033438 1033438	Westrac II Westrac II	Harbor Tug Harbor Tug	Western Tov Western Tov		1 Propulsion 2 Propulsion		3512		ULSD	1200 1200	4500 4500	0.31

			E	Engin	e							
Vessel ID	Vessel Name	Туре	Name U	D Jser	Engine Type	Engine MFR	Engine Model	Engine Year	Fuel	HP		Load
1033438	Westrac II	Harbor Tug	Western Tov		4 auxiliary	CAT	3304		ULSD	120		0.43
681479 681479	Alaska Mariner Alaska Mariner	Ocean Tug Ocean Tug	Western Tov Western Tov		1 Propulsion 2 Propulsion	CAT CAT	3516 3516		ULSD ULSD	2000 2000		0.68 0.68
681479	Alaska Mariner	Ocean Tug	Western Tov		3 auxiliary	CAT	3304		ULSD	120		0.08
681479	Alaska Mariner	Ocean Tug	Western Tox		4 auxiliary	CAT	3304		ULSD	120		0.43
1211332	Alaska Titan	Ocean Tug	Western Tov		1 Propulsion	CAT	C 175		ULSD	2500		0.68
1211332	Alaska Titan	Ocean Tug	Western Tov		3 auxiliary	CAT	3306	2009	ULSD	180	130	0.43
1211332	Alaska Titan	Ocean Tug	Western Tov		4 auxiliary	CAT	3306		ULSD	180	130	0.43
1211332	Alaska Titan	Ocean Tug	Western Tov		2 Propulsion	CAT	C 175		ULSD	2500		0.68
1090636	Alert	Ocean Tug	Crowley		1 Propulsion	CAT	3612B		ULSD	5000		0.68
1090636	Alert	Ocean Tug	Crowley		2 Propulsion	CAT	3612B		ULSD	5000		0.68
1090636 1090636	Alert Alert	Ocean Tug Ocean Tug	Crowley Crowley		3 auxiliary 4 auxiliary	CAT CAT			ULSD ULSD	150 150		0.43 0.43
527280	American Salvor	Ocean Tug	Crowley		1 Propulsion	CAT	D399		ULSD	1200		0.43
527280	American Salvor	Ocean Tug	Crowley		2 Propulsion	CAT	D399		ULSD	1200		0.68
527280	American Salvor	Ocean Tug	Crowley		3 auxiliary	CAT	3406		ULSD	140		0.43
527280	American Salvor	Ocean Tug	Crowley		4 auxiliary	CAT	3406		ULSD	140	24	0.43
1165321	Arctic Titan	Ocean Tug	Western Tov		1 Propulsion	CAT	C 175	2011	ULSD	2500	130	0.68
1165321	Arctic Titan	Ocean Tug	Western Tov		2 Propulsion	CAT	C 175		ULSD	2500		0.68
1165321	Arctic Titan	Ocean Tug	Western Tov		3 auxiliary	CAT	C 9		ULSD	240		0.43
1165321	Arctic Titan	Ocean Tug	Western Tov		4 auxiliary	CAT	C 9		ULSD	240		0.43
1090637	Attentive	Ocean Tug	Crowley		1 Propulsion	CAT	3612B		ULSD	5000		0.68
1090637	Attentive	Ocean Tug	Crowley		2 Propulsion 3 auxiliary	CAT	3612B		ULSD	5000		0.68
1090637 1090637	Attentive Attentive	Ocean Tug Ocean Tug	Crowley Crowley		4 auxiliary	CAT CAT			ULSD ULSD	150 150		0.43 0.43
1090638	Aware	Ocean Tug	Crowley		1 Propulsion	CAT	3612B		ULSD	5000		0.43
1090638	Aware	Ocean Tug	Crowley		2 Propulsion	CAT	3612B		ULSD	5000		0.68
1090638	Aware	Ocean Tug	Crowley		3 auxiliary	CAT	30122		ULSD	150		0.43
1090638	Aware	Ocean Tug	Crowley		4 auxiliary	CAT			ULSD	150		0.43
579789	Drew Foss	Ocean Tug	Foss		1 Propulsion	EMD	12-645-E2	1976	ULSD	1500	3722	0.68
579789	Drew Foss	Ocean Tug	Foss		2 Propulsion	EMD	12-645-E2	1976	ULSD	1500	3722	0.68
579789	Drew Foss	Ocean Tug	Foss		3 auxiliary	Detroit Die			ULSD	192		0.43
579789	Drew Foss	Ocean Tug	Foss		4 auxiliary	Detroit Die		1977	ULSD	192		0.43
579789	Drew Foss	Ocean Tug	Foss		5 auxiliary	Detroit Die	5		ULSD	192		0.43
540227 540227	Gene Dunlap	Ocean Tug	Dunlap Tow		1 Propulsion	CAT	3516		ULSD	1710		0.68 0.68
540227	Gene Dunlap Gene Dunlap	Ocean Tug Ocean Tug	Dunlap Tow Dunlap Tow		2 Propulsion 3 auxiliary	CAT Detroit Die	3516 s 671		ULSD ULSD	1710 80		0.08
540227	Gene Dunlap	Ocean Tug	Dunlap Tow		4 auxiliary	Detroit Die			ULSD	80		0.43
540227	Gene Dunlap	Ocean Tug	Dunlap Tow		5 auxiliary	Detroit Die			ULSD	105	23	0.43
566429	Gladiator	Ocean Tug	Crowley		1 Propulsion	EMD	20-645-E5		ULSD	3500		0.68
566429	Gladiator	Ocean Tug	Crowley		2 Propulsion	EMD	20-645-E5	1976	ULSD	3500	24	0.68
566429	Gladiator	Ocean Tug	Crowley		3 auxiliary	CAT	3304	1976	ULSD	140	24	0.43
566429	Gladiator	Ocean Tug	Crowley		4 auxiliary	CAT	3304		ULSD	140		0.43
525855	Guardian	Ocean Tug	Crowley		1 Propulsion	EMD	16-645-E5		ULSD	2850		0.68
525855	Guardian	Ocean Tug	Crowley		2 Propulsion	EMD	16-645-E5		ULSD	2850		0.68
525855 525855	Guardian Guardian	Ocean Tug Ocean Tug	Crowley		3 auxiliary 4 auxiliary	CAT CAT	3304 3304		ULSD ULSD	140 140		0.43 0.43
572647	Guardsman	Ocean Tug	Crowley Crowley		1 Propulsion	EMD	20-645-E5		ULSD	3500		0.43
572647	Guardsman	Ocean Tug	Crowley		2 Propulsion	EMD	20-645-E5		ULSD	3500		0.68
572647	Guardsman	Ocean Tug	Crowley		3 auxiliary	CAT	3304		ULSD	140		0.43
572647	Guardsman	Ocean Tug	Crowley		4 auxiliary	CAT	3304		ULSD	140		0.43
1115109	Gulf Titan	Ocean Tug	Western Tox		1 Propulsion	CAT	3516B		ULSD	2500	130	0.68
1115109	Gulf Titan	Ocean Tug	Western Tov		2 Propulsion	CAT	3516B	2001	ULSD	2500	130	0.68
1115109	Gulf Titan	Ocean Tug	Western Tov		3 auxiliary	CAT	3306	2001	ULSD	180	130	0.43
1115109	Gulf Titan	Ocean Tug	Western Tov		4 auxiliary	CAT	3306		ULSD	180		0.43
559404	Invader	Ocean Tug	Crowley		1 Propulsion	EMD	20-645-E5		ULSD	3500		0.68
559404 559404	Invader	Ocean Tug	Crowley		2 Propulsion	EMD	20-645-E5		ULSD	3500		0.68
559404 559404	Invader Invader	Ocean Tug Ocean Tug	Crowley Crowley		3 auxiliary	CAT CAT	3304 3304		ULSD	140 140		0.43 0.43
584331	Invader Iver Foss	Ocean Tug Ocean Tug	Foss		4 auxiliary 1 Propulsion	CAT	D-399		ULSD ULSD	1200		0.43
584331	Iver Foss	Ocean Tug	Foss		2 Propulsion		D-399 D-399		ULSD	1200		0.68
584331	Iver Foss	Ocean Tug	Foss		3 auxiliary	Detroit Die			ULSD	192		0.43
584331	Iver Foss	Ocean Tug	Foss		4 auxiliary	Detroit Die	5		ULSD	192		0.43
584331	Iver Foss	Ocean Tug	Foss		5 auxiliary	Detroit Die	2		ULSD	126		0.43
1037412	James Dunlap	Ocean Tug	Dunlap Tow		1 Propulsion	EMD	16-645E2		ULSD	1950		0.68
1037412	James Dunlap	Ocean Tug	Dunlap Tow		2 Propulsion	EMD	16-645E2		ULSD	1950		0.68
1037412	James Dunlap	Ocean Tug	Dunlap Tow		3 auxiliary	CAT	3304B	1995	ULSD	140	0	0.43

				Engi	ne								
Vessel ID	Vessel Name	Type	Owner Name	ID User		Engine Type	Engine MFR	Engine Model	Engine Year	Fuel	HP		Load
1037412	James Dunlap	Ocean Tug	Dunlap Tov	v		auxiliary	CAT	3304B		ULSD	140	0	0.43
526844	Jeffrey Foss	Ocean Tug	Foss			Propulsion		12-645-E7		ULSD	2150	667	0.68
526844	Jeffrey Foss	Ocean Tug	Foss			Propulsion	EMD	12-645-E7		ULSD ULSD	2150	653	0.68
526844 526844	Jeffrey Foss Jeffrey Foss	Ocean Tug Ocean Tug	Foss Foss			auxiliary auxiliary	2	6068 TFM50 6068 TFM50		ULSD	159 159	556 503	0.43 0.43
526844	Jeffrey Foss	Ocean Tug Ocean Tug	Foss			auxiliary	Caterpillar		. 2000	ULSD	159	303 7	0.43
575361	Justine Foss	Ocean Tug	Foss			Propulsion	•	12-645-E7	1981	ULSD	2150	3498	0.68
575361	Justine Foss	Ocean Tug	Foss			Propulsion	EMD	12-645-E7		ULSD	2150	3503	0.68
575361	Justine Foss	Ocean Tug	Foss			auxiliary	Detroit Dies			ULSD	192	2993	0.43
575361	Justine Foss	Ocean Tug	Foss		4	auxiliary	Detroit Dies	s 6V-71	1982	ULSD	192	2819	0.43
575361	Justine Foss	Ocean Tug	Foss		5	auxiliary	Detroit Dies	s 6V-71		ULSD	192	107	0.43
1134122	Lauren Foss	Ocean Tug	Foss		1	Propulsion	Fairbanks M	I Alco 16-251	1981	ULSD	4100	266	0.68
1134122	Lauren Foss	Ocean Tug	Foss			Propulsion		I Alco 16-251		ULSD	4100	258	0.68
1134122	Lauren Foss	Ocean Tug	Foss			auxiliary	Cummins	6CTA8.3-DI		ULSD	228	851	0.43
1134122	Lauren Foss	Ocean Tug	Foss			auxiliary	Cummins	6CTA8.3-D1		ULSD	228	572	0.43
1134122	Lauren Foss	Ocean Tug	Foss			auxiliary	Cummins	N-14		ULSD	228	16	0.43
1134122	Lauren Foss	Ocean Tug	Foss			auxiliary	5	4045TF250I		ULSD	107	0	0.43
569517 569517	Malolo Malolo	Ocean Tug Ocean Tug	Dunlap Tov Dunlap Tov			Propulsion Propulsion		3516 3516		ULSD ULSD	1710 1710	1041 1041	0.68
569517	Malolo	Ocean Tug	Dunlap Tov			auxiliary	CAT	3304NA		ULSD	85	605	0.43
569517	Malolo	Ocean Tug	Dunlap Tov			auxiliary	CAT	3304NA		ULSD	85	564	0.43
569517	Malolo	Ocean Tug	Dunlap Tov			auxiliary	Detroit Dies			ULSD	105	84	0.43
506243	Manfred Nystrom	Ocean Tug	Dunlap Tov			Propulsion		16-645		ULSD	1950	490	0.68
506243	Manfred Nystrom	Ocean Tug	Dunlap Tov			Propulsion		16-645		ULSD	1950	490	0.68
506243	Manfred Nystrom	Ocean Tug	Dunlap Tov	v		auxiliary	Detroit Dies	s 671	1966	ULSD	80	250	0.43
506243	Manfred Nystrom	Ocean Tug	Dunlap Tov	v	4	auxiliary	Detroit Dies	s 671	1966	ULSD	80	250	0.43
526607	Mars	Ocean Tug	Crowley		1	Propulsion	EMD	16-645-E5	1970	ULSD	2850	24	0.68
526607	Mars	Ocean Tug	Crowley		2	Propulsion	EMD	16-645-E5	1970	ULSD	2850	24	0.68
526607	Mars	Ocean Tug	Crowley			auxiliary	CAT	3304		ULSD	140	24	0.43
526607	Mars	Ocean Tug	Crowley			auxiliary	CAT	3304		ULSD	140	24	0.43
566082	Mike O'Leary	Ocean Tug	Dunlap Tov			Propulsion		D399		ULSD	1125	1331	0.68
566082	Mike O'Leary	Ocean Tug	Dunlap Tov			Propulsion		D399		ULSD	1125	1331	0.68
566082 566082	Mike O'Leary Mike O'Leary	Ocean Tug	Dunlap Tov			auxiliary	Detroit Dies Detroit Dies			ULSD ULSD	70 70	623 919	0.43 0.43
566082	Mike O'Leary	Ocean Tug Ocean Tug	Dunlap Tov Dunlap Tov			auxiliary auxiliary	Detroit Dies			ULSD	105	116	0.43
562688	Navigator	Ocean Tug	Crowley	v		Propulsion		20-645-E5		ULSD	3500	24	0.43
562688	Navigator	Ocean Tug	Crowley			Propulsion		20-645-E5		ULSD	3500	24	0.68
562688	Navigator	Ocean Tug	Crowley			auxiliary	CAT	3304		ULSD	140	24	0.43
562688	Navigator	Ocean Tug	Crowley			auxiliary	CAT	3304		ULSD	140	24	0.43
662872	Ocean Mariner	Ocean Tug	Western To	V	1	Propulsion	CAT	3516B	1984	ULSD	1600	130	0.68
662872	Ocean Mariner	Ocean Tug	Western To	7	2	Propulsion	CAT	3516B	1984	ULSD	1600	130	0.68
662872	Ocean Mariner	Ocean Tug	Western To	V	3	auxiliary	GM	4 71	1984	ULSD	75	130	0.43
662872	Ocean Mariner	Ocean Tug	Western To			auxiliary	GM	6 71		ULSD	75	130	0.43
693814	Ocean Navigator	Ocean Tug	Western To			Propulsion		3516B		ULSD	1550	130	0.68
693814	Ocean Navigator	Ocean Tug	Western To			Propulsion		3516B		ULSD	1550	130	0.68
693814	Ocean Navigator	Ocean Tug	Western To			auxiliary	CAT	3306		ULSD	120	130	0.43
693814	Ocean Navigator	Ocean Tug	Western To			auxiliary Propulsion	CAT	3306		ULSD	120	130	0.43
961922 961922	Ocean Ranger Ocean Ranger	Ocean Tug Ocean Tug	Western To Western To			Propulsion		3516B 3516B		ULSD ULSD	2100 2100	130 130	0.68 0.68
961922	Ocean Ranger	Ocean Tug Ocean Tug	Western To			auxiliary	CAT	3306		ULSD	120	130	0.43
961922	Ocean Ranger	Ocean Tug	Western To			auxiliary	CAT	3306		ULSD	120	130	0.43
1160544	Ocean Titan	Ocean Tug	Western To			Propulsion		3516B		ULSD	2500	130	0.68
1160544	Ocean Titan	Ocean Tug	Western To			Propulsion		3516B		ULSD	2500	130	0.68
1160544	Ocean Titan	Ocean Tug	Western To			auxiliary	CAT	3306		ULSD	190	130	0.43
1160544	Ocean Titan	Ocean Tug	Western To			auxiliary	CAT	3306	2004	ULSD	190	130	0.43
500126	Pacific Eagle	Ocean Tug	Sea Coast T	Í	1	Propulsion	CAT	D 398	1980	ULSD	900	5326	0.68
500126	Pacific Eagle	Ocean Tug	Sea Coast T			Propulsion		D 398		ULSD	900	5326	0.68
500126	Pacific Eagle	Ocean Tug	Sea Coast T			auxiliary	Detroit	Jun-71		ULSD	180	7132	0.43
500126	Pacific Eagle	Ocean Tug	Sea Coast T			auxiliary	Detroit	Jun-71		ULSD	180	1582	0.43
1092436	Pacific Titan	Ocean Tug	Western To			Propulsion		3516B		ULSD	2250	130	0.68
1092436	Pacific Titan	Ocean Tug	Western To			Propulsion		3516B		ULSD	2250	130	0.68
1092436	Pacific Titan	Ocean Tug	Western To			auxiliary	CAT	3306		ULSD	180	130	0.43
1092436	Pacific Titan	Ocean Tug	Western To			auxiliary	CAT	3306		ULSD	180	130	0.43
1117884	Phyllis Dunlap	Ocean Tug	Dunlap Tov			Propulsion		3606 3606		ULSD	5100	324	0.68
1117884 1117884	Phyllis Dunlap Phyllis Dunlap	Ocean Tug Ocean Tug	Dunlap Tov Dunlap Tov			Propulsion auxiliary	CAT CAT	3606 3304T		ULSD ULSD	5100 140	324 180	0.68 0.43
1117884	Phyllis Dunlap Phyllis Dunlap	Ocean Tug Ocean Tug	Dunlap Tov			auxiliary	CAT	3304T		ULSD	140	177	0.43
111/004	т пушо тишар	Occan Tug	Dunap 100	*	4	ацанату	W11	JJ071	2001		140	1//	0.43

-			Er	gine						
			Owner ID		Engine	Engine	Engine		Annual	
Vessel ID	Vessel Name	Type	Name Us		MFR	Model	Year Fuel	HP		Load
1117884	Phyllis Dunlap	Ocean Tug	Dunlap Tow	5 auxiliary	CAT	3306DITA	2001 ULSD	185	6	0.43
648865	Pt. Barrow	Ocean Tug	Crowley	1 Propulsion		3512		1000	24	0.68
648865	Pt. Barrow	Ocean Tug	Crowley	2 Propulsion		3512		1000	24	0.68
648865	Pt. Barrow	Ocean Tug	Crowley	3 auxiliary	CAT	3304		140	24	0.43
648865	Pt. Barrow	Ocean Tug	Crowley	4 auxiliary	CAT	3304		140	24	0.43
648866	Pt. Oliktok	Ocean Tug	Crowley	1 Propulsion		3512		1000	24	0.68
648866 648866	Pt. Oliktok Pt. Oliktok	Ocean Tug	Crowley	2 Propulsion	CAT CAT	3512 3304		1000 140	24 24	0.68 0.43
648866	Pt. Oliktok Pt. Oliktok	Ocean Tug Ocean Tug	Crowley Crowley	3 auxiliary 4 auxiliary	CAT	3304		140	24	0.43
648710	Pt. Thompson	Ocean Tug	Crowley	1 Propulsion		3512		1000	24	0.43
648710	Pt. Thompson	Ocean Tug	Crowley	2 Propulsion		3512		1000	24	0.68
648710	Pt. Thompson	Ocean Tug	Crowley	3 auxiliary	CAT	3304		140	24	0.43
648710	Pt. Thompson	Ocean Tug	Crowley	4 auxiliary	CAT	3304		140	24	0.43
571909	Ranger	Ocean Tug	Crowley	1 Propulsion		20-645-E5	1976 ULSD	3500	24	0.68
571909	Ranger	Ocean Tug	Crowley	2 Propulsion		20-645-E5	1976 ULSD	3500	24	0.68
571909	Ranger	Ocean Tug	Crowley	3 auxiliary	CAT	3304	1976 ULSD	140	24	0.43
571909	Ranger	Ocean Tug	Crowley	4 auxiliary	CAT	3304		140	24	0.43
571854	Sandra Foss	Ocean Tug	Foss	1 Propulsion		8-645-E7	1974 ULSD	1450	2364	0.68
571854	Sandra Foss	Ocean Tug	Foss	2 Propulsion		8-645-E7	1974 ULSD	1450	2364	0.68
571854	Sandra Foss	Ocean Tug	Foss	3 auxiliary	Detroit Dies	s Jun-71	2003 ULSD	192	2373	0.43
571854	Sandra Foss	Ocean Tug	Foss	4 auxiliary	Detroit Dies	-	2004 ULSD	192	1839	0.43
571854	Sandra Foss	Ocean Tug	Foss	5 auxiliary	Detroit Dies	s Jun-71	ULSD	192	64	0.43
516870	Sea Flyer	Ocean Tug	Crowley	1 Propulsion	EMD	16-645-E5	1968 ULSD	2850	24	0.68
516870	Sea Flyer	Ocean Tug	Crowley	2 Propulsion	EMD	16-645-E5	1968 ULSD	2850	24	0.68
516870	Sea Flyer	Ocean Tug	Crowley	3 auxiliary	CAT	3304	1968 ULSD	140	24	0.43
516870	Sea Flyer	Ocean Tug	Crowley	4 auxiliary	CAT	3304	1968 ULSD	140	24	0.43
555271	Sea Prince	Ocean Tug	Crowley	1 Propulsion	CAT	3606	1974 ULSD	2500	24	0.68
555271	Sea Prince	Ocean Tug	Crowley	2 Propulsion	CAT	3606	1974 ULSD	2500	24	0.68
555271	Sea Prince	Ocean Tug	Crowley	3 auxiliary	Detroit	671	1974 ULSD	150	24	0.43
555271	Sea Prince	Ocean Tug	Crowley	4 auxiliary	Detroit	671	1974 ULSD	150	24	0.43
569925	Sea Ranger	Ocean Tug	Crowley	1 Propulsion	CAT	3606	1975 ULSD	2500	24	0.68
569925	Sea Ranger	Ocean Tug	Crowley	2 Propulsion		3606		2500	24	0.68
569925	Sea Ranger	Ocean Tug	Crowley	3 auxiliary	Detroit	671	1975 ULSD	150	24	0.43
569925	Sea Ranger	Ocean Tug	Crowley	4 auxiliary	Detroit	671	1975 ULSD	150	24	0.43
568498	Sea Venture	Ocean Tug	Crowley	1 Propulsion		20-645-E5	1975 ULSD	3500	24	0.68
568498	Sea Venture	Ocean Tug	Crowley	2 Propulsion		20-645-E5	1975 ULSD	3500	24	0.68
568498	Sea Venture	Ocean Tug	Crowley	3 auxiliary	Detroit	8V71	1975 ULSD	150	24	0.43
568498	Sea Venture	Ocean Tug	Crowley	4 auxiliary	Detroit	8V71	1975 ULSD	150	24	0.43
561652	Sea Victory Sea Victory	Ocean Tug	Crowley	1 Propulsion		20-645-E5	1976 ULSD	3500	24	0.68
561652 561652	Sea Victory	Ocean Tug Ocean Tug	Crowley Crowley	2 Propulsion 3 auxiliary	Detroit	20-645-E5 8V71	1976 ULSD 1976 ULSD	3500 150	24 24	0.43
561652	Sea Victory	Ocean Tug	Crowley	4 auxiliary	Detroit	8V71	1976 ULSD	150	24	0.43
568790	Sea Viking	Ocean Tug	Crowley	1 Propulsion		3606		2500	24	0.43
568790	Sea Viking	Ocean Tug	Crowley	2 Propulsion		3606		2500	24	0.68
568790	Sea Viking	Ocean Tug	Crowley	3 auxiliary	Detroit	671	1975 ULSD	150	24	0.43
568790	Sea Viking	Ocean Tug	Crowley	4 auxiliary	Detroit	671	1975 ULSD	150	24	0.43
526717	Seneca	Ocean Tug	Crowley	1 Propulsion		8-645-E5	1970 ULSD	1450	24	0.68
526717	Seneca	Ocean Tug	Crowley	2 Propulsion		8-645-E5	1970 ULSD	1450	24	0.68
526717	Seneca	Ocean Tug	Crowley	3 auxiliary	Detroit	671	1970 ULSD	150	24	0.43
526717	Seneca	Ocean Tug	Crowley	4 auxiliary	Detroit	671	1970 ULSD	150	24	0.43
1029298	Siku	Ocean Tug	Crowley	1 Propulsion	EMD	8-645-E5	1970 ULSD	1450	24	0.68
1029298	Siku	Ocean Tug	Crowley	2 Propulsion	EMD	8-645-E5	1970 ULSD	1450	24	0.68
1029298	Siku	Ocean Tug	Crowley	3 auxiliary	Detroit	671	1970 ULSD	150	24	0.43
1029298	Siku	Ocean Tug	Crowley	4 auxiliary	Detroit	671	1970 ULSD	150	24	0.43
527409	Sioux	Ocean Tug	Crowley	1 Propulsion	EMD	8-645-E5	1970 ULSD	1450	24	0.68
527409	Sioux	Ocean Tug	Crowley	2 Propulsion	EMD	8-645-E5	1970 ULSD	1450	24	0.68
527409	Sioux	Ocean Tug	Crowley	3 auxiliary	Detroit	671	1970 ULSD	150	24	0.43
527409	Sioux	Ocean Tug	Crowley	4 auxiliary	Detroit	671	1970 ULSD	150	24	0.43
PSOTS	Siuattle	Ocean Tug	Dunlap Tow	1 Propulsion		16-645	1981 ULSD	3070	1423	0.68
PSOTS	Siuattle	Ocean Tug	Dunlap Tow	2 Propulsion		16-645	1981 ULSD	3070	1423	0.68
PSOTS	Siuattle	Ocean Tug	Dunlap Tow	3 auxiliary	Detroit Dies		1981 ULSD	130	485	0.43
PSOTS	Siuattle	Ocean Tug	Dunlap Tow	4 auxiliary	Detroit Dies		1981 ULSD	130	1265	0.43
527071	Sneeoosh	Ocean Tug	Dunlap Tow	1 Propulsion		343		365	2080	0.68
540290	Snohomish	Ocean Tug	Dunlap Tow	1 Propulsion		3516		1710	532	0.68
540290	Snohomish	Ocean Tug	Dunlap Tow	2 Propulsion		3516		1710	532	0.68
540290	Snohomish	Ocean Tug	Dunlap Tow	3 auxiliary	Detroit Dies		1975 ULSD	80	312	0.43
540290	Snohomish	Ocean Tug	Dunlap Tow	4 auxiliary	Detroit Die	s 671	1975 ULSD	80	212	0.43

-				Engir	ne							
Vessel ID	Vessel Name	Type	Owner Name	ID User	Engine Type	Engine MFR	Engine Model	Engine Year	Fuel	HP		Load
540290	Snohomish	Ocean Tug	Dunlap Tov	7	5 auxiliary	Detroit Dies			ULSD	105		0.43
571855	Stacey Foss	Ocean Tug	Foss		1 Propulsion		8-645-E7		ULSD	1450		0.68
571855 571855	Stacey Foss Stacey Foss	Ocean Tug Ocean Tug	Foss Foss		2 Propulsion 3 auxiliary	EMD Detroit Dies	8-645-E7 Jun-71		ULSD ULSD	1450 192		0.68
571855	Stacey Foss	Ocean Tug	Foss		4 auxiliary	Detroit Dies	5		ULSD	192		0.43
571855	Stacey Foss	Ocean Tug	Foss		5 auxiliary	Detroit Dies	3		ULSD	192		0.43
256829	Swinomish	Ocean Tug	Dunlap Tov	7	1 Propulsion		D398		ULSD	850		0.68
256829	Swinomish	Ocean Tug	Dunlap Tov		2 Propulsion		D398	1974	ULSD	850	5000	0.68
256829	Swinomish	Ocean Tug	Dunlap Tov	7	3 auxiliary	CAT	3304B	1974	ULSD	120	2500	0.43
256829	Swinomish	Ocean Tug	Dunlap Tow	7	4 auxiliary	CAT	3304B		ULSD	120		0.43
CG639650	Sydney Foss	Ocean Tug	Foss		1 Propulsion		8-645-E7		ULSD	1500		0.68
CG639650	Sydney Foss	Ocean Tug	Foss		2 Propulsion		8-645-E7		ULSD	1500		0.68
CG639650	Sydney Foss	Ocean Tug	Foss		3 auxiliary	Detroit Dies	2		ULSD	192		0.43
CG639650	Sydney Foss	Ocean Tug	Foss Foss		4 auxiliary	Detroit Dies	5	1982	ULSD	192 192		0.43
CG639650 513840	Sydney Foss Triumph	Ocean Tug Ocean Tug	Western To		5 auxiliary 1 Propulsion	Detroit Dies CAT	5 Jun-71 3508	2006	ULSD ULSD	1000		0.43 0.68
513840	Triumph	Ocean Tug	Western To		2 Propulsion		3508		ULSD	1000		0.68
513840	Triumph	Ocean Tug	Western To		3 auxiliary	CAT	3304		ULSD	120		0.43
513840	Triumph	Ocean Tug	Western To		4 auxiliary	CAT	3304		ULSD	120		0.43
565291	Warrior	Ocean Tug	Crowley		1 Propulsion		20-645-E5		ULSD	3500		0.68
565291	Warrior	Ocean Tug	Crowley		2 Propulsion		20-645-E5	1976	ULSD	3500	24	0.68
565291	Warrior	Ocean Tug	Crowley		3 auxiliary	CAT	3304	1976	ULSD	140	24	0.43
565291	Warrior	Ocean Tug	Crowley		4 auxiliary	CAT	3304	1976	ULSD	140	24	0.43
656807	Western Mariner	Ocean Tug	Western To		1 Propulsion		3516		ULSD	1500		0.68
656807	Western Mariner	Ocean Tug	Western To		2 Propulsion		3516		ULSD	1500		0.68
656807	Western Mariner	Ocean Tug	Western To		3 auxiliary	CAT	3304		ULSD	120		0.43
656807	Western Mariner	Ocean Tug	Western To		4 auxiliary	CAT	3304		ULSD	120		0.43
973968 973968	Western Navigator Western Navigator	Ocean Tug Ocean Tug	Western To		1 Propulsion 2 Propulsion		3516B 3516B		ULSD ULSD	1550 1550		0.68 0.68
973968	Western Navigator	Ocean Tug	Western To		3 auxiliary	CAT	3304		ULSD	120		0.43
973968	Western Navigator	Ocean Tug	Western To		4 auxiliary	CAT	3304		ULSD	120		0.43
516924	Western Ranger	Ocean Tug	Western To		1 Propulsion		3516B		ULSD	1700		0.68
516924	Western Ranger	Ocean Tug	Western To		2 Propulsion		3516B		ULSD	1700		0.68
516924	Western Ranger	Ocean Tug	Western To	7	3 auxiliary	CAT	3306	1968	ULSD	100	130	0.43
516924	Western Ranger	Ocean Tug	Western To	V.	4 auxiliary	CAT	3306	1968	ULSD	100	130	0.43
1052805	Western Titan	Ocean Tug	Western To	V.	1 Propulsion		3516B	1997	ULSD	2250		0.68
1052805	Western Titan	Ocean Tug	Western To		2 Propulsion		3516B		ULSD	2250		0.68
1052805	Western Titan	Ocean Tug	Western To		3 auxiliary	CAT	3306		ULSD	180		0.43
1052805	Western Titan	Ocean Tug	Western To		4 auxiliary	CAT	3306		ULSD	180		0.43
1120139	Juan de Fuca	Pilot Boat	Puget Sound		1 Propulsion				ULSD	1100		0.51
1120139 1120139	Juan de Fuca Juan de Fuca	Pilot Boat Pilot Boat	Puget Sound Puget Sound		2 Propulsion 3 auxiliary	Northern Li	ş 984		ULSD ULSD	1100 43		0.51 0.43
1120139	Juan de Fuca	Pilot Boat	Puget Sound		4 auxiliary	Northern Li			ULSD	43		0.43
1088139	Puget Sound	Pilot Boat	Puget Sound		1 Propulsion		į 207		ULSD	1100		0.43
1088139	Puget Sound	Pilot Boat	Puget Sound		2 Propulsion				ULSD	1100		0.51
1088139	Puget Sound	Pilot Boat	Puget Sound	1	3 auxiliary	Northern Li	984	1999	ULSD	50	357	0.43
1088139	Puget Sound	Pilot Boat	Puget Sound	1	4 auxiliary	Northern Li	984	1999	ULSD	50	357	0.43
1235165	Betsy Arntz	Tank Barge	Harley Mari	r	1 auxiliary	IHI Shibaur	N84-D-860	1	ULSD	185	280	0.43
1235165	Betsy Arntz	Tank Barge	Harley Mari		2 auxiliary	Detroit	6064TK33		ULSD	185		0.43
1235165	Betsy Arntz	Tank Barge	Harley Mari		3 auxiliary	Detroit	6064TK33		ULSD	185		0.43
1109007	Dottie	Tank Barge	Harley Mari		1 auxiliary	Cummins	N-14-P		ULSD	185		0.43
1109007	Dottie	Tank Barge	Harley Mari		2 auxiliary	Cummins	N-14-P		ULSD	185		0.43
1109007	Dottie	Tank Barge	Harley Mari		3 auxiliary	Cummins	6BT5.9-G6		ULSD	185		0.43
1109007 1208933	Dottie Dugan Pearsall	Tank Barge Tank Barge	Harley Mari Harley Mari		4 auxiliary 1 auxiliary	Cummins Detroit	6BT5.9-G6 Series 60	2001	ULSD ULSD	185 185		0.43 0.43
1208933	Dugan Pearsall	Tank Barge	Harley Mari		2 auxiliary	Detroit	Series 60		ULSD	185		0.43
1208933	Dugan Pearsall	Tank Barge	Harley Mari		3 auxiliary		4045HF285		ULSD	185		0.43
TB248	Foss 248-P2	Tank Barge	Foss		1 auxiliary	Detroit Dies		1987	ULSD	80		0.43
TB248	Foss 248-P2	Tank Barge	Foss		2 auxiliary	Detroit Dies	Jun-71		ULSD	192	500	0.43
TB248	Foss 248-P2	Tank Barge	Foss		3 auxiliary	Detroit Dies	-		ULSD	192	500	0.43
1026330	HMS 2000	Tank Barge	Harley Mari	r	1 auxiliary	Detroit	Jun-71	1987	ULSD	185	1015	0.43
1026330	HMS 2000	Tank Barge	Harley Mari		2 auxiliary	Detroit	Jun-71		ULSD	185		0.43
1026330	HMS 2000	Tank Barge	Harley Mari		3 auxiliary	John Deere	4045	1987	ULSD	185		0.43
1218201	Lily Blair	Tank Barge	Harley Mari		1 auxiliary	Detroit	6064HV33		ULSD	185		0.43
1218021	Lily Blair	Tank Barge	Harley Mari		2 auxiliary	Detroit	6064HV33		ULSD	185		0.43
1218021	Lily Blair	Tank Barge	Harley Mari		3 auxiliary	IHI Shibaur			ULSD	185		0.43
1205217	Lovel Briere	Tank Barge	Harley Mari	ľ	1 auxiliary	Detroit	6064HV33		ULSD	185	1297	0.43

				Engin	e	Engine	Encine	Engine	Engles			Ann1	
Vessel ID	Vessel Name	Type		ID User		Engine Type	Engine MFR	Engine Model	Engine Year	Fuel	HP	Annual Hours	Load
1205217	Lovel Briere	Tank Barge	Harley Marir		2	auxiliary	Detroit	6064HV33		ULSD	185	1316	0.43
1205217	Lovel Briere	Tank Barge	Harley Marir		3	auxiliary	John Deere	6068TF275		ULSD	185	1264	0.43
1205217	Lovel Briere	Tank Barge	Harley Marir		4	auxiliary	John Deere	6068TF275		ULSD	185	2143	0.43
1219418	Nathan Schmidt	Tank Barge	Harley Marir		1	auxiliary	Detroit	6064HV33		ULSD	185	1124	0.43
1219418	Nathan Schmidt	Tank Barge	Harley Marir			auxiliary	Detroit	6064HV33		ULSD	185	1161	0.43
1219418	Nathan Schmidt	Tank Barge	Harley Marir			auxiliary		N844-C-860		ULSD	185	1746	0.43
981972	Puget Sounder	Tank Barge	Sea Coast Tr			auxiliary	Detroit	Aug-71		ULSD	240	661	0.43
981972	Puget Sounder	Tank Barge	Sea Coast Tr			auxiliary	Detroit	Aug-71		ULSD	240	429	0.43
981972	Puget Sounder	Tank Barge	Sea Coast Tr			auxiliary	Detroit	Apr-71		ULSD	180	2537	0.43
1101122	Shauna Kay	Tank Barge	Harley Marir			auxiliary	Cummins	N14-P		ULSD	185	1199	0.43
1101122	Shauna Kay Shauna Kay	Tank Barge	Harley Marir			auxiliary auxiliary	Cummins	N14-P 6BT5.9-G2		ULSD ULSD	185 185	179 971	0.43 0.43
1101122 1101122	Shauna Kay	Tank Barge Tank Barge	Harley Marir Harley Marir			auxiliary	Cummins Cummins	6BT5.9-G6		ULSD	185	2087	0.43
1190801	Stoddard Sea	Tank Barge	Harley Marir			auxiliary		6068HF4750		ULSD	185	746	0.43
1190801	Stoddard Sea	Tank Barge	Harley Marir			auxiliary	2	6068HF4750		ULSD	185	727	0.43
1190801	Stoddard Sea	Tank Barge	Harley Marir			auxiliary	-	6068HF4750		ULSD	185	18	0.43
1190801	Stoddard Sea	Tank Barge	Harley Marir			auxiliary	2	6068TF275F		ULSD	185	643	0.43
1190801	Stoddard Sea	Tank Barge	Harley Marir			auxiliary		6068TF275F		ULSD	185	641	0.43
628604	Washington	Tank Barge	Foss			auxiliary	,			ULSD	185	500	0.43
CG001716	Andrew	Workboat	Manson Con				Detroit Dies	S-60		ULSD	400	106	0.38
CG001716	Andrew	Workboat	Manson Con			Propulsion	Caterpillar	C18		ULSD	600	0	0.38
CG001919	Bob Lofgren	Workboat	Manson Con		1	Propulsion	Caterpillar	3512B	1996	ULSD	1910	0	0.38
CG001919	Bob Lofgren	Workboat	Manson Con		2	Propulsion	EMD	16V567C	1955	ULSD	1500	0	0.38
CG001919	Bob Lofgren	Workboat	Manson Con		3	Propulsion	EMD	16V567C	1955	ULSD	1500	0	0.38
CG001919	Bob Lofgren	Workboat	Manson Con		4	Propulsion	EMD	16V567C	1955	ULSD	1500	0	0.38
527467	Cheyenne Arrow	Workboat	Arrow Laune		1	Propulsion	Detroit	8V71	1971	ULSD	370	1000	0.38
527467	Cheyenne Arrow	Workboat	Arrow Laune			1	Detroit	8V71	1971	ULSD	370	1000	0.38
274237	Crow Arrow	Workboat	Arrow Laune				Detroit	8V71		ULSD	392	350	0.38
657491	Derrick 24	Workboat	Manson Con			Propulsion	Detroit Dies			ULSD	400	2814	0.38
657491	Derrick 24	Workboat	Manson Con			Propulsion	Caterpillar			ULSD	450	673	0.38
657491	Derrick 24	Workboat	Manson Con			Propulsion	John Deere			ULSD	130	721	0.38
657491	Derrick 24	Workboat	Manson Con			auxiliary	Detroit Dies	1	1969	ULSD	140	32	0.32
657491	Derrick 24	Workboat	Manson Con			auxiliary	Detroit Dies	•	2000	ULSD	140	15	0.32
DB3	Derrick 3 Derrick 3	Workboat	Manson Con			Propulsion Propulsion	John Deere			ULSD	384 318	479	0.38 0.38
DB3 DB3	Derrick 3	Workboat Workboat	Manson Con Manson Con			auxiliary	Detroit Dies	4045HF4750		ULSD ULSD	130	462 1403	0.36
DB6	Derrick 6	Workboat	Manson Con				-	8V71 (7087-		ULSD	318	160	0.32
DB6	Derrick 6	Workboat	Manson Con			Propulsion	John Deere	,		ULSD	154	1658	0.38
DB6	Derrick 6	Workboat	Manson Con			auxiliary	-	6-71 (1063-7		ULSD	180	442	0.32
DB6	Derrick 6	Workboat	Manson Con			auxiliary		6-71 (1063-7		ULSD	180	46	0.32
DB6	Derrick 6	Workboat	Manson Con			auxiliary		4-71 (1043-7		ULSD	140	401	0.32
DB8	Derrick 8	Workboat	Manson Con			Propulsion	Detroit Dies	,		ULSD	400	52	0.38
DB8	Derrick 8	Workboat	Manson Con			Propulsion	Detroit Dies			ULSD	365	567	0.38
CG059573	Lester M	Workboat	Manson Con			Propulsion	Detroit Dies			ULSD	180	1858	0.38
PB10	Police Boat (10)	Workboat	Port of Seatt		1	Propulsion			1987	Gasolin	100	500	0.38
D691320	Scandia	Workboat	Manson Con		1	Propulsion	Detroit Dies	S-60	2003	ULSD	400	1294	0.38
D691320	Scandia	Workboat	Manson Con		2	Propulsion	Caterpillar	3406		ULSD	420	2115	0.38
D691320	Scandia	Workboat	Manson Con		3	auxiliary	Caterpillar	3306	1977	ULSD	230	62	0.32
D691320	Scandia	Workboat	Manson Con			auxiliary	Detroit Dies	1		ULSD	140	154	0.32
D691320	Scandia	Workboat	Manson Con			auxiliary	Detroit Dies	1		ULSD	140	189	0.32
537094	Sioux Arrow	Workboat	Arrow Laune			Propulsion	Detroit	8V71		ULSD	600	1000	0.38
537094	Sioux Arrow	Workboat	Arrow Laune			Propulsion	Detroit	8V71		ULSD	600	1000	0.38
SB97	Small Boat (97)	Workboat	Port of Seatt			Propulsion				Gasolin		500	0.38
1131954	Southman	Workboat	Manson Con			Propulsion	Caterpillar	3408	1989	ULSD	402	2226	0.38
1131954	Southman	Workboat	Manson Con			Propulsion	Detroit Dies	2	•	ULSD	180	25	0.38
1177801	Viking	Workboat	Manson Con			Propulsion	Caterpillar			ULSD	619	338	0.38
1177801	Viking	Workboat	Manson Con			Propulsion	Caterpillar	3512		ULSD	1200	7360	0.38
1177801	Viking	Workboat	Manson Con			auxiliary	Caterpillar			ULSD	275	1125	0.32
1177801	Viking	Workboat	Manson Con			auxiliary	Detroit Dies			ULSD	318	301	0.32
1177801	Viking	Workboat	Manson Con			auxiliary	Detroit Dies			ULSD	318	0	0.32
1177801 CC747105	Viking	Workboat	Manson Con			auxiliary	Caterpillar	3306 9V/71		ULSD	230	0 75	0.32
CG747195	Warrior	Workboat	Arrow Laune			Propulsion	Detroit	8V71		ULSD	330	75 75	0.38
CG747195	Warrior	Workboat	Arrow Laune			Propulsion Propulsion	Detroit	8V71		ULSD Gasolin	330	75 500	0.38
W1	Workboat #1	Workboat	Port of Seatt			Propulsion Propulsion				Gasolin		500	0.38
W2 W3	Workboat #2	Workboat	Port of Seatt			Propulsion Propulsion				Gasolin		500	0.38
w.o	Workboat #3	Workboat	Port of Seatt		1	r ropulsion				Gasolin	50	500	0.38
W100	Workboat (100)	Workboat	Port of Seatt		1	Propulsion			1002	Gasolin	50	500	0.38

				Engin	ie							
			Owner	ID	Engine	Engine	Engine	Engine			Annual	
Vessel ID	Vessel Name	Type	Name			MFR	Model	Year	Fuel	HP	Hours	Load
W1251	Workboat (1251)	Workboat	Port of Sea	Port of Seatt				2001	Gasoline	50	500	0.38
W1260	Workboat (1260)	Workboat	Port of Seatt		1 Propulsion	Honda		1985	Gasoline	45	500	0.38
ZB12	Zodiac Boat (12)	Workboat	Port of Sea			Honda		1995	Gasoline	50	500	0.38

APPENDIX B - SUPPORTING DATA

CARGO HANDLING EQUIPMENT DATA

													Alt. Fuel						
												Total Fuel	Used					Date	
				Equip								Consume	(Emulsifi	DOC		On-road	Other	Impleme	Number
Terminal			Equip	Manufact	Equip	Engine	Engine	Engine		Annual		d	ed Fuel,	Installed	Year DOC	Engine	Emission	nted	of
ID	Port	Equip Type	ID	urer	Model	Make	Model	Year	HP	Hours	Fuel Type	(gallons)	ULSD)	(y or n)	Installed	(y or n)	Control	(Mo/Yr)	Engines
PSA010	Anacortes	Forklift	8	Clark		Continental	4 cyl	1970	50	32	Propane	na	Propane	n	na	n	n	na	1
PSA010	Anacortes	Forklift	10	Clark	2.5 ton		4 cyl	1963	50	18	Propane	na	Propane	n	na	n	n	na	1
PSA010	Anacortes	Forklift	11F		9 ton	Ford	351	1977	200	71	Propane	na	Propane	n	na	n	n	na	1
PSA010	Anacortes	Forklift	12F	CAT	9 ton	CAT	3206	1982	200	5	Diesel	na	ULSD	n	na	n	n	na	1
PSA010	Anacortes		9A		5 ton	Nissan	6 cyl	1995	100	48	Propane	na	1	n	na	n	n	na	1
PSA010	Anacortes	Skid Steer Loader		Bobcat		Kubota	4 cyl	1991	150	22	Diesel	na	ULSD	n	na	n	n	na	1
PSE020	Everett	Loader	515	Caterpillar		Caterpillar		1973	177	100	Diesel	300	ULSD	n	na	n	n	na	1
PSE020	Everett	Loader	524	0	L80	Cummins		1989	335	200	Diesel	1000	ULSD	n	na	n	n	na	1
PSE020	Everett	Loader	527	Dart	kw80	Cummins		1976	335	200	Diesel	1000	ULSD	n	na	n	n	na	1
PSE020	Everett	Loader	531	Caterpillar		Caterpillar		1973	177	1,200	Diesel	4500	ULSD	n	na	n	n	na	1
PSE020	Everett	Loader	545	Caterpillar		Caterpillar		1986	177	100	Diesel	300	ULSD	n	na	n	n	na	1
PSE020	Everett	Loader	549	Caterpillar		Caterpillar		1987	400	1,500	Diesel	9000	ULSD	n	na	n	n	na	1
PSE020	Everett	Loader	570	Caterpillar		Caterpillar		1991	400	2,000	Diesel	12000	ULSD	n	na	n	n	na	1
PSE020	Everett	Loader	578	Caterpillar		Caterpillar		1985	400	500	Diesel	3000	ULSD	n	na	n	n	na	1
PSE020	Everett	Log shovel	580	Caterpillar		Caterpillar		1994	177	1,000	Diesel	3000	ULSD	n	na	n	n	na	1
PSE020	Everett	Log shovel	593	Caterpillar		Caterpillar		2001	177	1,500	Diesel	4500	ULSD	n	na	n	n	na	1
PSE010	Everett	Backhoe	57	Ford	455C KF2		201 C.I. 3		63	300	Diesel	300	ULSD	n	na	n	n	na	1
PSE010	Everett	Compressor	75	Ingersol-Ra		White	G1600X11		50	250	Gasoline	150	Gasoline	n	na	n	n	na	1
PSE010	Everett	Crane	71	Grove	RT59S	Detroit	4-71 NA	1968	160	150	Diesel	200	ULSD	n	na	n	n	na	1
PSE010	Everett	Crane	C1	Gottwald		Cummins	,	2000	250	280	Diesel	na	ULSD	n	na	n	n	na	1
PSE010	Everett	Crane	CR1	Manitowoc		Cummins		1992	330	150	Diesel	300	ULSD	n	na	n	n	na	1
PSE010	Everett	Forklift	7	Towmotor		Caterpillar			175	250	Diesel	250	ULSD	n	na	n	n	na	1
PSE010	Everett	Forklift	9	Towmotor		Caterpillar			175	250	Diesel	250	ULSD	n	na	n	n	na	1
PSE010	Everett	Forklift	12	Hyster	H130F	Perkins	4.236 NA		85	300	Diesel	300	ULSD	n	na	n	n	na	1
PSE010 PSE010	Everett	Forklift	18	Hyster	H130F 4024	Perkins	4.236 NA		85	300	Diesel	300	ULSD	n	na	n	n	na	1
PSE010 PSE010	Everett	Forklift Forklift	21 22	Clark Clark	4024			1953 1953				na	Gasoline		na	n	n	na	1
PSE010 PSE010	Everett			Yale	GP3180M0	200		1933				na	Gasoline		na	n	n	na	1
PSE010 PSE010	Everett Everett	Forklift Forklift	26 27	Hyster	H120C	Continental	E245 6 to	n 1069	76	200	Gasoline Gasoline	na 200	Gasoline Gasoline		na na	n n	n n	na na	1
PSE010	Everett	Forklift	28	Hyster	H120C	Continental	,		76 76	200	Gasoline	200	Gasoline		na	n	n	na	1
PSE010	Everett	Forklift	45	Mitsubishi		Mitsubishi	,		93	300		300					n	na	1
PSE010	Everett	Forklift	46	Mitsubishi		Mitsubishi			93	300	Propane Propane	300	_ 1	n n	na na	n n	n	na	1
PSE010	Everett	Forklift	47	Mitsubishi		Mitsubishi			93	300	Propane	300		n	na	n	n	na	1
PSE010	Everett	Forklift	48	Mitsubishi		Mitsubishi			93	300	Propane	300	_ *	n	na	n	n	na	1
PSE010	Everett	Forklift	49	Mitsubishi		Mitsubishi			93	300	Propane	300		n	na	n	n	na	1
PSE010	Everett	Forklift	60	Nissan	CYMO2L2		2 ton	1994	0	0	Electric	na	Electric	n	na	n	n	na	0
PSE010	Everett	Forklift	61	Nissan	CYMO2L2		2 ton	1994	0	0	Electric	na	Electric	n	na	n	n	na	0
PSE010	Everett	Forklift	62	Nissan	CYMO2L2		2 ton	1994	0	0	Electric	na	Electric	n	na	n	n	na	0
PSE010	Everett	Forklift	63	Nissan	CYMO2L2		2 ton	1994	0	0	Electric	na	Electric	n	na	n	n	na	0
PSE010	Everett	Forklift	64	Nissan	CYMO2L2		2 ton	1994	0	0	Electric	na	Electric	n	na	n	n	na	0
PSE010	Everett	Forklift	65	Nissan	CYMO2L2		2 ton	1994	0	0	Electric	na	Electric	n	na	n	n	na	0
PSE010	Everett	Forklift	4F	Towmotor		Caterpillar			175	250	Gasoline	250	Gasoline		na	n	n	na	1
PSE010	Everett	Generator	85	Onan	85 KW	Cummins		2000	210	50	Diesel	50	ULSD	n	na	n	n	na	1
PSE010	Everett	Generator	G1	DMT		John Deere		1992	71	150	Diesel	150	ULSD	n	na	n	n	na	1
PSE010	Everett	Generator	G2	Kohler	400 KW	Volvo Pent			602		Diesel	na	ULSD	n	na	n	n	na	1

													Alt. Fuel						
												Total Fuel	Used					Date	
				Equip								Consume	(Emulsifi	DOC		On-road	Other	Impleme	Number
Terminal			Equip	Manufact	Equip	Engine	Engine	Engine		Annual		d	ed Fuel,	Installed	Year DOC	Engine	Emission	nted	of
ID	Port	Equip Type	ID	urer	Model	Make	Model	Year	HP	Hours	Fuel Type	(gallons)	ULSD)	(y or n)	Installed	(y or n)	Control	(Mo/Yr)	Engines
PSE010	Everett	Light tower	76	Winco	LSC4	Kubota	D 850	1991	25	300	Diesel	150	ULSD	n	na	n	n	na	1
PSE010	Everett	Loader	29	Bobcat	600LP	Wisconsin	VF4D	1968	25	100	Propane	75	Propane	n	na	n	n	na	1
PSE010	Everett	Loader	35	Bobcat	600LP						Diesel	na	ULSD	n	na	n	n	na	1
PSE010	Everett	Loader	11L	Caterpillar	930	Caterpillar	3304	1974	101	200	Diesel	200	ULSD	n	na	n	n	na	1
PSE010	Everett	Loader	32L	Caterpillar	930	Caterpillar	41K1189	1970	101	200	Diesel	200	ULSD	n	na	n	n	na	1
PSE010	Everett	Manlift	72	Genie	S-65-2WD		2.5 Litre 40	C 1998	82	300	Gasoline	300		n	na	n	n	na	1
PSE010	Everett	Sweeper	73	Power Bos	s SW90HD			1987	36	300	Diesel	150	ULSD	n	na	n	n	na	1
PSE010	Everett	Truck	56	Ford	F800 Boon	n Ford	MFMO 7.8	3 1992	210	350	Diesel	350	ULSD	n	na	n	n	na	1
PSE010	Everett	Welder	77	Lincoln	F245	Continental		1968	76	250	Gasoline	200		n	na	n	n	na	1
PSE030	Everett	Forklift	151	Clark		353 Detroit		1984	75	92	Diesel	na	ULSD	n	na	n	n	na	1
PSE030	Everett	Forklift	160	Clark		353 Detroit		1990	75	32	Diesel	na	ULSD	n	na	n	n	na	1
PSE030	Everett	Forklift	192	Taylor	TE300S	Detroit	15 ton	1984	150	100	Diesel	na	ULSD	n	na	n	n	na	1
PSE030	Everett	Forklift	193	Taylor	TE300S	Detroit	15 ton	1984	150	175	Diesel	na	ULSD	n	na	n	n	na	1
PSE030	Everett	Forklift	921	Clark	C500Y100		5 ton	1984	75	92	Diesel	na	ULSD	n	na	n	n	na	1
PSE030	Everett	Forklift	157E	Clark		353 Detroit	7 ton	1984	75	168	Diesel	na	ULSD	n	na	n	n	na	1
PSE030	Everett	Top Handler	T29	Caterpillar		3208Cat		1993	200	25	Diesel	na	ULSD	n	na	n	n	na	1
PSE030	Everett	Yard Tractor	T41	Ottawa	YT50	3208Cat		1986	175	225	Diesel	na	ULSD	n	na	n	n	na	1
PSE030	Everett	Yard Tractor	T42	Ottawa	YT50	3208Cat		1986	175	225	Diesel	na	ULSD	n	na	n	n	na	1
PSE030	Everett	Yard Tractor	T44	Ottawa	YT50	3208Cat		1986	175	225	Diesel	na	ULSD	n	na	n	n	na	1
PSE030	Everett	Yard Tractor	T45	Ottawa	YT50	3208Cat		1986	175	350	Diesel	na	ULSD	n	na	n	n	na	1
PSE030	Everett	Yard Tractor	T46	Ottawa	YT50	3208Cat		1986	175	350	Diesel	na	ULSD	n	na	n	n	na	1
PSE030	Everett	Yard Tractor	T48	Ottawa	YT50	3208Cat		1986	175	225	Diesel	na	ULSD	n	na	n	n	na	1
PSE030	Everett	Yard Tractor	T56	Ottawa	YT50	3208Cat		1993	175	225	Diesel	na	ULSD	n	na	n	n	na	1
PSE040	Everett	Forklift	F1	Hyster	3 ton	Perkins		1990	50	200	Diesel	na	ULSD	n	na	n	n	na	1
PSE040	Everett	Forklift	F2	Hyster	7 ton		C - D220	1990	75 150	200	Diesel	na	ULSD	n	na	n	n	na	1
PSE040	Everett	Forklift	F3	Hyster	10 ton		Cat D320		150	200	Diesel	na	ULSD	n	na	n	n	na	1
PSE040	Everett	Forklift	F4	Hyster	10 ton		Cat D320	1975	150	200	Diesel	na	ULSD	n	na	n	n	na	1
PSE040 PSE040	Everett	Forklift	F5	Mitsubishi		C	1551	1995	150	200 200	Diesel	na	ULSD ULSD	n	na	n	n	na	1
PSE040 PSE040	Everett	Forklift	F6	Taylor	15 ton	Cummins	155hp	1995 1995	150 200	400	Diesel	na	ULSD	n	na	n	n	na	1
PSE040 PSE040	Everett Everett	Reach stacker Reach stacker	10001 RS1	Hyster Taylor		Cummins		1995	200	400	Diesel Diesel	na	ULSD	n	na	n	n	na	1
PSE040 PSE040	Everett	Yard Tractor	11YT	Sisu				1995	175	200	Diesel	na	ULSD	n	na	n	n	na	1
PSE040 PSE040	Everett	Yard Tractor	B-54	Ottawa	YT50	Caterpillar	2209	1995	175	200	Diesel	na	ULSD	n	na	n	n	na	1
PSE040 PSE040	Everett	Yard Tractor	Б-34 H-962	AGM	1 1 30	Caterpillar		1993	175	200	Diesel	na na	ULSD	n	na	n n	n n	na na	1
PSE040	Everett	Yard Tractor	H-963	AGM		Caterpillar		1984	175	200	Diesel	na	ULSD	n	na	n	n	na	1
PSO010	Olympia	Forklift	5918		FD80T7	Komatsu	6 cyl	2001	104	54	Diesel	38	ULSD	n	na	n	n	na	1
PSO010	Olympia	Forklift	5919	Komatsu	FD80T7	Komatsu	6 cyl	2001	104	56	Diesel	47	ULSD	n n	na na	n	n	na	1
PSO010	Olympia	Forklift	5924	Kalmar	DCD1366		6 cyl	2001	159	85	Diesel	106	ULSD	n	na	n	n	na	1
PSO010	Olympia	Loader	6013	Komatsu	WA600-1L		6 cyl	1990	415	738	Diesel	7054	ULSD	n	na	n	n	na	1
PSO010	Olympia	Loader	6014	Komatsu	WA600-1L		6 cyl	1990	415	512	Diesel	5074	ULSD	n	na	n	n	na	1
PSO010	Olympia	Loader	6015	Komatsu	WA600-1L		6 cyl	1990	415	254	Diesel	2310	ULSD	YES	2007		n	na	1
PSO010	Olympia	Loader	6016	Komatsu	WA600-3L		6 cyl	2000	415	56	Diesel	2267	ULSD	n n	na	n	n	na	1
PSO010	Olympia	Loader	6017	Komatsu	WA600-3L		6 cyl	2000	415	60	Diesel	4101	ULSD	n	na	n	n	na	1
PSO010	Olympia	Loader	6018	Komatsu			6 cyl	2000	415	116	Diesel	2436	ULSD	n	na	n	n	na	1
PSO010	Olympia	Loader	6111L	Wagner		Internation:	,	1985	220	0	Diesel	0	ULSD	n	na	n	n	na	1
155010	Orympia	Louder	011111	** agiici	- amound	··········		1,00	220	~	2710001	~			****	-1	**	-144	1

													Alt. Fuel						
												Total Fuel	Used					Date	
				Equip								Consume	(Emulsifi	DOC		On-road	Other	Impleme	Number
Terminal			Equip	Manufact	Equip	Engine	Engine	Engine		Annual		d	ed Fuel,	Installed	Year DOC	Engine	Emission	nted	of
ID	Port	Equip Type	ID	urer	Model	Make	Model	Year	HP	Hours	Fuel Type		ULSD)	(y or n)	Installed	(y or n)	Control	(Mo/Yr)	Engines
PSO010	Olympia	Loader	6112L	Komatsu	Bucket Lo			1989	197	245	Diesel	253	ULSD	n	na	n	n	na	1
PSO010	Olympia	Manlift	5819	Genie	S60	Ford	LRG-423		87	71	Propane	na	1	n	na	n	n	na	1
PSO010	Olympia	Sweeper	5769	Elgin	Crosswind		6 cyl	2010	230	531	Diesel	538	ULSD	n	na	Y	n	na	1
PSO010	Olympia	Sweeper	5770	Athey	Top Gun	Internation		1999	210	8	Diesel	0	ULSD	n	na	Y	n	na	1
PSO010	Olympia	Sweeper	5818	Powerboss	SW9XT	Nissan	2.5 LITER		130	2	Propane	na	Propane	n	na	Y	n	na	1
PSS020	Seattle	Crane	CT1				5.9L	1992	130	60	Diesel	na	ULSD	n	na	n	n	na	1
PSS020	Seattle	Crane	CT2				3.9L	1998	130	510	Diesel	na	ULSD	n	na	n	n	na	1
PSS020	Seattle	Crane	CT3				5.9	1998	130	510	Diesel	na	ULSD	n	na	n	n	na	1
PSS020	Seattle	Crane	CT4				3.9	1998	130	270	Diesel	na	ULSD	n	na	n	n	na	1
PSS020	Seattle	Crane	CT5				5.9	1998	130	540	Diesel	na	ULSD	n	na	n	n	na	1
PSS020	Seattle	Crane	CT6				5.9	1998	130	720	Diesel	na	ULSD	n	na	n	n	na	1
PSS020	Seattle	Crane	CT7				5.9	1998	130	720	Diesel	na	ULSD	n	na	n	n	na	1
PSS020	Seattle	Crane	CT8				5.9	1998	130	540	Diesel	na	ULSD	n	na	n	n	na	1
PSS020	Seattle	Forklift	CT10						0	324	Electric	na	Electric	n	na	n	n	na	0
PSS020	Seattle	Forklift	CT11						0	240	Electric	na	Electric	n	na	n	n	na	0
PSS020	Seattle	Forklift	CT12						0	240	Electric	na	Electric	n	na	n	n	na	0
PSS020	Seattle	Forklift	CT13				r T	1001	0	240	Electric	na	Electric	n	na	n	n	na	1
PSS020	Seattle	Forklift	CT14				5 T	1991	85	60	Diesel	na	ULSD	n	na	n	n	na	1
PSS020 PSS020	Seattle	Forklift Forklift	CT15 CT16				5 T 10-15 T	1991 1995	85 150	60 20	Diesel Diesel	na	ULSD ULSD	n	na	n	n	na	1
PSS020 PSS020	Seattle Seattle	Forklift	CT16 CT17				5 T	1993	85	480		na	_	n	na	n	n	na	1
PSS020	Seattle	Forklift	CT18				5 T	1987	85	480	Propane Propane	na		n	na	n	n	na	1
PSS020	Seattle	Forklift	CT19				5 T	1987	85	480	Propane	na na		n n	na na	n n	n n	na na	1
PSS020	Seattle	Forklift	CT20				5 T	1987	85	480	-	na	Propane		na	n	n	na	1
PSS020	Seattle	Forklift	CT21				4 T	1989	85	480	Propane	na	Propane		na	n	n	na	1
PSS020	Seattle	Forklift	CT22				4 T	1993	85	480	Propane	na	Propane		na	n	n	na	1
PSS020	Seattle	Forklift	CT23				4 T	1993	85	480	Propane	na	Propane		na	n	n	na	1
PSS020	Seattle	Forklift	CT24				4 T	1993	85	480	Propane	na		n	na	n	n	na	1
PSS020	Seattle	Forklift	CT25				4 T	1993	85	480	Propane	na		n	na	n	n	na	1
PSS020	Seattle	Forklift	CT26				4 T	1993	85	480	Propane	na	1	n	na	n	n	na	1
PSS020	Seattle	Forklift	CT27				4 T	1993	85	480	Propane	na		n	na	n	n	na	1
PSS020	Seattle	Forklift	CT28				4 T	1996	85	480	Propane	na	1	n	na	n	n	na	1
PSS020	Seattle	Forklift	CT29				4 T	2005	85	480	Propane	na	1	n	na	n	n	na	1
PSS020	Seattle	Forklift	CT30				4 T	2005	85	480	Propane	na	•	n	na	n	n	na	1
PSS020	Seattle	Forklift	CT31				4 T	2005	85	480	Propane	na		n	na	n	n	na	1
PSS020	Seattle	Forklift	CT32				4 T	2005	85	480	Propane	na		n	na	n	n	na	1
PSS020	Seattle	Forklift	CT33				4 T	2005	85	480	Propane	na	_ *	n	na	n	n	na	1
PSS020	Seattle	Forklift	CT34				4 T	2005	85	610	Propane	na	Propane	n	na	n	n	na	1
PSS020	Seattle	Forklift	CT35				4 T	2005	85	610	Propane	na	Propane	n	na	n	n	na	1
PSS020	Seattle	Forklift	CT36				4 T	2005	85	610	Propane	na	Propane	n	na	n	n	na	1
PSS020	Seattle	Forklift	CT37				4 T	2005	85	610	Propane	na	Propane	n	na	n	n	na	1
PSS020	Seattle	Forklift	CT38				4 T	2005	85	610	Propane	na	Propane	n	na	n	n	na	1
PSS020	Seattle	Forklift	CT9						0	324	Electric	na	Electric	n	na	n	n	na	0
PSS020	Seattle	Pallet Jacks	CT39						0	610	Electric	na	Electric	n	na	n	n	na	0
PSS020	Seattle	Pallet Jacks	CT40						0	610	Electric	na	Electric	n	na	n	n	na	0

													Alt. Fuel						
												Total Fue	1 Used					Date	
				Equip								Consume	(Emulsifi	DOC		On-road	Other	Impleme	Number
Terminal			Equip	Manufact	Equip	Engine	Engine	Engine		Annual		d	ed Fuel,	Installed	Year DOC	Engine	Emission		of
ID	Port	Equip Type	ID	urer	Model	Make	Model	Year	HP	Hours		(gallons)	ULSD)	(y or n)	Installed	(y or n)	Control	(Mo/Yr)	Engines
PSS020	Seattle	Pallet Jacks	CT41						0	610	Electric	na	Electric	n	na	n	n	na	0
PSS020	Seattle	Pallet Jacks	CT42						0	610	Electric	na	Electric	n	na	n	n	na	0
PSS020	Seattle	Pallet Jacks	CT43						0	610	Electric	na	Electric	n	na	n	n	na	0
PSS020	Seattle	Pallet Jacks	CT44						0	610	Electric	na	Electric	n	na	n	n	na	0
PSS020	Seattle	Pallet Jacks	CT45						0	610	Electric	na	Electric	n	na	n	n	na	0
PSS020	Seattle	Pallet Jacks	CT46						0	610	Electric	na	Electric	n	na	n	n	na	0
PSS020	Seattle	Pallet Jacks	CT47						0	610	Electric	na	Electric	n	na	n	n	na	0
PSS020	Seattle	Pallet Jacks	CT48						0	610	Electric	na	Electric	n	na	n	n	na	0
PSS020	Seattle	Pallet Jacks	CT49						0	480	Electric	na	Electric	n	na	n	n	na	0
PSS020	Seattle	Pallet Jacks	CT50						0	480	Electric	na	Electric	n	na	n	n	na	0
PSS020	Seattle	Pallet Jacks	CT51						0	480	Electric	na	Electric	n	na	n	n	na	0
PSS020	Seattle	Pallet Jacks	CT52						0	480	Electric	na	Electric	n	na	n	n	na	0
PSS020	Seattle	Pallet Jacks	CT53						0	480	Electric	na	Electric	n	na	n	n	na	0
PSS020	Seattle	Pallet Jacks	CT54						0	480	Electric	na	Electric	n	na	n	n	na	0
PSS020	Seattle	Pallet Jacks	CT55						0	480	Electric	na	Electric	n	na	n	n	na	0
PSS020	Seattle	Pallet Jacks	CT56						0	480	Electric	na	Electric	n	na	n	n	na	0
PSS020	Seattle	Pallet Jacks	CT57						0	480	Electric	na	Electric	n	na	n	n	na	
PSS020	Seattle	Pallet Jacks	CT58						~	480	Electric	na	Electric	n	na	n	n	na	0
PSS020	Seattle	Pallet Jacks	CT59 CT60						0	480	Electric	na	Electric	n	na	n	n	na	0
PSS020 PSS040	Seattle	Pallet Jacks Forklift	FS86					1995	100	480 1,000	Electric Diesel	na	Electric ULSD	n	na	n	n	na	1
PSS040 PSS010	Seattle	Car Loader		3 Daewoo				2001	150	365	Diesel	na	ULSD	n	na	n	n	na	1
PSS010 PSS010	Seattle Seattle	Car Loader Car Loader		3 Daewoo 3 Chalmers				1981	150	22	Propane	na na		n n	na	n n	n	na na	1
PSS010	Seattle	Car Loader Car Loader		Chalmers				1981	150	30	Propane	na		n	na na	n	n n	na	1
PSS010	Seattle	Car Loader		Chalmers				1981	150	14	Propane	na	_ •	n		n		na	1
PSS010	Seattle	Car Loader		Mitsubishi				1988	150	25	Propane	na		n	na na	n	n n	na	1
PSS010	Seattle	Car Loader) Mitsubishi				1989	150	25	Propane	na		n	na	n	n	na	1
PSS010	Seattle	Car Loader	LDR332					1989	150	121	Gasoline	na	Gasoline		na	n	n	na	1
PSS010	Seattle	Forklift		Crown				1975	0	24	Electric	na	Electric	n	na	n	n	na	0
PSS010	Seattle	Forklift	ELT169					1978	0	25	Electric	na		n	na	n	n	na	0
PSS010	Seattle	Forklift	GLT201					1988	100	69	Propane	na		n	na	n	n	na	1
PSS010	Seattle	Forklift	GLT203					1988	100	200	Gasoline	na	Gasoline		na	n	n	na	1
PSS010	Seattle	Forklift	GLT205					1988	100	222	Gasoline	na	Gasoline		na	n	n	na	1
PSS010	Seattle	Forklift	GLT208					1989	100	46	Propane	na	Propane		na	n	n	na	1
PSS010	Seattle	Forklift	GLT216					1989	100	5	•	na	Gasoline		na	n	n	na	1
PSS010	Seattle	Forklift	GLT217					1990	100	48	Propane	na		n	na	n	n	na	1
PSS010	Seattle	Forklift	GLT218					1990	100	35	Propane	na	_ *	n	na	n	n	na	1
PSS010	Seattle	Forklift	GLT221					1990	100	100	Propane	na	_ •	n	na	n	n	na	1
PSS010	Seattle	Forklift	GLT222					1990	100	200	*	na	Gasoline		na	n	n	na	1
PSS010	Seattle	Forklift	GLT273					1976	100	340	Propane	na		n	na	n	n	na	1
PSS010	Seattle	Forklift	GLT275					1993	100	110	Gasoline	na	Gasoline		na	n	n	na	1
PSS010	Seattle	Forklift	GLT276					1994	100	120	Propane	na		n	na	n	n	na	1
PSS010	Seattle	Forklift	HLT 1	Komatsu	16500#			1992	200	130	Diesel	na	ULSD	n	na	n	n	na	1
PSS010	Seattle	Forklift	HLT 12		30000#			1975	200	259	Diesel	na	ULSD	n	na	n	n	na	1
PSS010	Seattle	Forklift	HLT 13					1975	200	70	Diesel	na	ULSD	n	na	n	n	na	1

													Alt. Fuel						
												Total Fuel	l Used					Date	
				Equip								Consume	(Emulsifi	DOC		On-road	Other	Impleme	Number
Terminal			Equip	Manufact	Equip	Engine	Engine	Engine		Annual		d	ed Fuel,	Installed	Year DOC	Engine	Emission	nted	of
ID	Port	Equip Type	ID	urer	Model	Make	Model	Year	HP	Hours	Fuel Type	(gallons)	ULSD)	(y or n)	Installed	(y or n)	Control	(Mo/Yr)	Engines
PSS010	Seattle	Forklift	HLT 14		33000#			1975	200	47	Diesel	na	ULSD	n	na	n	n	na	1
PSS010	Seattle	Forklift	HLT 16		30000#			1974	200	34	Diesel	na	ULSD	n	na	n	n	na	1
PSS010	Seattle	Forklift	HLT 17		40000#			1961	200	37	Diesel	na	ULSD	n	na	n	n	na	1
PSS010	Seattle	Forklift	HLT 18		30000#			1973	200	20	Diesel	na	ULSD	n	na	n	n	na	1
PSS010	Seattle	Forklift		Towmotor				1969	200	146	Diesel	na	ULSD	n	na	n	n	na	1
PSS010	Seattle	Forklift	HLT 33		**********			1977	200	72	Diesel	na	ULSD	n	na	n	n	na	1
PSS010	Seattle	Forklift	HLT 34		33000#			1977	200	53	Diesel	na	ULSD	n	na	n	n	na	1
PSS010	Seattle	Generator	GEN152	2				2001	210	44	Diesel	na	ULSD	n	na	n	n	na	1
PSS010	Seattle	Generator	GEN155	,				2001	364	102	Diesel	na	ULSD	n	na	n	n	na	1
PSS010	Seattle	Generator		Caterpillar				2003	287	28	Diesel	na	ULSD	n	na	n	n	na	1
PSS010 PSS010	Seattle	Generator	GEN160 GEN162					2005	5	5 5	Gasoline	na		n	na	n	n	na	1
PSS010 PSS030	Seattle	Generator Forklift	FLC3006			Caterpillar	2200	1995	20 125	5	Gasoline	na	Gasoline	n	na	n	n	na	1
PSS030	Seattle	Forklift	FLC3007			Caterpillar		1995	125		Diesel	na	ULSD ULSD	n	na	n	n	na	1
PSS030	Seattle Seattle	Forklift	FLH100			Perkins	2158-2100		215		Diesel Diesel	na na	ULSD	n n	na na	n n	n n	na na	1
PSS030	Seattle	Forklift	FLH100			Perkins	2158-2100		215		Diesel	na	ULSD	n	na	n	n	na	1
PSS030	Seattle	Forklift	FLH1002			Perkins	4.5	2005	215		Diesel	na	ULSD	n	na	n	n	na	1
PSS030	Seattle	Forklift	FLH1005			Perkins	4.5	2005	215		Diesel	na	ULSD	n	na	n	n	na	1
PSS030	Seattle	Forklift	FLH3602			Perkins	PDX4021		120		Diesel	na	ULSD	n	na	n	n	na	1
PSS030	Seattle	Forklift	FLH3603			Perkins	PDX4021		120		Diesel	na	ULSD	n	na	n	n	na	1
PSS030	Seattle	Forklift	FLH621			Cummins		1995	215		Diesel	na	ULSD	n	na	n	n	na	1
PSS030	Seattle	Forklift	FLT1502			Cummins		2008	200		Diesel	na	ULSD	n	na	n	n	na	1
PSS030	Seattle	Forklift	FLT3005				6BT5.9-C	1993	135		Diesel	na	ULSD	n	na	n	n	na	1
PSS030	Seattle	Forklift	FLT8018	3		Cummins	QSM-11	2006	335		Diesel	na	ULSD	n	na	n	n	na	1
PSS030	Seattle	Forklift	FLT8019)		Cummins		2007	335		Diesel	na	ULSD	n	na	n	n	na	1
PSS030	Seattle	Forklift	FLT8021			Cummins	QSM-11	2007	335		Diesel	na	ULSD	n	na	n	n	na	1
PSS030	Seattle	Forklift	FLT9211			Cummins	QSM-11	2006	335		Diesel	na	ULSD	n	na	n	n	na	1
PSS030	Seattle	Forklift	FLT9214	1		Cummins	QSM-11	2008	335		Diesel	na	ULSD	n	na	n	n	na	1
PSS030	Seattle	Reach Stacker	RS-01			Cummins	M11	2002	330		Diesel	na	ULSD	n	na	n	n	na	1
PSS030	Seattle	Reach Stacker	RS-02			Cummins	QSM-11	2008	350		Diesel	na	ULSD	n	na	n	n	na	1
PSS030	Seattle	Yard Tractor	YH103			Caterpillar		1974	235		Diesel	na	ULSD	n	na	n	n	na	1
PSS030	Seattle	Yard Tractor	YH105			Cummins		1999	225		Diesel	na	ULSD	n	na	n	n	na	1
PSS030	Seattle	Yard Tractor	YH106			Cummins	ISC-225	1999	225		Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Container Crane	8	ZMPC	65LT			na	0	na	Electric	na	Electric	n	na	n	n	na	0
PSS050	Seattle	Container Crane	9	ZMPC	65LT			na	0	na	Electric	na	Electric	n	na	n	n	na	0
PSS050	Seattle	Container Crane	10	ZMPC	65LT			na	0	na	Electric	na	Electric	n	na	n	n	na	0
PSS050	Seattle	Container Crane	11	ZMPC	65LT			na	0	na	Electric	na	Electric	n	na	n	n	na	0
PSS050	Seattle	Container Crane	1677	MHI	50LT			na	0	na	Electric	na	Electric	n	na	n	n	na	0
PSS050	Seattle	Container Crane	1678	MHI	50LT			na	0	na	Electric	na	Electric	n	na	n	n	na	0
PSS050	Seattle	Container Crane	1679	MHI	50LT			na	0	na	Electric	na	Electric	n	na	n	n	na	0
PSS050 PSS050	Seattle	Container Crane	99980 99981	IHI IHI	40LT			na	0	na	Electric	na	Electric	n	na	n	n	na	0
PSS050 PSS050	Seattle Seattle	Container Crane Container Crane	100000	IHI	40LT 65LT			na	0	na	Electric	na	Electric Electric	n	na	n	n	na	0
PSS050 PSS050	Seattle	Forklift	8911	Mitsubishi		Mitsubishi		na 2004	85	na	Electric Diesel	na na	ULSD	n	na	n n	n n	na	1
PSS050 PSS050	Seattle	Forklift Forklift	8911	Mitsubishi		Mitsubishi		2004	85 85		Diesel	na na	ULSD	n n	na na	n n	n n	na na	1
F33030	Scattle	TOIKIII	0714	MITCHIDISMI	LD40V	iviitsubishi		2004	0.5		Diesei	114	ULSD	11	1174	11	11	114	1

													Alt. Fuel						
												Total Fuel	Used					Date	
				Equip								Consume	(Emulsifi			On-road			Number
Terminal			Equip	Manufact		Engine	Engine	Engine		Annual		d	ed Fuel,		Year DOC	Engine	Emission		of
ID	Port	Equip Type	ID	urer	Model	Make	Model	Year	HP	Hours	Fuel Type		ULSD)	(y or n)	Installed	(y or n)	Control		Engines
PSS050	Seattle	Forklift	8914	Mitsubishi		Mitsubishi		2004	85		Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Forklift	8917	Mitsubishi		Mitsubishi		2004	85		Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Forklift	8918	Mitsubishi		Mitsubishi		2004	85		Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Forklift	8919	Mitsubishi		Mitsubishi		2004	85		Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Forklift	8920	Mitsubishi		Mitsubishi		2004	85		Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Forklift	8921	Mitsubishi		Mitsubishi		2004	85		Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Forklift	8922	Mitsubishi		Mitsubishi		2004	85		Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Forklift	16900	Hyster	155XL2	Perkins		2001	150		Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Forklift	20900	Hyster	H200E	Perkins		2000	185		Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Forklift	20920	Hyster	H190XL	Perkins		2000	185		Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Forklift	30262	Taylor	TXE 300	Cummins		2006	200		Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Forklift	30918	Taylor	T 300M		B 5.9	2005	200		Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Forklift	30919	Taylor	T 300S	Cummins	B 5.9	2006	200		Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Forklift	POS 26	Clark	CY625	GMC		1982	150		Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	RTG	4	ZPMC		Cummins			620		Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	RTG	5	ZPMC			KTA 19 C	G31995	620		Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	RTG	30	ZPMC		Cat	3412E	2005	947		Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	RTG	31	ZPMC		Cat	3412E	2005	947		Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	RTG	32	ZPMC		Cat	3412E	2005	947		Diesel	na	ULSD	n	na	n	Super Cap	2005	
PSS050	Seattle	RTG	33	ZPMC		Cat	3412E	2005	947		Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Side Handler	15902	Taylor	TECSP 15	7 Cummins		2001	200	1,364	Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Side Handler	15903	Taylor			QSB 5.9	2005	205	1,826	Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Side Handler	15904	Taylor	TECSP 15		QSB 5.9	2005	205	882	Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Side Handler	15905	Taylor			QSB 5.9	2005	205	1,496	Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Side Handler	15906	Taylor			QSB 5.9	2006	205	1,727	Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Top Handler	80920	Taylor		5 Cummins	QSM 11	2003	335	1,624	Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Top Handler	80921	Taylor		5 Cummins	QSM 11	2004	335	1,431	Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Top Handler	80922	Taylor		5 Cummins	QSM 11	2004	335	1,282	Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Top Handler	80923	Taylor		5 Cummins	QSM 11	2004	335	1,638	Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Top Handler	80925	Taylor			QSM 11	2004	335	1,469	Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Top Handler	80928	Taylor			QSM 11	2005	335	1,603	Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Top Handler	80929	Taylor			QSM 11	2005	335	1,782	Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Top Handler	80930	Taylor			QSM 11	2005	335	1,922	Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Top Handler	80931	Taylor		5 Cummins	QSM 11	2005	335	2,119	Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Top Handler	80933	Taylor		5 Cummins	QSM 11	2005	335	2,111	Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Top Handler	80934	Taylor			QSM 11	2005	335	1,723	Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Top Handler	80935	Taylor		5 Cummins	QSM 11	2005	335	1,596	Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Top Handler	80936	Taylor			QSM 11	2006	335	2,078	Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Top Handler	80937	Taylor		5 Cummins	QSM 11	2006	335	2,367	Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Top Handler	80938	Taylor			QSM 11	2006	335	2,038	Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Top Handler	80939	Taylor		5 Cummins	QSM 11	2006	335	2,035	Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Top Handler	80940	Taylor			QSM 11	2006	335	2,001	Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Top Handler	80941	Taylor		5 Cummins	QSM 11	2006	335	2,838	Diesel	na	ULSD	n	na	n	DPF	2010	
PSS050	Seattle	Top Handler	80942	Taylor		5 Cummins	QSM 11	2006	335	2,893	Diesel	na	ULSD	n	na	n	DPF	2010	
PSS050	Seattle	Top Handler	80943	Taylor	THDC 95	5 Cummins	QSM 11	2006	335	2,938	Diesel	na	ULSD	n	na	n	DPF	2010) 1

													Alt. Fuel						
												Total Fuel	Used					Date	
				Equip								Consume	(Emulsifi	DOC		On-road	Other	Impleme	Number
Terminal			Equip	Manufact	Equip	Engine	Engine	Engine		Annual		d	ed Fuel,	Installed	Year DOC	Engine	Emission	nted	of
ID	Port	Equip Type	ID	urer	Model	Make	Model	Year	HP	Hours	Fuel Type	(gallons)	ULSD)	(y or n)	Installed	(y or n)	Control	(Mo/Yr)	Engines
PSS050	Seattle	Top Handler	80944	Taylor	THDC 95	5 Cummins	QSM 11	2006	335	2,984	Diesel	na	ULSD	n	na	n	DPF	2010	1
PSS050	Seattle	Top Handler	80945	Taylor	THDC 95	5 Cummins	QSM 11	2006	335	2,670	Diesel	na	ULSD	n	na	n	DPF	2010	1
PSS050	Seattle	Top Handler	80946	Taylor	THDC 95	5 Cummins	QSM 11	2006	335	3,190	Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Top Handler	80947	Taylor	THDC 95	5 Cummins	QSM 11	2006	335	2,977	Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Top Handler	80948	Taylor		5 Cummins	QSM 11	2007	335	2,985	Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Top Handler	80949	Taylor		5 Cummins	QSM 11	2007	335	2,756	Diesel	na	ULSD	n	na	n	n	na	1
PSS050	Seattle	Top Handler	80950	Taylor		5 Cummins	QSM 11	2007	335	2,190	Diesel	na	ULSD	YES	2010		n	na	1
PSS050	Seattle	Top Handler	80951	Taylor		5 Cummins	QSM 11	2007	335	2,181	Diesel	na	ULSD	YES	2010		n	na	1
PSS050	Seattle	Top Handler	80952	Taylor		5 Cummins	QSM 11	2007	335	2,325	Diesel	na	ULSD	YES	2010		n	na	1
PSS050	Seattle	Top Handler	80953	Taylor		5 Cummins	QSM 11	2007	335	1,806	Diesel	na	ULSD	YES	2010		n	na	1
PSS050	Seattle	Top Handler	80954	Taylor		5 Cummins	QSM 11	2007	335	2,084	Diesel	na	ULSD	YES	2010		n	na	1
PSS050	Seattle	Yard Tractor	H 800	Capacity	TJ 7000	Cummins	6BT	2005	173	1,657	Diesel	na	ULSD	YES	8/5/2010		n	na	1
PSS050	Seattle	Yard Tractor	H 801	Capacity	TJ 7000	Cummins	6BT	2005	173	1,514	Diesel	na	ULSD	YES	8/24/2010		n	na	1
PSS050	Seattle	Yard Tractor	H 802	Capacity	TJ 7000	Cummins	6BT	2005	173	1,825	Diesel	na	ULSD	YES	8/23/2010		n	na	1
PSS050	Seattle	Yard Tractor	H 803	Capacity	TJ 7000	Cummins	6BT	2005	173	2,052	Diesel	na	ULSD	YES	8/5/2010		n	na	1
PSS050	Seattle	Yard Tractor	H 804	Capacity	TJ 7000	Cummins	6BT	2005	173	2,192	Diesel	na	ULSD	YES	8/24/2010		n	na	1
PSS050	Seattle	Yard Tractor	H 805	Capacity	TJ 7000	Cummins	6BT	2005	173	1,614	Diesel	na	ULSD	YES	8/25/2010		n	na	1
PSS050	Seattle	Yard Tractor	H 806	Capacity	TJ 7000	Cummins	6BT	2005	173	2,218	Diesel	na	ULSD	YES	8/30/2010		n	na	1
PSS050	Seattle	Yard Tractor	H 807	Capacity	TJ 7000	Cummins	6BT	2005	173	2,007	Diesel	na	ULSD	YES	9/1/2010		n	na	1
PSS050	Seattle	Yard Tractor	H 808	Capacity	TJ 7000	Cummins	6BT	2005	173	2,162	Diesel	na	ULSD	YES	8/25/2010		n	na	1
PSS050	Seattle	Yard Tractor	H 809	Capacity	TJ 7000	Cummins	6BT	2005	173	1,654	Diesel	na	ULSD	YES	8/26/2010		n	na	1
PSS050	Seattle	Yard Tractor	H 810	Capacity	TJ 7000		6BT	2005	173	1,818	Diesel	na	ULSD	YES	8/27/2010		n	na	1
PSS050	Seattle	Yard Tractor	H 811	Capacity	TJ 7000		6BT	2005	173	1,842	Diesel	na	ULSD	YES	9/1/2010		n	na	1
PSS050	Seattle	Yard Tractor	H 812	Capacity	TJ 7000		6BT	2005	173	2,100	Diesel	na	ULSD ULSD	YES YES	8/26/2010		n	na	1 1
PSS050 PSS050	Seattle	Yard Tractor	H 813	Capacity	TJ 7000		6BT 6BT	2005	173	2,063	Diesel	na	ULSD	YES	5/19/2010		n	na	1
PSS050	Seattle	Yard Tractor Yard Tractor	H 814 H 815	Capacity	TJ 7000 TJ 7000		6BT	2005	173 173	2,308	Diesel	na	ULSD	YES	5/20/2010 5/20/2010		n	na	1
PSS050	Seattle Seattle	Yard Tractor	H 818	Capacity	TJ 7000	Cummins Cummins	QSB 5.9	2005 2007	173	2,000 2,687	Diesel Diesel	na	ULSD	YES	5/20/2010		n	na	1
PSS050	Seattle	Yard Tractor	H 819	Capacity Capacity	TJ 7000	Cummins	OSB 5.9	2007	173	2,638	Diesel	na na	ULSD	YES	5/21/2010		n	na na	1
PSS050	Seattle	Yard Tractor	H 820	Capacity	TJ 7000	Cummins	•	2007	173	2,717	Diesel		ULSD	YES	5/20/2010		n		1
PSS050	Seattle	Yard Tractor	H 821	Capacity	TJ 7000	Cummins	QSB 5.9 QSB 5.9	2007	173	1,780	Diesel	na na	ULSD	YES	7/27/2010		n n	na na	1
PSS050	Seattle	Yard Tractor	H 822	Capacity	TJ 7000	Cummins	QSB 5.9	2007	173	2,543	Diesel	na	ULSD	YES	5/13/2010		n	na	1
PSS050	Seattle	Yard Tractor	H 823	Capacity	TJ 7000	Cummins	QSB 5.9	2007	173	2,757	Diesel	na	ULSD	YES	5/20/2010		n	na	1
PSS050	Seattle	Yard Tractor	H 824	Capacity	TJ 7000	Cummins	QSB 5.9	2007	173	3,161	Diesel	na	ULSD	YES	5/13/2010		n	na	1
PSS050	Seattle	Yard Tractor	H 825	Capacity	TJ 7000	Cummins	QSB 5.9	2007	173	3,380	Diesel	na	ULSD	YES	5/13/2010		n	na	1
PSS050	Seattle	Yard Tractor	H 826	Capacity	TJ 7000	Cummins	QSB 5.9	2007	173	2,806	Diesel	na	ULSD	YES	5/13/2010		n	na	1
PSS050	Seattle	Yard Tractor	H 827	Capacity	TJ 7000	Cummins	QSB 5.9	2007	173	2,996	Diesel	na	ULSD	YES	5/22/2010		n	na	1
PSS050	Seattle	Yard Tractor	H 828	Capacity	TJ 7000	Cummins	•	2007	173	3,019	Diesel	na	ULSD	YES	5/13/2010		n	na	1
PSS050	Seattle	Yard Tractor	H 829	Capacity	TJ 7000	Cummins	QSB 5.9	2007	173	3,022	Diesel	na	ULSD	YES	5/13/2010		n	na	1
PSS050	Seattle	Yard Tractor	H 830	Capacity	TJ 7000	Cummins	•	2007	173	3,300	Diesel	na	ULSD	YES	7/20/2010		n	na	1
PSS050	Seattle	Yard Tractor	H 831	Capacity	TJ 7000	Cummins	QSB 5.9	2007	173	235	Diesel	na	ULSD	YES	7/21/2010		n	na	1
PSS050	Seattle	Yard Tractor	H 832	Capacity	TJ 7000	Cummins	QSB 5.9	2007	173	3,574	Diesel	na	ULSD	YES	5/17/2010		n	na	1
PSS050	Seattle	Yard Tractor	H 833	Capacity	TJ 7000	Cummins	QSB 5.9	2008	173	3,192	Diesel	na	ULSD	YES	5/13/2010		n	na	1
PSS050	Seattle	Yard Tractor	H 834	Capacity	TJ 7000	Cummins	QSB 5.9	2008	173	3,714	Diesel	na	ULSD	YES	5/13/2010		n	na	1
PSS050	Seattle	Yard Tractor	H 835	Capacity	TJ 7000	Cummins	-	2008	173	3,614	Diesel	na	ULSD	YES	5/17/2010		n	na	1
			000	on racity	-5		Ç			-, '					2, 11, 201		-		•

													Alt. Fuel						
												Total Fue	l Used					Date	
				Equip								Consume	(Emulsifi	DOC		On-road	Other	Impleme	Number
Terminal			Equip	Manufact	Equip	Engine	Engine	Engine		Annual		d	ed Fuel,	Installed	Year DOC	Engine	Emission	nted	of
ID	Port	Equip Type	ID	urer	Model	Make	Model	Year	HP	Hours	Fuel Type	(gallons)	ULSD)	(y or n)	Installed	(y or n)	Control	(Mo/Yr)	Engines
PSS050	Seattle	Yard Tractor	H 836	Capacity	TJ 7000	Cummins	QSB 5.9	2008	173	3,791	Diesel	na	ULSD	YES	7/26/2010	n (n	na	1
PSS050	Seattle	Yard Tractor	H 837	Capacity	TJ 7000	Cummins	QSB 5.9	2008	173	3,998	Diesel	na	ULSD	YES	7/22/2010	n (n	na	1
PSS050	Seattle	Yard Tractor	H 838	Capacity	TJ 7000	Cummins	QSB 5.9	2008	173	3,396	Diesel	na	ULSD	YES	7/22/2010		n	na	1
PSS050	Seattle	Yard Tractor	H 839	Capacity	TJ 7000	Cummins	QSB 5.9	2008	173	3,527	Diesel	na	ULSD	YES	7/22/2010	n n	n	na	1
PSS050	Seattle	Yard Tractor	H 929	Capacity	TJ 7000	Cummins	6BT	2005	173	1,329	Diesel	na	ULSD	YES	7/1/2005	n	n	na	1
PSS050	Seattle	Yard Tractor	H 930	Capacity	TJ 7000	Cummins	6BT	2005	173	1,699	Diesel	na	ULSD	YES	12/17/2005	n	n	na	1
PSS050	Seattle	Yard Tractor	H 931	Capacity	TJ 7000	Cummins	6BT	2005	173	1,832	Diesel	na	ULSD	YES	10/18/2005	n	n	na	1
PSS050	Seattle	Yard Tractor	H 932	Capacity	TJ 7000	Cummins	6BT	2005	173	1,272	Diesel	na	ULSD	YES	7/14/2005		n	na	1
PSS050	Seattle	Yard Tractor	H 933	Capacity	TJ 7000	Cummins	6BT	2005	173	1,791	Diesel	na	ULSD	YES	7/2/2005		n	na	1
PSS050	Seattle	Yard Tractor	H 934	Capacity	TJ 7000	Cummins	6BT	2005	173	1,466	Diesel	na	ULSD	YES	12/18/2005		n	na	1
PSS050	Seattle	Yard Tractor	H 935	Capacity	TJ 7000	Cummins	6BT	2005	173	860	Diesel	na	ULSD	YES	7/14/2005	n	n	na	1
PSS050	Seattle	Yard Tractor	H 936	Capacity	TJ 7000	Cummins	6BT	2005	173	1,494	Diesel	na	ULSD	YES	7/1/2005		n	na	1
PSS050	Seattle	Yard Tractor	H 937	Capacity	TJ 7000	Cummins	6BT	2005	173	1,577	Diesel	na	ULSD	YES	12/17/2005		n	na	1
PSS050	Seattle	Yard Tractor	H 938	Capacity	TJ 7000	Cummins	6BT	2005	173	2,041	Diesel	na	ULSD	YES	7/14/2005		n	na	1
PSS050	Seattle	Yard Tractor	H 939	Capacity	TJ 7000	Cummins	6BT	2005	173	1,139	Diesel	na	ULSD	YES	10/2/2005		n	na	1
PSS050	Seattle	Yard Tractor	H 940	Capacity	TJ 7000	Cummins	6BT	2005	173	1,788	Diesel	na	ULSD	YES	10/1/2005		n	na	1
PSS050	Seattle	Yard Tractor	H 941	Capacity	TJ 7000	Cummins	6BT	2005	173	1,181	Diesel	na	ULSD	YES	10/1/2005		n	na	1
PSS050	Seattle	Yard Tractor	H 942	Capacity	TJ 7000	Cummins		2005	173	1,175	Diesel	na	ULSD	YES	7/2/2005		n	na	1
PSS050	Seattle	Yard Tractor	H 943	Capacity	TJ 7000		6BT	2005	173	1,659	Diesel	na	ULSD	YES	7/11/2005		n	na	1
PSS050	Seattle	Yard Tractor	H 944	Capacity	TJ 7000	Cummins		2005	173	1,662	Diesel	na	ULSD	YES	12/12/2005		n	na	1
PSS050	Seattle	Yard Tractor	H 945	Capacity	TJ 7000	Cummins		2005	173	1,752	Diesel	na	ULSD	YES	10/1/2005		n	na	1
PSS050	Seattle	Yard Tractor	H 946	Capacity	TJ 7000	Cummins		2005	173	1,412	Diesel	na	ULSD	YES	7/15/2005		n	na	1
PSS050	Seattle	Yard Tractor	H 947	Capacity	TJ 7000		6BT	2005	173	1,872	Diesel	na	ULSD	YES	9/30/2005		n	na	1
PSS050	Seattle	Yard Tractor	H 948	Capacity	TJ 7000		6BT	2005	173	1,525	Diesel	na	ULSD	YES	4/5/2000		n	na	1
PSS050	Seattle	Yard Tractor	H 949	Capacity	TJ 7000		6BT	2005	173	2,028	Diesel	na	ULSD	YES	10/1/2005		n	na	1
PSS050	Seattle	Yard Tractor	H 951	Capacity	TJ 7000	Cummins	6BT	2005	173	0	Diesel	na	ULSD	YES	10/1/2005		n	na	1
PSS050	Seattle	Yard Tractor	H 952	Capacity	TJ 7000	Cummins	6BT	2005	173	1,300	Diesel	na	ULSD	YES	12/5/2005		n	na	1
PSS050	Seattle	Yard Tractor	H 954	Capacity	TJ 7000	Cummins	6BT	2005	173	1,548	Diesel	na	ULSD	YES	12/12/2005		n	na	1
PSS050	Seattle	Yard Tractor	H 955	Capacity	TJ 7000	Cummins	6BT	2005	173	1,927	Diesel	na	ULSD	YES	12/5/2005		n	na	1
PSS050	Seattle	Yard Tractor	H 956	Capacity	TJ 7000	Cummins	6BT	2005	173	1,345	Diesel	na	ULSD	YES	7/11/2005		n	na	1
PSS050	Seattle	Yard Tractor	H 957	Capacity	TJ 7000	Cummins	6BT	2005	173	2,019	Diesel	na	ULSD	YES	10/2/2005		n	na	1
PSS060	Seattle	Container Crane	5	ZMPC	65LT			na	0	na	Electric	na	Electric	n	na	n	n	na	0
PSS060	Seattle	Container Crane	6	ZMPC	65LT			na	0	na	Electric	na	Electric	n	na	n	n	na	0
PSS060	Seattle	Container Crane	7	ZMPC	65LT 40LT			na	0	na	Electric	na	Electric	n	na	n	n	na	0
PSS060	Seattle	Container Crane	261	Paceco				na	0	na	Electric	na	Electric	n	na	n	n	na	0
PSS060 PSS060	Seattle Seattle	Container Crane Container Crane	961 1260	Paceco Paceco	40LT 40LT			na	0	na	Electric	na	Electric Electric	n	na	n	n	na	0
PSS060 PSS060		Forklift	8913	Mitsubishi		Mitsubishi		na 2004	85	na	Electric Diesel	na		n	na	n	n	na	1
PSS060 PSS060	Seattle	Forklift	8915	Mitsubishi		Mitsubishi		2004	85		Diesel	na	ULSD ULSD	n	na	n	n	na	1
PSS060 PSS060	Seattle Seattle	Forklift	36900	Hyster	H 360	Perkins		2004	190		Diesel	na	ULSD	n	na	n	n	na	1
PSS060 PSS060	Seattle	Side Handler	15900	Taylor		7 Cummins	B 5.9	2005	200	824	Diesel	na	ULSD	n	na na	n	n	na	1
PSS060 PSS060	Seattle	Side Handler	15900	Taylor		7 Cummins 7 Cummins	В 5.9	2001	200	1,095	Diesel	na	ULSD	n	na	n	n	na	1
PSS060 PSS060	Seattle	Top Handler	80014	Taylor		Cummins	Б 5.9 М 11	1997	260	524	Diesel	na na	ULSD	n YES	na 2004	n	n n	na	1
PSS060 PSS060	Seattle	Top Handler	80232	Taylor		5 Cummins	OSM 11	2002	260	572	Diesel	na na	ULSD	YES	2002		n	na na	1
PSS060 PSS060	Seattle	Top Handler	80252 80253	Taylor Taylor		5 Cummins 5 Cummins	•	2002	260	371	Diesel	na na	ULSD	YES	2002				1
P33000	seame	тор папшег	80233	1 ayıor	1 UDC 933	Cummins	A2M 11	2001	∠00	3/1	Diesei	1121	ULSD	163	2002	11	n	na	1

													Alt. Fuel				-	-	
												Total Fuel	Used					Date	
				Equip								Consume	(Emulsifi	DOC		On-road	Other	Impleme	Number
Terminal			Equip	Manufact	Equip	Engine	Engine	Engine		Annual		d	ed Fuel,	Installed	Year DOC	Engine	Emission	nted	of
ID	Port	Equip Type	ID	urer	Model	Make	Model	Year	HP	Hours	Fuel Type	(gallons)	ULSD)	(y or n)	Installed	(y or n)	Control	(Mo/Yr)	Engines
PSS060	Seattle	Top Handler	80254	Taylor	THDC 955	Cummins	QSM 11	2001	260	495	Diesel	na	ULSD	YES	20	004 n	n	na	1
PSS060	Seattle	Top Handler	80910	Taylor	TEC 950L	Cummins	L 10	1996	250	646	Diesel	na	ULSD	YES	20	004 n	n	na	1
PSS060	Seattle	Top Handler	80911	Taylor	TEC 950L	Cummins	L 10	1996	250	860	Diesel	na	ULSD	YES	20	004 n	n	na	1
PSS060	Seattle	Top Handler	80912	Taylor	TEC 950L	Cummins	L 10	1996	250	663	Diesel	na	ULSD	YES	20	004 n	n	na	1
PSS060	Seattle	Top Handler	80924	Taylor	THDC 955	Cummins	QSM 11	2004	335	2,196	Diesel	na	ULSD	n	na	n	n	na	1
PSS060	Seattle	Top Handler	80926	Taylor	THDC 955	Cummins	QSM 11	2004	335	2,343	Diesel	na	ULSD	n	na	n	n	na	1
PSS060	Seattle	Top Handler	80927	Taylor	THDC 955	Cummins	QSM 11	2005	335	2,301	Diesel	na	ULSD	n	na	n	n	na	1
PSS060	Seattle	Top Handler	80957	Taylor	TEC 950L	Cummins	M 11	1997	260	744	Diesel	na	ULSD	YES	20	008 n	n	na	1
PSS060	Seattle	Yard Tractor	H 900	Capacity	TJ 7000	Cummins	6BT	2002	174	780	Diesel	na	ULSD	YES	7/22/20	005 n	n	na	1
PSS060	Seattle	Yard Tractor	H 901	Capacity	TJ 7000	Cummins	6BT	2002	174	760	Diesel	na	ULSD	YES	5/10/20	010 n	n	na	1
PSS060	Seattle	Yard Tractor	H 902	Capacity	TJ 7000	Cummins	6BT	2002	174	671	Diesel	na	ULSD	YES	5/10/20	010 n	n	na	1
PSS060	Seattle	Yard Tractor	H 903	Capacity	TJ 7000	Cummins	6BT	2002	174	719	Diesel	na	ULSD	YES	6/9/20	010 n	n	na	1
PSS060	Seattle	Yard Tractor	H 904	Capacity	TJ 7000	Cummins	6BT	2002	174	456	Diesel	na	ULSD	YES	5/11/20	010 n	n	na	1
PSS060	Seattle	Yard Tractor	H 905	Capacity	TJ 7000	Cummins	6BT	2002	174	794	Diesel	na	ULSD	YES	6/4/20	010 n	n	na	1
PSS060	Seattle	Yard Tractor	H 906	Capacity	TJ 7000	Cummins	6BT	2002	174	948	Diesel	na	ULSD	YES	6/22/20	010 n	n	na	1
PSS060	Seattle	Yard Tractor	H 907	Capacity	TJ 7000	Cummins	6BT	2002	174	869	Diesel	na	ULSD	YES	5/11/20	010 n	n	na	1
PSS060	Seattle	Yard Tractor	H 908	Capacity	TJ 7000	Cummins	6BT	2002	174	0	Diesel	na	ULSD	YES	6/15/20	010 n	n	na	1
PSS060	Seattle	Yard Tractor	H 909	Capacity	TJ 7000	Cummins	6BT	2002	174	459	Diesel	na	ULSD	YES	6/16/20	010 n	n	na	1
PSS060	Seattle	Yard Tractor	H 910	Capacity	TJ 7000	Cummins	6BT	2003	174	868	Diesel	na	ULSD	YES	5/21/20	010 n	n	na	1
PSS060	Seattle	Yard Tractor	H 911	Capacity	TJ 7000	Cummins	6BT	2003	174	560	Diesel	na	ULSD	YES	6/23/20	010 n	n	na	1
PSS060	Seattle	Yard Tractor	H 912	Capacity	TJ 7000	Cummins	6BT	2003	174	886	Diesel	na	ULSD	YES	5/12/20	010 n	n	na	1
PSS060	Seattle	Yard Tractor	H 913	Capacity	TJ 7000	Cummins	6BT	2003	174	742	Diesel	na	ULSD	YES	5/13/20	010 n	n	na	1
PSS060	Seattle	Yard Tractor	H 914	Capacity	TJ 7000	Cummins	6BT	2003	174	873	Diesel	na	ULSD	YES	6/22/20	010 n	n	na	1
PSS060	Seattle	Yard Tractor	H 915	Capacity	TJ 7000	Cummins	6BT	2003	174	712	Diesel	na	ULSD	YES	5/17/20	010 n	n	na	1
PSS060	Seattle	Yard Tractor	H 916	Capacity	TJ 7000	Cummins	6BT	2003	174	205	Diesel	na	ULSD	YES	6/4/20	010 n	n	na	1
PSS060	Seattle	Yard Tractor	H 917	Capacity	TJ 7000	Cummins	6BT	2003	174	1,065	Diesel	na	ULSD	YES	5/27/20	010 n	n	na	1
PSS060	Seattle	Yard Tractor	H 918	Capacity	TJ 7000	Cummins	6BT	2003	174	1,537	Diesel	na	ULSD	YES	6/16/20	010 n	n	na	1
PSS060	Seattle	Yard Tractor	H 920	Capacity	TJ 7000	Cummins	6BT	2004	173	1,137	Diesel	na	ULSD	YES	6/28/20	010 n	n	na	1
PSS060	Seattle	Yard Tractor	H 921	Capacity	TJ 7000	Cummins	6BT	2004	173	943	Diesel	na	ULSD	YES	6/7/20	010 n	n	na	1
PSS060	Seattle	Yard Tractor	H 922	Capacity	TJ 7000	Cummins	6BT	2004	173	1,034	Diesel	na	ULSD	YES	10/8/20	005 n	n	na	1
PSS060	Seattle	Yard Tractor	H 923	Capacity	TJ 7000	Cummins	6BT	2004	173	911	Diesel	na	ULSD	YES	12/18/20	005 n	n	na	1
PSS060	Seattle	Yard Tractor	H 926	Capacity	TJ 7000	Cummins	6BT	2005	173	1,037	Diesel	na	ULSD	YES	7/1/20	005 n	n	na	1
PSS060	Seattle	Yard Tractor	H 928	Capacity	TJ 7000	Cummins	6BT	2005	173	849	Diesel	na	ULSD	YES	6/30/20	005 n	n	na	1
PSS070	Seattle	Container Crane	1354	Paceco	50LT			na	0	na	Electric	na	Electric	n	na	n	n	na	0
PSS070	Seattle	Container Crane	1472	Paceco	50LT			na	0	na	Electric	na	Electric	n	na	n	n	na	0
PSS070	Seattle	Container Crane	J101A-1	ZMPC	65LT			na	0	na	Electric	na	Electric	n	na	n	n	na	0
PSS070	Seattle	Container Crane	J101A-2	ZMPC	65LT			na	0	na	Electric	na	Electric	n	na	n	n	na	0
PSS070	Seattle	Container Crane	J101A-3	ZMPC	65LT			na	0	na	Electric	na	Electric	n	na	n	n	na	0
PSS070	Seattle	Forklift	1038	Hyster	H70C	Continenta	1 227	1966	100	68	Propane	na	Propane	n	na	n	n	na	1
PSS070	Seattle	Forklift	1054	Hyster	H70C	Continenta	1 227	1966	100	190	Propane	na	Propane	n	na	n	n	na	1
PSS070	Seattle	Forklift	1318	Toyota	FGC30	fgc35		1994	100	30	Propane	na	Propane	n	na	n	n	na	1
PSS070	Seattle	Forklift	1701	CAT	5 T	CAT	DP40K	2004	100	120	Diesel	na	ULSD	n	na	n	n	na	1
PSS070	0 1	Forklift	1702	CAT	5 T	CAT	DP40K	2004	100	120	Diesel	na	ULSD	n	na	n	n	na	1
	Seattle	1 OIKIII	1/02	CILI	<i>J</i> 1	0.11													
PSS070 PSS070	Seattle Seattle	Forklift	1703 1704	CAT CAT	5 T 5 T	CAT CAT	DP40K	2004	100 100	120 120	Diesel	na	ULSD ULSD	n	na	n	n	na	1

													Alt. Fuel						
												Total Fue	Used					Date	
				Equip								Consume	(Emulsifi	DOC		On-road	Other	Impleme	Number
Terminal	1		Equip	Manufact	Equip	Engine	Engine	Engine		Annual		d	ed Fuel,	Installed	Year DOC	Engine	Emission	nted	of
ID	Port	Equip Type	ID	urer	Model	Make	Model	Year	HP	Hours	Fuel Type	(gallons)	ULSD)	(y or n)	Installed	(y or n)	Control	(Mo/Yr)	Engines
PSS070	Seattle	Forklift	1705	CAT	5 T	CAT	DP40K	2004	100	120	Diesel	na	ULSD	n	na	n	n	na	1
PSS070	Seattle	Forklift	2404	Taylor	TE360L	Cummins	5.9	1994	150	121	Diesel	na	ULSD	n	na	n	n	na	1
PSS070	Seattle	Forklift	2795	Taylor	TH305L	Cummins	5.9	2005	165	2,063	Diesel	na	ULSD	YES	200	08 n	n	na	1
PSS070	Seattle	Forklift	3733	Taylor	Y-52	Detroit	453	1970	175	120	Diesel	na	ULSD	n	na	n	n	na	1
PSS070	Seattle	Side Handler	7212	Taylor		Cummins	5.9	1995	152	350	Diesel	na	ULSD	n	na	n	n	na	1
PSS070	Seattle	Top Handler	6000	Taylor		Cummins	L-10	1995	250	1,675	Diesel	na	ULSD	YES	200	07 n	n	na	1
PSS070	Seattle	Top Handler	6002	Taylor		Cummins	L-10	1995	250	1,991	Diesel	na	ULSD	YES		07 n	n	na	1
PSS070	Seattle	Top Handler	6109	Taylor		Cummins	L-10	1995	250	1,715	Diesel	na	ULSD	YES		07 n	n	na	1
PSS070	Seattle	Top Handler	6110	Taylor		Cummins	L-10	1995	250	1,989	Diesel	na	ULSD	YES		07 n	n	na	1
PSS070	Seattle	Top Handler	6111	Taylor		Cummins	L-10	1995	250	1,839	Diesel	na	ULSD	YES		07 n	n	na	1
PSS070	Seattle	Top Handler	6112	Taylor			L-10	1995	250	1,711	Diesel	na	ULSD	YES		07 n	n	na	1
PSS070	Seattle	Top Handler	6113	Taylor		Cummins	L-10	1995	250	1,700	Diesel	na	ULSD	YES		7 n	n	na	1
PSS070	Seattle	Top Handler	6114	Taylor		Cummins	L-10	1995	250	1,570	Diesel	na	ULSD	YES		7 n	n	na	1
PSS070	Seattle	Top Handler	6119	Taylor			L-10	1995	250	2,772	Diesel	na	ULSD	YES		7 n	n	na	1
PSS070	Seattle	Top Handler	6121	Taylor		Cummins	L-10	1995	250	2,229	Diesel	na	ULSD	YES		7 n	n	na	1
PSS070	Seattle	Top Handler	6124	Taylor		Cummins	M-11	1997	250	1,999	Diesel	na	ULSD	YES		7 n	n	na	1
PSS070	Seattle	Top Handler	6126	Taylor		Cummins	M-11	1997	250	1,999	Diesel	na	ULSD	YES		1 n	n	na	1
PSS070	Seattle	Top Handler	6130	Taylor				1998	250	1,999	Diesel	na	ULSD	YES		07 n	n	na	1
PSS070	Seattle	Top Handler	6136	Taylor		Cummins		1997	250	2,479	Diesel	na	ULSD	YES		1 n	n	na	1
PSS070	Seattle	Top Handler	6137	Taylor	HILLD C OF	Cummins	M-11	1998	250	3,220	Diesel	na	ULSD	YES		07 n	n	na	1
PSS070	Seattle	Top Handler	6176	Taylor		5 Cummins	QSM-11	2005	250	3,280	Diesel	na	ULSD	YES		18 n	n	na	1
PSS070	Seattle	Top Handler	6177	Taylor		5 Cummins	QSM-11	2005	250	3,056	Diesel	na	ULSD	YES		18 n	n	na	1
PSS070	Seattle	Top Handler	6178	Taylor		5 Cummins	•	2005	250	1,600	Diesel	na	ULSD	YES		08 n	n	na	1
PSS070	Seattle	Yard Tractor	5310	Magnum		2(Cummins		2002	174	1,692	Diesel	na	ULSD	YES		07 n	n	na	1
PSS070	Seattle	Yard Tractor	5311	Magnum		2(Cummins		2002	174	1,692	Diesel	na	ULSD	YES		07 n	n	na	1
PSS070	Seattle	Yard Tractor	5312	Magnum		2(Cummins		2002	174	1,270	Diesel	na	ULSD	YES YES		07 n	n	na	1 1
PSS070	Seattle	Yard Tractor	5313	Magnum		2(Cummins		2002	174	1,876	Diesel	na	ULSD			07 n	n	na	1
PSS070 PSS070	Seattle	Yard Tractor Yard Tractor	5314 5315	Magnum		2(Cummins 2(Cummins		2002 2002	174 174	1,865 1,879	Diesel Diesel	na	ULSD ULSD	YES YES		17 n 17 n	n	na	1
	Seattle		5316	Magnum						,		na	ULSD	YES			n	na	1
PSS070 PSS070	Seattle	Yard Tractor Yard Tractor	5316	Magnum		2(Cummins 2(Cummins		2002	174 174	1,634	Diesel	na	ULSD	YES		17 n 17 n	n	na	1
PSS070 PSS070	Seattle Seattle	Yard Tractor Yard Tractor	5317	Magnum		2(Cummins 2(Cummins		2002 2002	174	1,749 1,730	Diesel Diesel	na	ULSD	YES		17 n 17 n	n	na	1
PSS070 PSS070	Seattle	Yard Tractor	5319	Magnum Magnum		2(Cummins		2002	174	1,774	Diesel	na	ULSD	YES		77 n	n	na	1
PSS070 PSS070	Seattle	Yard Tractor	5320	Magnum		2(Cummins		2002	174	1,784	Diesel	na na	ULSD	YES		77 n	n	na na	1
PSS070	Seattle	Yard Tractor	5321	Magnum		2(Cummins		2002	174	1,816	Diesel	na	ULSD	YES		77 11 17 n	n	na	1
PSS070	Seattle	Yard Tractor	5323	Magnum		2(Cummins		2002	174	1,799	Diesel	na	ULSD	YES		77 n	n	na	1
PSS070	Seattle	Yard Tractor	5324	Magnum		2(Cummins		2002	174	2,128	Diesel	na	ULSD	YES		77 n	n n	na	1
PSS070	Seattle	Yard Tractor	5325	Magnum		2(Cummins		2002	174	2,102	Diesel	na	ULSD	YES		77 n	n	na	1
PSS070	Seattle	Yard Tractor	5369	Magnum		2(Cummins		2002	174	2,011	Diesel	na	ULSD	YES		77 11 17 n	n	na	1
PSS070	Seattle	Yard Tractor	5370	Magnum		2(Cummins		2002	174	1,991	Diesel	na	ULSD	YES		77 11 17 n	n	na	1
PSS070	Seattle	Yard Tractor	5370	Magnum		2(Cummins		2002	174	1,991	Diesel	na	ULSD	YES		77 n	n	na	1
PSS070	Seattle	Yard Tractor	5372	Magnum		2(Cummins		2002	174	1,991	Diesel	na	ULSD	YES		77 n	n	na	1
PSS070	Seattle	Yard Tractor	5372	Magnum		2(Cummins		2002	174	1,991	Diesel	na	ULSD	YES		77 n	n	na	1
PSS070	Seattle	Yard Tractor	5523	Magnum		2(Cummins		2005	174	1,991	Diesel	na	ULSD	YES		7 n	n	na	1
PSS070	Seattle	Yard Tractor	5524	Capacity	TJ7000	CAT	C-7	2005	240	2,095	Diesel	na	ULSD	n	na	YES	n	na	1
100070	Scattle	Tara Tractor	5541	Japacity	-57000	J. 1 1	J /	2005	-10	_,075	2 10001	****		**	****	110	**		1

													Alt. Fuel						
												Total Fuel	Used					Date	
				Equip								Consume	(Emulsifi	DOC		On-road	Other	Impleme	Number
Terminal	[Equip	Manufact	Equip	Engine	Engine	Engine		Annual		d	ed Fuel,	Installed	Year DOC	Engine	Emission	nted	of
ID	Port	Equip Type	ID	urer	Model	Make	Model	Year	HP	Hours	Fuel Type	(gallons)	ULSD)	(y or n)	Installed	(y or n)	Control	(Mo/Yr)	Engines
PSS070	Seattle	Yard Tractor	5525	Capacity	TJ7000	CAT	C-7	2005	240	2,330	Diesel	na	ULSD	n	na	YES	n	na	1
PSS070	Seattle	Yard Tractor	5526	Capacity	TJ7000	CAT	C-7	2005	240	2,464	Diesel	na	ULSD	n	na	YES	n	na	1
PSS070	Seattle	Yard Tractor	5527	Capacity	TJ7000	CAT	C-7	2005	240	2,265	Diesel	na	ULSD	n	na	YES	n	na	1
PSS070	Seattle	Yard Tractor	5543	Capacity	TJ7000	CAT	C-7	2006	240	2,444	Diesel	na	ULSD	n	na	YES	n	na	1
PSS070	Seattle	Yard Tractor	5544	Capacity	TJ7000	CAT	C-7	2006	240	2,473	Diesel	na	ULSD	n	na	YES	n	na	1
PSS070	Seattle	Yard Tractor	5614	Capacity	TJ9000	Cummins	ISB07	2007	210	2,224	Diesel	na	ULSD	n	na	YES	n	na	1
PSS070	Seattle	Yard Tractor	5842	Magnum	Sisu TT-1	2(Cummins	5.9	2000	174	1,600	Diesel	na	ULSD	n	na	n	n	na	1
PSS070	Seattle	Yard Tractor	5919	Magnum		2(Cummins	5.9	2005	174	1,991	Diesel	na	ULSD	YES	2007	'n	n	na	1
PSS080	Seattle	Container Crane	1261	Paceco	50LT			na	0	na	Electric	na	Electric	n	na	n	n	na	0
PSS080	Seattle	Container Crane	1262	Paceco	50LT			na	0	na	Electric	na	Electric	n	na	n	n	na	0
PSS080	Seattle	Container Crane	1263	Paceco	50LT			na	0	na	Electric	na	Electric	n	na	n	n	na	0
PSS080	Seattle	Container Crane	1264	Paceco	50LT			na	0	na	Electric	na	Electric	n	na	n	n	na	0
PSS080	Seattle	Container Crane	1355	Paceco	50LT			na	0	na	Electric	na	Electric	n	na	n	n	na	0
PSS080	Seattle	Container Crane	1473	Paceco	50LT			na	0	na	Electric	na	Electric	n	na	n	n	na	0
PSS080	Seattle	Forklift	EMRF1		47510 Lb			1978	215	800	Diesel	na	ULSD	n	na	n	n	na	1
PSS080	Seattle	Forklift		48 Mitsubishi				1982	85	800	Propane	na	Propane	n	na	n	n	na	1
PSS080	Seattle	Forklift		55 Mitsubishi				1987	85	800	Propane	na		n	na	n	n	na	1
PSS080	Seattle	Forklift	EMSF56		30000 Lb			1986	215	800	Diesel	na	ULSD	n	na	n	n	na	1
PSS080	Seattle	Forklift		71 Mitsubishi				1986	125	800	Propane	na	1	n	na	n	n	na	1
PSS080	Seattle	Forklift		73 Mitsubishi				1986	125	800	Propane	na		n	na	n	n	na	1
PSS080	Seattle	Forklift	EMSF57		5000 Lbs			1990	85	800	Propane	na		n	na	n	n	na	1
PSS080	Seattle	Forklift	EMSF57		5000 Lbs			1990	85	800	Propane	na	1	n	na	n	n	na	1
PSS080	Seattle	Forklift	EMSF57		5000 Lbs			1990	85	800	Propane	na		n	na	n	n	na	1
PSS080	Seattle	Forklift	EMSF57		15000 Lb			1988	125	800	Propane	na		n	na	n	n	na	1
PSS080	Seattle	Forklift	EMSF57		10000 Lb:			1991	125	800	Propane	na	1	n	na	n	n	na	1
PSS080	Seattle	Forklift	EMSF57		10000 Lb			1991	125	800	Propane	na		n	na	n	n	na	1
PSS080	Seattle	Forklift	EMSF58		8000 Lbs			1992	85	800	Propane	na		n	na	n	n	na	1
PSS080	Seattle	Forklift	EMSF58		8000 Lbs			1992 1992	85	800 800	Propane	na		n	na	n	n	na	1 1
PSS080	Seattle	Forklift	EMSF58	,	8000 Lbs			1992	85		Propane	na	1	n	na	n	n	na	1
PSS080	Seattle	Forklift	EMSF58	,	44000 Lb			1992	215	800	Diesel	na	ULSD	n	na	n	n	na	_
PSS080 PSS080	Seattle	Forklift Forklift	EMSF58	,	36000 Lbs			1992	215 85	800 800	Propane	na	1	n	na	n	n	na	1 1
PSS080 PSS080	Seattle	Forklift	EMSF58	,	8000 Lbs			1993	85	800	Propane	na	1	n	na	n	n	na	1
PSS080 PSS080	Seattle Seattle	Forklift	EMSF61	,	5000 Lbs			1995	85	800	Propane	na	1	n	na	n	n	na	1
PSS080	Seattle	Forklift	EMSF61		5000 Lbs			1996	85	800	Propane	na	_ 1	n	na	n n	n	na	1
PSS080	Seattle	Forklift	EMSF61		5000 Lbs			1996	85	800	Propane	na	_ 1	n	na		n	na	1
PSS080	Seattle	Forklift	EMSF61		5000 Lbs			1996	85	800	Propane Propane	na na	1	n n	na	n n	n n	na na	1
PSS080	Seattle	Forklift	EMSF62		12000 Lbs			1996	125	800	Propane	na	_ 1	n	na	n	n	na	1
PSS080	Seattle	Forklift	EMSF62	,	12000 Lb			1996	125	800	Propane	na		n	na	n	n	na	1
PSS080	Seattle	Forklift	EMSF62	,	15500 Lb			1997	125	800	Diesel	na	ULSD	n	na na	n	n	na	1
PSS080	Seattle	Forklift	EMSF62	,	15500 Lb			1997	125	800	Diesel	na	ULSD	n	na	n	n	na	1
PSS080	Seattle	Forklift		25 Hyster	15500 Lb			1997	125	800	Diesel	na	ULSD	n	na	n	n	na	1
PSS080	Seattle	Forklift	EMSF62		15500 Lb			1997	125	800	Diesel	na	ULSD	n	na	n	n	na	1
PSS080	Seattle	Forklift	EMSF62	,	15500 Lb			1997	125	800	Diesel	na	ULSD	n	na	n	n	na	1
PSS080	Seattle	Forklift	EMSF62		15500 Lb			1997	125	800	Diesel	na	ULSD	n	na	n	n	na	1
1 55000	Scattic	1 OIKHIL	111101.02	2011y3tC1	13300 LD	,		1///	140	500	1710301	114	CLOD		1144	11		114	1

													Alt. Fuel						
												Total Fue	1 Used					Date	
				Equip								Consume	(Emulsifi	DOC		On-road	Other	Impleme	Number
Terminal			Equip	Manufact	Equip	Engine	Engine	Engine		Annual		d	ed Fuel,	Installed	Year DOC	Engine	Emission	nted	of
ID	Port	Equip Type	ID	urer	Model	Make	Model	Year	HP	Hours	Fuel Type	(gallons)	ULSD)	(y or n)	Installed	(y or n)	Control	(Mo/Yr)	Engines
PSS080	Seattle	Forklift	EMSF64	48 Mitsubishi	5000 Lbs			1998	0	0	Electric	na	Electric	n	na	n	n	na	0
PSS080	Seattle	Forklift	EMSF64	49 Mitsubishi	5000 Lbs			1998	0	0	Electric	na	Electric	n	na	n	n	na	0
PSS080	Seattle	Forklift	EMSF67	77 Mitsubishi	8000 Lbs			2005	85	800	Propane	na	Propane	n	na	n	n	na	1
PSS080	Seattle	Forklift	EMSF67	78 Nissan	4700 Lbs				85	800	Propane	na	Propane	n	na	n	n	na	1
PSS080	Seattle	Forklift	EMSF68	30 Nissan	5000 Lbs			2006	85	800	Propane	na	Propane	n	na	n	n	na	1
PSS080	Seattle	Forklift	EMSF68	31 Nissan	5000 Lbs			2006	85	800	Propane	na	Propane	n	na	n	n	na	1
PSS080	Seattle	Forklift	EMSF68		5000 Lbs			2006	85	800	Propane	na	Propane	n	na	n	n	na	1
PSS080	Seattle	Forklift		33 Nissan	5000 Lbs			2006	85	800	Propane	na	1	n	na	n	n	na	1
PSS080	Seattle	Top Handler		47MI-JACK	2			1997	330	4,300	Diesel	na	ULSD	n	na	n	n	na	1
PSS080	Seattle	Top Handler		45 MI-JACK	2			1997	330	4,300	Diesel	na	ULSD	n	na	n	n	na	1
PSS080	Seattle	Top Handler		5(MI-JACK	2			1997	330	4,300	Diesel	na	ULSD	n	na	n	n	na	1
PSS080	Seattle	Top Handler		51MI-JACK	5			1997	330	4,300	Diesel	na	ULSD	n	na	n	n	na	1
PSS080	Seattle	Top Handler		84 Fantuzzi	FDC 500C			2005	330	4,300	Diesel	na	ULSD	n	na	n	n	na	1
PSS080	Seattle	Top Handler		85 Fantuzzi	FDC 5000			2005	330	4,300	Diesel	na	ULSD	n	na	n	n	na	1
PSS080	Seattle	Top Handler		86 Fantuzzi	FDC 5000			2005	330	4,300	Diesel	na	ULSD	n	na	n	n	na	1
PSS080	Seattle	Top Handler		87 Fantuzzi	FDC 5000	35		2005	330	4,300	Diesel	na	ULSD	n	na	n	n	na	1
PSS080	Seattle	Top Handler	EMSZ29		TXC-975			2007	330	4,300	Diesel	na	ULSD	n	na	n	n	na	1
PSS080	Seattle	Top Handler	EMSZ30	,	TXC-976			2008	330	4,300	Diesel	na	ULSD	n	na	n	n	na	1
PSS080	Seattle	Top Handler	EMSZ30		TXC-976			2008	330	4,300	Diesel	na	ULSD	n	na	n	n	na	1
PSS080	Seattle	Top Handler	EMSZ30	,	TXC-976			2008	330	4,300	Diesel	na	ULSD	n	na	n	n	na	1
PSS080	Seattle	Top Handler	EMSZ30	,	TXC-976			2008	330	4,300	Diesel	na	ULSD	n	na	n	n	na	1
PSS080	Seattle	Yard Tractor		3 Capacity				2000	174	1,200	Diesel	na	ULSD	n	na	n	n	na	1
PSS080	Seattle	Yard Tractor		4 Capacity				2000	174	1,200	Diesel	na	ULSD	n	na	n	n	na	1
PSS080	Seattle	Yard Tractor		5 Capacity	TITOOO			2000	174	1,200	Diesel	na	ULSD	n N/E/0	na	n	n	na	1
PSS080	Seattle	Yard Tractor		02 Capacity	TJ5000			1996	174	1,200	Diesel	na	ULSD	YES	200		n	na	•
PSS080 PSS080	Seattle	Yard Tractor		03 Capacity	TJ5000			1996 1996	174	1,200	Diesel	na	ULSD ULSD	YES YES	200		n	na	1 1
PSS080 PSS080	Seattle	Yard Tractor		05 Capacity	TJ5000			1996	174	1,200	Diesel	na	ULSD	YES	200 200		n	na	1
PSS080 PSS080	Seattle Seattle	Yard Tractor Yard Tractor		23 Capacity 24 Capacity				1997	174 174	1,200 1,200	Diesel Diesel	na na	ULSD	YES	200		n n	na na	1
PSS080	Seattle	Yard Tractor		27 Capacity				1997	174	1,200	Diesel	na	ULSD	YES	200		n	na	1
PSS080	Seattle	Yard Tractor		42 Capacity				1997	174	1,200	Diesel	na	ULSD	YES	200		n		1
PSS080	Seattle	Yard Tractor		51 Capacity				1997	174	1,200	Diesel	na	ULSD	YES	200		n	na na	1
PSS080	Seattle	Yard Tractor		54 Capacity				1997	174	1,200	Diesel	na	ULSD	YES	200		n	na	1
PSS080	Seattle	Yard Tractor		72 Capacity				1997	174	1,200	Diesel	na	ULSD	YES	200		n	na	1
PSS080	Seattle	Yard Tractor		2 Capacity 22 Capacity				1997	174	1,200	Diesel	na	ULSD	YES	200		n	na	1
PSS080	Seattle	Yard Tractor		06 Capacity				1997	174	1,200	Diesel	na	ULSD	YES	200		n	na	1
PSS080	Seattle	Yard Tractor		06 Ottawa				1997	174	1,200	Diesel	na	ULSD	YES	200		n	na	1
PSS080	Seattle	Yard Tractor		07 Ottawa				1997	174	1,200	Diesel	na	ULSD	YES	200		n	na	1
PSS080	Seattle	Yard Tractor		08 Ottawa				1997	174	1,200	Diesel	na	ULSD	YES	200		n	na	1
PSS080	Seattle	Yard Tractor		52 Capacity	TJ7000			1999	174	1,200	Diesel	na	ULSD	YES	200		n	na	1
PSS080	Seattle	Yard Tractor		52 Capacity 53 Capacity	TJ7000			1999	174	1,200	Diesel	na	ULSD	YES	200		n	na	1
PSS080	Seattle	Yard Tractor		54 Capacity	TJ7000			1999	174	1,200	Diesel	na	ULSD	YES	200		n	na	1
PSS080	Seattle	Yard Tractor		55 Capacity	TJ7000			1999	174	1,200	Diesel	na	ULSD	YES	200		n	na	1
PSS080	Seattle	Yard Tractor		66 Capacity	TJ7000			1999	174	1,200	Diesel	na	ULSD	YES	200		n	na	1
				- · · · · · · · · · · · · · · · · · · ·	TJ7000	Cat	C-7	2004	210	1,200	Diesel		ULSD	-	=00	Yes			1

													Alt. Fuel						
												Total Fue	Used					Date	
				Equip								Consume	(Emulsifi	DOC		On-road	Other	Impleme	Number
Terminal	1		Equip	Manufact	Equip	Engine	Engine	Engine		Annual		d	ed Fuel,	Installed	Year DOC	Engine	Emission	nted	of
ID	Port	Equip Type	ID	urer	Model	Make	Model	Year	HP	Hours	Fuel Type	(gallons)	ULSD)	(y or n)	Installed	(y or n)	Control	(Mo/Yr)	Engines
PSS080	Seattle	Yard Tractor	EMST68	35 Capacity	TJ7000	Cat	C-7	2004	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor	EMST68	36 Capacity	TJ7000	Cat	C-7	2004	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor	EMST68	37 Capacity	TJ7000	Cat	C-7	2004	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor	EMST68	38 Capacity	TJ7000	Cat	C-7	2004	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		39 Capacity	TJ7000	Cat	C-7	2004	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		00 Capacity	TJ7000	Cat	C-7	2004	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		01 Capacity	TJ7000	Cat	C-7	2004	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		02 Capacity	TJ7000	Cat	C-7	2004	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		O3 Capacity	TJ7000	Cat	C-7	2004	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		04 Capacity	TJ7000	Cat	C-7	2004	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		95 Capacity	TJ7000	Cat	C-7	2004	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		06 Capacity	TJ7000	Cat	C-7	2004	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		7 Capacity	TJ7000	Cat	C-7	2004	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		16 Capacity	TJ7000	Cat	C-7	2004	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		17 Capacity	TJ7000	Cat	C-7	2005	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		18 Capacity	TJ7000	Cat	C-7	2005	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		19 Capacity	TJ7000	Cat	C-7	2005	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		20 Capacity	TJ7000	Cat	C-7	2005	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		12 Capacity	TJ7000	Cat	C-7	2006	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		13 Capacity	TJ7000	Cat	C-7	2006	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		14 Capacity	TJ7000	Cat	C-7	2006	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		15 Capacity	TJ7000	Cat	C-7	2006	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		16 Capacity	TJ7000	Cat	C-7	2006	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		17 Capacity	TJ7000	Cat	C-7	2006	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		18 Capacity	TJ7000	Cat	C-7	2006	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		19 Capacity	TJ7000	Cat	C-7	2006	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		60 Capacity	TJ7000	Cat	C-7	2006	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		51 Capacity	TJ7000	Cat	C-7	2006	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		52 Capacity	TJ7000	Cat	C-7	2006	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		3Capacity	TJ7000	Cat	C-7	2006	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		54Capacity	TJ7000	Cat	C-7	2006	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		55 Capacity	TJ7000	Cat	C-7	2006	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		6 Capacity	TJ7000	Cat	C-7	2006	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		7 Capacity	TJ7000	Cat	C-7	2006	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		8 Capacity	TJ7000	Cat	C-7	2006	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		59 Capacity	TJ7000	Cat	C-7	2006	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		60 Capacity	TJ7000	Cat	C-7	2006	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		61 Capacity	TJ7000	Cat	C-7	2006	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		52 Capacity	TJ7000	Cat	C-7	2006	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		63 Capacity	TJ7000	Cat	C-7	2006	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		64 Capacity	TJ7000	Cat	C-7	2006	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		65 Capacity	TJ7000	Cat	C-7	2006	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		26 Capacity	TJ7000	Cat	C-7	2007	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		27 Capacity	TJ7000	Cat	C-7	2007	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor	EMS182	28 Capacity	TJ7000	Cat	C-7	2007	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1

													Alt. Fuel						
												Total Fuel	Used					Date	
				Equip								Consume	(Emulsifi	DOC		On-road	Other	Impleme	Number
Terminal			Equip	Manufact	Equip	Engine	Engine	Engine		Annual		d	ed Fuel,	Installed	Year DOC	Engine	Emission	nted	of
ID	Port	Equip Type	ID	urer	Model	Make	Model	Year	HP	Hours	Fuel Type	(gallons)	ULSD)	(y or n)	Installed	(y or n)	Control	(Mo/Yr)	Engines
PSS080	Seattle	Yard Tractor	EMST82	9 Capacity	TJ7000	Cat	C-7	2007	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor	EMST83	(Capacity	TJ7000	Cat	C-7	2007	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor	EMST89	9 Capacity	TJ7000	Cat	C-7	2008	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor	EMST90	(Capacity	TJ7000	Cat	C-7	2008	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor	EMST90	1 Capacity	TJ7000	Cat	C-7	2008	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor	EMST90	2 Capacity	TJ7000	Cat	C-7	2008	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		3 Capacity	TJ7000	Cat	C-7	2008	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor	EMST90	4Capacity	TJ7000	Cat	C-7	2008	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		5 Capacity	TJ7000	Cat	C-7	2008	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		6 Capacity	TJ7000	Cat	C-7	2008	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		7 Capacity	TJ7000	Cat	C-7	2008	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		8 Capacity	TJ7000	Cat	C-7	2008	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		9 Capacity	TJ7000	Cat	C-7	2008	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PSS080	Seattle	Yard Tractor		(Capacity	TJ7000	Cat	C-7	2008	210	1,200	Diesel	na	ULSD	n	na	Yes	n	na	1
PST050	Tacoma	Forklift	2247	Nissan	PHO2A25		4 CYL	1988	120	4	Propane	0	1	n	na	n	n	na	1
PST050	Tacoma	Forklift	2333	1		Mitsubishi		2003	120	163	Diesel	408	ULSD	n	na	n	n	na	1
PST050	Tacoma	Forklift	2334	Caterpillar		Mitsubishi		2003	120	168	Diesel	420	ULSD	n	na	n	n	na	1
PST050	Tacoma	Forklift	2349		DP40KL	Mitsubishi		2005	120	187	Diesel	468	ULSD	n	na	n	n	na	1
PST050 PST050	Tacoma	Forklift Forklift	2350 7078	Caterpillar		Mitsubishi		2005 2003	120	232 106	Diesel	580 270	ULSD ULSD	n	na	n	n	na	1 1
PST050 PST050	Tacoma Tacoma	Forklift	7078	Kalmar	DCE160-6 T-200S	Cummins	QSB5.9 QSB5.9	2006	185 185	121	Diesel Diesel	303	ULSD	n	na	n	n	na	1
PST050 PST050	Tacoma	Manlift	1097	Taylor Genie	S125	Cummins	4B3.9L	2005	185	99	Diesel	248	ULSD	n	na	n	n	na	1
PST050	Tacoma	Reach Stacker	6149	Sisu	RSD45315		4D3.9L M11	1998	330	9	Diesel	23	ULSD	n n	na na	n n	n n	na na	1
PST050	Tacoma	Reach Stacker	6298	Kalmar	DRS4531-S		QSMII	2006	335	111	Diesel	278	ULSD	YES	2011		n	na	1
PST050	Tacoma	Reach Stacker	6299	Kalmar	DRS4531-S		QSMII	2006	335	68	Diesel	170	ULSD	YES	2011		n	na	1
PST050	Tacoma	Reach Stacker	6324	Kalmar	DRS4531-S		QSMII	2006	335	262	Diesel	655	ULSD	YES	2011		n	na	1
PST050	Tacoma	Sweeper	1056	Elgin			ISB	2000	205	162	Diesel	405	ULSD	n	na	YES	n	na	1
PST050	Tacoma	Top Handler	6232	Kalmar	Full Cont/	,	M11	2002	330	11	Diesel	28	ULSD	n	na	n	n	na	1
PST050	Tacoma	Yard Tractor	4580	Ottawa	Commando		6BTA	2000	174	92	Diesel	230	ULSD	YES	2011		n	na	1
PST050	Tacoma	Yard Tractor	4582	Ottawa	Commando	Cummins	6BTA	2000	174	205	Diesel	513	ULSD	YES	2011	n	n	na	1
PST050	Tacoma	Yard Tractor	4585	Ottawa	Commando	Cummins	6BTA	2000	174	122	Diesel	305	ULSD	YES	2011	n	n	na	1
PST050	Tacoma	Yard Tractor	4586	Ottawa	Commando	Cummins	6BTA	2000	174	285	Diesel	713	ULSD	YES	2011	n	n	na	1
PST050	Tacoma	Yard Tractor	4687	Ottawa	Commando	Cummins	6BTA	2001	174	358	Diesel	895	ULSD	YES	2011	n	n	na	1
PST050	Tacoma	Yard Tractor	4688	Ottawa	Commando	Cummins	6BTA	2001	174	260	Diesel	650	ULSD	YES	2011	n	n	na	1
PST050	Tacoma	Yard Tractor	4689	Ottawa	Commando	Cummins	6BTA	2001	174	342	Diesel	855	ULSD	YES	2011	n	n	na	1
PST050	Tacoma	Yard Tractor	4690	Ottawa	Commando	Cummins	6BTA	2001	174	327	Diesel	818	ULSD	YES	2011	n	n	na	1
PST050	Tacoma	Yard Tractor	4751	Ottawa	Commando	Cummins	6CT	2003	215	700	Diesel	1,750	ULSD	YES	2011	n	n	na	1
PST050	Tacoma	Yard Tractor	4752	Ottawa	Commando	Cummins	6CT	2003	215	512	Diesel	1,280	ULSD	YES	2011	n	n	na	1
PST050	Tacoma	Yard Tractor	4753	Ottawa	Commando		6CT	2003	215	625	Diesel	1,250	ULSD	YES	2011		n	na	1
PST050	Tacoma	Yard Tractor	4754	Ottawa	Commando		6CT	2003	215	554	Diesel	1,385	ULSD	YES	2011		n	na	1
PST050	Tacoma	Yard Tractor	4755	Ottawa	Commando		6CT	2003	215	688	Diesel	1,720	ULSD	YES	2011	n	n	na	1
PST050	Tacoma	Yard Tractor	4756	Ottawa	Commando		6CT	2003	215	527	Diesel	1,318	ULSD	n	na	n	n	na	1
PST050	Tacoma	Yard Tractor	4895	Ottawa	Commando		ISB	2005	245	860	Diesel	2,150	ULSD	YES		YES	n	na	1
PST050	Tacoma	Yard Tractor	4896	Ottawa		Cummins	ISB	2005	245	0	Diesel	0	ULSD	YES		YES	n	na	1
PST050	Tacoma	Yard Tractor	4897	Ottawa	Commando	Cummins	ISB	2005	245	940	Diesel	2,350	ULSD	YES	2011	YES	n	na	1

Part														Alt. Fuel						
													Total Fuel	Used					Date	
Post					Equip								Consume	(Emulsifi	DOC		On-road	Other	Impleme	Number
Fig.	Terminal			Equip		Equip	Engine	Engine	Engine		Annual		d	ed Fuel,	Installed	Year DOC	Engine	Emission	nted	of
No. No.	ID	Port	Equip Type	ID	urer	Model	Make	Model	Year	HP	Hours	Fuel Type	(gallons)	ULSD)	(y or n)	Installed	(y or n)	Control	(Mo/Yr)	Engines
No. No.	PST050	Tacoma	Yard Tractor	4898	Ottawa	Command	o Cummins	ISB	2005	245	875	Diesel	2,188	ULSD	YES	201	YES	n	na	1
Part	PST050	Tacoma	Yard Tractor	4899	Ottawa	Command	o Cummins	ISB	2005	245	1,175	Diesel	1,925	ULSD	YES	201	YES	n	na	1
P. P. P. P. P. P. P. P.	PST050	Tacoma	Yard Tractor	4900	Ottawa	Command	o Cummins	ISB	2005	245	946	Diesel	2,365	ULSD	YES	201	YES	n	na	1
P. P. P. P. P. P. P. P.	PST050	Tacoma	Yard Tractor	4901	Ottawa	Command	o Cummins	ISB	2005	245	913	Diesel	2,282	ULSD	YES	201	YES	n	na	1
	PST050	Tacoma	Yard Tractor	4902	Ottawa	Command	o Cummins	ISB	2005	245	1,062	Diesel	2,655	ULSD	YES	201	YES	n	na	1
Part	PST050	Tacoma	Yard Tractor	4903	Ottawa	Command	o Cummins	ISB	2005	245	893	Diesel	2,233	ULSD	YES	201	YES	n	na	1
	PST050	Tacoma	Yard Tractor	4904	Ottawa	Command	o Cummins	ISB	2005	245	979	Diesel	2,715	ULSD	YES	201	YES	n	na	1
PST190 Tacom Varia Tractor 492 Ouraw Commando Cummins 18		Tacoma	Yard Tractor	4905	Ottawa	Command	o Cummins	ISB	2005			Diesel						n	na	
No. No.		Tacoma	Yard Tractor	4906	Ottawa	Command	o Cummins	ISB	2005			Diesel						n	na	
No. No.											,		*					n	na	
No. No.																		n	na	
PST109 Tacoma Vard Tractor 4925 Onawa Commando Cummins ISB 2005 245 848 Discale 1,675 ULSD VES 2011 YES n na 1																		n	na	
PST105 Tacoma Yard Tractor 4927 Ottawa Commando Cummins ISB 2005 245 848 Disel 2,120 UISD YES 2011 YES n na 1																		n	na	
PST105 Tacoma Yard Tractor 4928 Ottawa Commando Cummins ISB 2005 245 1,217 Diesel 1,085 1,0																				
PST1050 Tacoma Yard Tractor 4929 Ottawa Command-Cummins ISB 2005 245 674 Diesel 1,685 ULSD YES 2011 YES n na 1 1 1 1 1 1 1 1 1																				
PST1050 Tacoma Yard Tractor 4930 Ottawa Commando Cummins ISB 2005 245 1,029 Diesel 2,573 ULSD YES 2011 YES 0 0 0 0 0 1 1 1 1 1																				
PST110 Tacoma																				
PST110											,									
PST110 Tacoma Loader 938 Komats WA360 1989						Command	o Cummins	ISB		245	1,005									
PST110 Tacoma Loader 941 Komatsu WA360 1986						W/ 1 2 4 0						-		-						
PST110 Tacoma Loader 948 Komatsu WA360 1986 1986																				
PST110 Tacoma Truck Tr																				
PST110 Tacoma Truck WT Ford Ford Ford 1972 150 Diesel na ULSD n na n n na n na na																				
PST120						WA360				150										_
PST120 Tacoma Loader #118 Linkbelt LS280Q Isuzu 6 cyl 2000 120 Diesel na ULSD n na n n n na n n na 1						EONE	Commission	(al												
PST120																				-
PST120 Tacoma Loader H125 Linkbelt 240LXTL Isuzu 6 cyl 2007 197 Diesel na ULSD n na n n n na n n na 1						•														
PST120 Tacoma Loader #130 Dosan Lot DX300LL Dosan 6 cyl 2011 197 Diesel na ULSD n na n n na n na na								* .												•
PST120 Tacoma Loader #131 Linkbelt 240LXTL Isuzu 6 cyl 2011 197 Diesel na ULSD n na n n na n na 1								· .												
PST120 Tacoma Loader #511 Wagner Stat L90 Cummins 6 cyl 440 Diesel na ULSD n na n n na n n na na								,												
PST120 Tacoma Loader #512 Wagner StarL90 Cummins 6 cyl 440 Diesel na ULSD n na n n n na n n na								,	2011											
PST120 Tacoma Loader #514 Cat Log Sta 988-B Caterpillar 6 cyl 375 Diesel na ULSD n na na n n n na 1 PST120 Tacoma Loader #517 Cat Log Sta 988-B Caterpillar 6 cyl 375 Diesel na ULSD n na na n n n na 1 PST120 Tacoma Loader #518 Wagner Sta L80 Cummins 6 cyl 415 Diesel na ULSD n na na n n n na 1 PST120 Tacoma Loader #520 Wagner Sta L80 Cummins 6 cyl 415 Diesel na ULSD n na na n n n n na 1 PST120 Tacoma Loader #522 Cat Log Sta 988-B Caterpillar 6 cyl 1987 375 Diesel na ULSD n na na n n n na 1 PST120 Tacoma Loader #522 Cat Log Sta 988-B Caterpillar 6 cyl 1987 375 Diesel na ULSD n na na n n n na 1 PST120 Tacoma Loader #608 Cat Wheel 1966-C Caterpillar 6 cyl 1987 375 Diesel na ULSD n na na n n n na 1 PST120 Tacoma Loader #610 Komatsu WWA380 Cummins 6 cyl 192 Diesel na ULSD n na na n n n na 1 PST120 Tacoma Loader #611 Cat Skid Sta 216B CN Caterpillar 4 cyl 2007 51 Diesel na ULSD n na na n n n na 1 PST120 Tacoma Truck #853 Ford L8000 Cummins 6 cyl 1995 210 Diesel na ULSD n na na n n n na 1 PST120 Tacoma Forklift H8249 1976 CATET-30B Cummins CPH01A-181976 50 500 Diesel na ULSD YES na n n n n na 1					_			· .												
PST120 Tacoma Loader #517 Cat Log Sta 988-B Caterpillar 6 cyl 375 Diesel na ULSD n n na n na<					0			,												
PST120 Tacoma Loader #518 Wagner Stat L80 Cummins 6 cyl 415 Diesel na ULSD n na na n n n na 1 PST120 Tacoma Loader #520 Wagner Stat L80 Cummins 6 cyl 415 Diesel na ULSD n na na n n n na 1 PST120 Tacoma Loader #522 Cat Log Sta 988-B Caterpillar 6 cyl 1987 375 Diesel na ULSD n na na n n n na 1 PST120 Tacoma Loader #608 Cat Wheel I 966-C Caterpillar 6 cyl 1987 375 Diesel na ULSD n na na n n n na 1 PST120 Tacoma Loader #608 Cat Wheel I 966-C Caterpillar 6 cyl 192 Diesel na ULSD n na na n n n na 1 PST120 Tacoma Loader #610 Komatsu WWA380 Cummins 6 cyl 192 Diesel na ULSD n na na n n n na 1 PST120 Tacoma Loader #611 Cat Skid Ste 216B CN Caterpillar 4 cyl 2007 51 Diesel na ULSD n na na n n n na 1 PST120 Tacoma Truck #853 Ford L8000 Cummins 6 cyl 1995 210 Diesel na ULSD n na na n n n na 1 PST055 Tacoma Forklift H8249 1976 CATET-30B Cummins CPH01A-181976 50 500 Diesel na ULSD YES na n n na n n na 1					0															
PST120 Tacoma Loader #520 Wagner Stat L80 Cummins 6 cyl 415 Diesel na ULSD n na n n n na 1 PST120 Tacoma Loader #522 Cat Log Sta 988-B Caterpillar 6 cyl 1987 375 Diesel na ULSD n na n <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>· .</td> <td></td>					0			· .												
PST120 Tacoma Loader #522 Cat Log Sta 988-B Caterpillar 6 cyl 1987 375 Diesel na ULSD n na n n na 1 PST120 Tacoma Loader #608 Cat Wheel I 966-C Caterpillar 6 cyl 170 Diesel na ULSD n na n					0			· .												
PST120 Tacoma Loader #608 Cat Wheel I 966-C Caterpillar 6 cyl 170 Diesel na ULSD n na n					U				1987											
PST120 Tacoma Loader #610 Komatsu WWA380 Cummins 6 cyl 192 Diesel na ULSD n na n n n na 1 PST120 Tacoma Loader #611 Cat Skid Stc 216B CN Caterpillar 4 cyl 2007 51 Diesel na ULSD n na n n n na n n n n na 1 PST120 Tacoma Truck #853 Ford L8000 Cummins 6 cyl 1995 210 Diesel na ULSD n na n n n na 1 PST055 Tacoma Forklift H8249 1976 CATET-30B Cummins CPH01A-181976 50 500 Diesel na ULSD YES na n n n n n n n n n n n n n n n <td< td=""><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></td<>					0															1
PST120 Tacoma Loader #611 Cat Skid Stc 216B CN Caterpillar 4 cyl 2007 51 Diesel na ULSD n na n n n na 1 PST120 Tacoma Truck #853 Ford L8000 Cummins 6 cyl 1995 210 Diesel na ULSD n na n n n na 1 PST055 Tacoma Forklift H8249 1976 CATET-30B Cummins CPH01A-181976 50 500 Diesel na ULSD YES na n n n n n n na 1 PST055 Tacoma Forklift H8394 1983 CLAR C500 Y90 Cummins C500-Y90 1983 100 360 Diesel na ULSD YES na n n n n n n n n n n n n n n n<								* .												
PST120 Tacoma Truck #853 Ford L8000 Cummins 6 cyl 1995 210 Diesel na ULSD n na n n n na 1 PST055 Tacoma Forklift H8249 1976 CATET-30B Cummins CPH01A-181976 50 500 Diesel na ULSD YES na n n n na 1 PST055 Tacoma Forklift H8394 1983 CLAR C500 Y90 Cummins C500-Y90 1983 100 360 Diesel na ULSD YES na n n n na 1	PST120	Tacoma		#611	Cat Skid St	€216B CN	Caterpillar	4 cvl	2007	51		Diesel	na	ULSD	n	na	n	n	na	1
PST055 Tacoma Forklift H8249 1976 CATET-30B Cummins CPH01A-181976 50 500 Diesel na ULSD YES na n n n na 1 PST055 Tacoma Forklift H8394 1983 CLAR C500 Y90 Cummins C500-Y90 1983 100 360 Diesel na ULSD YES na n n n na 1								,												
					1976 CATI			,			500									1
PST055 Tacoma Forklift H8498 1987 NISS/ PH-50 1987 50 443 Diesel na ULSD YES na n n na 1	PST055	Tacoma	Forklift	H8394	1983 CLAF	RC500 Y90	Cummins	C500-Y90	1983	100	360	Diesel	na	ULSD	YES	na	n	n	na	1
	PST055	Tacoma	Forklift	H8498	1987 NISS.	₽H-50			1987	50	443	Diesel	na	ULSD	YES	na	n	n	na	1

													Alt. Fuel						
												Total Fue	l Used					Date	
				Equip								Consume	(Emulsifi	DOC		On-road	Other	Impleme	Number
Terminal			Equip	Manufact	Equip	Engine	Engine	Engine		Annual		d	ed Fuel,	Installed	Year DOC	Engine	Emission	nted	of
ID	Port	Equip Type	ID	urer	Model	Make	Model	Year	HP	Hours	Fuel Type	(gallons)	ULSD)	(y or n)	Installed	(y or n)	Control	(Mo/Yr)	Engines
PST055	Tacoma	Forklift	H8508	1987 NISS	£ 50-P			1987	50	132	Diesel	na	ULSD	YES	na	n	n	na	1
PST055	Tacoma	Forklift	H8510	1988 CAT	E V-150	CAT	V-150	1988	100	170	Diesel	na	ULSD	YES	na	n	n	na	1
PST055	Tacoma	Forklift	H8511	1989 CAT	EV-150	CAT	V-150	1989	100	73	Diesel	na	ULSD	YES	na	n	n	na	1
PST055	Tacoma	Forklift	H8513	1988 CAT	E V-80E	CAT	V-80E	1988	100	500	Diesel	na	ULSD	YES	na	n	n	na	1
PST055	Tacoma	Forklift	H8515	1988 NISS	CUM01L-1	1 Cummins		1988	55	333	Electric	na	Electric	n	na	n	n	na	0
PST055	Tacoma	Forklift	H8516	1988 NISS	CUM01L-1	1 Cummins		1988	55	1,199	Electric	na	Electric	n	na	n	n	na	0
PST055	Tacoma	Forklift	H8518	1988 NISS	CUM01L-1	1 Cummins		1988	55	285	Electric	na	Electric	n	na	n	n	na	0
PST055	Tacoma	Forklift	H8520		₽PH02A-25			1988	55	500	Propane	na	Propane	n	na	n	n	na	1
PST055	Tacoma	Forklift	H8522		PH02A-25			1988	55	602	Propane	na	Propane	n	na	n	n	na	1
PST055	Tacoma	Forklift	H8539	1988 NISS	PH02A-25	V		1988	55	500	Propane	na	Propane	n	na	n	n	na	1
PST055	Tacoma	Forklift	H8586		PH02A-25			1990	55	524	Propane	na	Propane	n	na	n	n	na	1
PST055	Tacoma	Forklift	H8590		₽CPH01A-1			1990	55	832	Propane	na	Propane	n	na	n	n	na	1
PST055	Tacoma	Forklift	H8591	1990 NISS	/CPH01A-1	.8V		1990	55	863	Propane	na	Propane	n	na	n	n	na	1
PST055	Tacoma	Forklift	H8593		/CPH01A-1			1990	55	981	Propane	na	Propane	n	na	n	n	na	1
PST055	Tacoma	Forklift	H8829		SIFG25N-LI			2009	55	352	Propane	na	Propane	n	na	n	n	na	1
PST055	Tacoma	Forklift	H8830		SIFG25N-LI)		2009	55	391	Propane	na	1	n	na	n	n	na	1
PST055	Tacoma	Forklift	H8831	MITSUBIS				2009	55	542	Diesel	na	ULSD	n	na	n	n	na	1
PST055	Tacoma	Forklift	H8832	MITSUBIS				2009	55	121	Diesel	na	ULSD	n	na	n	n	na	1
PST055	Tacoma	Top Handler	H9616		TOPPICK	Cummins	M-11	2007	330	1,271	Diesel	na	ULSD	n	na	n	n	na	1
PST055	Tacoma	Top Handler	H9704		CS 45KM			2000	330	407	Diesel	na	ULSD	n	na	n	n	na	1
PST055	Tacoma	Yard Tractor	H5213	CAPACIT	2	Cummins		2006	174		Diesel	na	ULSD	n	na	YES	n	na	1
PST055	Tacoma	Yard Tractor	H5214	CAPACIT	2	Cummins		2006	174		Diesel	na	ULSD	n	na	YES	n	na	1
PST055	Tacoma	Yard Tractor	H5215	CAPACIT	5	Cummins		2006	174		Diesel	na	ULSD	n	na	YES	n	na	1
PST055	Tacoma	Yard Tractor	H5216	CAPACIT	5		ISB 5.9L	2006	174		Diesel	na	ULSD	n	na	YES	n	na	1
PST055	Tacoma	Yard Tractor	H5217	CAPACIT	2		ISB 5.9L	2006	174		Diesel	na	ULSD	n	na	YES	n	na	1
PST055	Tacoma	Yard Tractor	H5218	CAPACIT	5		ISB 5.9L		174	1,500	Diesel	na	ULSD	n	na	YES	n	na	1
PST055	Tacoma	Yard Tractor	H5219	CAPACIT	2		ISB 5.9L	2006	174		Diesel	na	ULSD	n	na	YES	n	na	1
PST055	Tacoma	Yard Tractor	H5220	CAPACIT	2		ISB 5.9L		174		Diesel	na	ULSD	n	na	YES	n	na	1
PST055	Tacoma	Yard Tractor	H5226	CAPACIT	2			2006	174		Diesel	na	ULSD	n	na	YES	n	na	1
PST055	Tacoma	Yard Tractor	H5227	CAPACIT	2		ISB 5.9L	2006	174		Diesel	na	ULSD	n	na	YES	n	na	1
PST055	Tacoma	Yard Tractor	H5229	CAPACIT	5			2006	174		Diesel	na	ULSD	n	na	YES	n	na	1
PST055	Tacoma	Yard Tractor	H5230	CAPACIT	2	Cummins	18B 5.9L	2006	174	41	Diesel	na	ULSD	n	na	YES	n	na	_
PST030	Tacoma	Forklift	FL11	Taylor	TY3005	2		1982		41	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Forklift	FL27		DCE120-1			2004		2,100	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Forklift	FL28		DCE120-1	2		2004	-7	1,996	Diesel	na	ULSD	n	na	n	n	na	1
PST030 PST030	Tacoma Tacoma	Forklift Forklift	FL29 FL30	MITSUBIS MITSUBIS				2006 2006	57 57	463 436	Diesel Diesel	na	ULSD ULSD	n	na	n	n	na	1
PST030 PST030	Tacoma	RTG	TT1	MITSUI P				1988	300	436	Diesel	na	ULSD	n	na	n	n	na	1
PST030 PST030	Tacoma	RTG	TT2	MITSUI P				1988	300	11	Diesel	na	ULSD	n	na	n	n	na	1
PST030 PST030	Tacoma	RTG	TT3	PACECO	ACECO			1984	300	0	Diesel	na na	ULSD	n n	na	n	n n	na	1
PST030	Tacoma	RTG	TT4	PACECO				1989	300	0	Diesel		ULSD		na	n		na	1
PST030 PST030	Tacoma	RTG	TT5	MITSUI P	ACECO			2005	300	78	Diesel	na na	ULSD	n	na	n n	n	na	1
PST030 PST030	Tacoma	RTG	TT6	MITSUI P				2005	300	78 78	Diesel	na na	ULSD	n n	na na	n n	n n	na na	1
PST030 PST030	Tacoma	Top Handler	TP23		TEC950L			1996	300	1,264	Diesel	na na	ULSD	n	na na	n	n	na na	1
PST030 PST030	Tacoma	Top Handler Top Handler	TP23 TP24		TEC950L			1996	300	1,264	Diesel	na na	ULSD	n n		n n			1
PS1030	1 acoma	тор папшет	1124	IAILOR	1 EC330L			199/	500	1,01/	Diesei	112	ULSD	11	na	11	n	na	1

-												Alt. Fuel						
											Total Fuel	Used					Date	
				Equip							Consume	(Emulsifi	DOC		On-road	Other	Impleme	Number
Terminal			Equip	Manufact Equip	Engine	Engine	Engine		Annual		d	ed Fuel,	Installed	Year DOC	Engine	Emission	nted	of
ID	Port	Equip Type	ID	urer Model	Make	Model	Year	HP	Hours	Fuel Type	(gallons)	ULSD)	(y or n)	Installed	(y or n)	Control	(Mo/Yr)	Engines
PST030	Tacoma	Top Handler	TP25	TAYLOR THDC95	5		2002	300	1,164	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Top Handler	TP26	TAYLOR THDC95	5		2002	300	1,586	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Top Handler	TP27	KALMAR DCD450			2004	300	1,717	Diesel	na	ULSD	n	na	n	DPF	201	1 1
PST030	Tacoma	Top Handler	TP28	KALMAR DCD450			2004	300	105	Diesel	na	ULSD	n	na	n	DPF	201	1 1
PST030	Tacoma	Top Handler	TP29	TAYLOR THDC95	5		2006	300	2,231	Diesel	na	ULSD	n	na	n	DPF	201	1 1
PST030	Tacoma	Top Handler	TP30	KALMAR DCF4100	CSG		2006	300	2,243	Diesel	na	ULSD	n	na	n	DPF	201	1 1
PST030	Tacoma	Top Handler	TP31	KALMAR DCF4100	CSG		2006	300	2,220	Diesel	na	ULSD	n	na	n	DPF	201	1 1
PST030	Tacoma	Top Handler	TP32	KALMAR DCD450	CSG		2004	300	1,500	Diesel	na	ULSD	n	na	n	DPF	201	1 1
PST030	Tacoma	Top Handler	TP33	KALMAR DCF4100	CSG		2005	300	1,500	Diesel	na	ULSD	n	na	n	DPF	201	1 1
PST030	Tacoma	Yard Tractor	YT1	CAPACITYTJ7000			2004	174	385	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT10	CAPACITYTJ7000			2004	174	483	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT11	CAPACITYTJ7000			2004	174	535	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT12	CAPACITYTJ7000			2004	174	223	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT13	CAPACITYTJ7000			2004	174	227	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT14	CAPACITYTJ7000			2004	174	219	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT15	CAPACITYTJ7000			2004	174	589	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT16	OTTAWA MODEL	50		2004	174	793	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT17	OTTAWA MODEL	50		2004	174	569	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT18	OTTAWA MODEL	50		2004	174	449	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT19	OTTAWA MODEL	50		2004	174	839	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT2	CAPACITYTJ7000			2004	174	664	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT20	OTTAWA MODEL	50		2004	174	1,328	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT21	OTTAWA MODEL	50		2004	174	1,019	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT22	OTTAWA MODEL	50		2004	174	821	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT23	OTTAWA MODEL			2004	174	1,272	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT24	OTTAWA MODEL			2004	174	1,073	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT25	OTTAWA MODEL			2004	174	924	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT26	OTTAWA MODEL	50		2004	174	1,034	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT3	CAPACITYTJ7000			2004	174	555	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT39	OTTAWA MODEL	50		2004	173	1,226	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT4	CAPACITYTJ7000			2004	174	85	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT40	OTTAWA MODEL			2004	173	1,290	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT41	OTTAWA MODEL			2004	173	1,536	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT42	OTTAWA MODEL			2004	173	1,358	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT43	OTTAWA MODEL			2004	173	1,574	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT44	OTTAWA MODEL			2005	173	1,081	Diesel	na	ULSD	n	na	n	DPF	201	
PST030	Tacoma	Yard Tractor	YT45	OTTAWA MODEL			2005	173	1,479	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT46	OTTAWA MODEL			2005	173	773	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT47	OTTAWA MODEL			2005	173	1,274	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT48	OTTAWA MODEL	50		2005	173	948	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT49	KALMAR 4x2			2006	173	2,017	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT5	CAPACITYTJ7000			2004	174	353	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT50	KALMAR 4x2			2006	173	850	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT51	KALMAR 4x2			2006	173	1,545	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT52	KALMAR 4x2			2006	173	1,769	Diesel	na	ULSD	n	na	n	n	na	1

													Alt. Fuel						
												Total Fue	Used					Date	
				Equip								Consume	(Emulsifi	DOC		On-road	Other	Impleme	Number
Terminal			Equip	Manufact	Equip	Engine	Engine	Engine		Annual		d	ed Fuel,	Installed	Year DOC	Engine	Emission	nted	of
ID	Port	Equip Type	ID	urer	Model	Make	Model	Year	HP	Hours	Fuel Type	(gallons)	ULSD)	(y or n)	Installed	(y or n)	Control	(Mo/Yr)	Engines
PST030	Tacoma	Yard Tractor	YT53	KALMAR	4x2			2006	173	1,180	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT54	KALMAR	4x2			2006	173	1,034	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT55	KALMAR	4x2			2006	173	1,594	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT56	KALMAR	4x2			2006	173	1,457	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT57	KALMAR	4x2			2006	173	1,898	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT58	KALMAR	4x2			2006	173	1,080	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT6	CAPACIT	YTJ7000			2004	174	366	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT7	CAPACIT	5			2004	174	198	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT8	CAPACIT	2			2004	174	311	Diesel	na	ULSD	n	na	n	n	na	1
PST030	Tacoma	Yard Tractor	YT9	CAPACIT	2			2004	174	869	Diesel	na	ULSD	n	na	n	n	na	1
PST130	Tacoma	Forklift	16	HYSTER		PERKINS	6165	1990	165	2,000	Diesel	na	ULSD	n	na	n	n	na	1
PST130	Tacoma	Forklift	17	HYSTER		NISSAN	4CYL	1997	80	200	Propane	na	Propane	n	na	n	n	na	1
PST130	Tacoma	Forklift	19	HYSTER		PERKINS	6165	1998	165	2,000	Diesel	na	ULSD	n	na	n	n	na	1
PST130	Tacoma	Reach Stacker	45/40 L	S TEREX	45/40LS	Cummins	M11	2001	325	2,000	Diesel	12000	ULSD	n	na	n	DPF	na	1
PST130	Tacoma	Reach Stacker	HR45/2	5 TEREX	45/25	Cummins	M11	2001	325	2,000	Diesel	12000	ULSD	n	na	n	DPF	na	1
PST070	Tacoma	Forklift	1014	Hyster	H80XL	Cont		1992	70	176	Diesel	na	ULSD	n	na	n	n	na	1
PST070	Tacoma	Forklift	1056	Hyster	H70C	Cont		1967	80	200	Diesel	na	ULSD	n	na	n	n	na	1
PST070	Tacoma	Forklift	1061	Hyster	H70C	Cont		1969	80	53	Diesel	na	ULSD	n	na	n	n	na	1
PST070	Tacoma	Forklift	2106	Hyster	H360	Perkins		1998	200	1,501	Diesel	na	ULSD	n	na	n	n	na	1
PST070	Tacoma	Side Handler	7011	Hyster	H-400	CUMMINS		2000	210	185	Diesel	na	ULSD	YES	na	n	n	na	1
PST070	Tacoma	Side Handler	7012	Hyster	H-400	CUMMINS		2000	210	294	Diesel	na	ULSD	YES	na	n	n	na	1
PST070	Tacoma	Side Handler	7013	Hyster	H-400	CUMMINS		2000	210	642	Diesel	na	ULSD	YES	na	n	n	na	1
PST070	Tacoma	Top Handler	6120	Taylor	TEC-950L	CUMMINS		1995	300	60	Diesel	na	ULSD	YES	na	n	n	na	1
PST070	Tacoma	Yard Tractor	5293	Sisu	TT-120	CUMMINS		2001	174	272	Diesel	na	ULSD	YES	na	n	n	na	1
PST070	Tacoma	Yard Tractor	5295	Sisu	TT-120	CUMMINS		2001	174	571	Diesel	na	ULSD	YES	na	n	n	na	1
PST070	Tacoma	Yard Tractor	5296	Sisu	TT-120	CUMMINS		2001	174	857	Diesel	na	ULSD	YES	na	n	n	na	1
PST100	Tacoma	Forklift	49832	Mitsubishi		Mitsubishi	_	1989	45	24	Propane	na	Propane	n	na	n	n	na	1
PST100	Tacoma	Manlift	48731	Snorkelift	A-42-50	Wisconsin		1987	30	25	Gasoline	na	Gasoline	n	na	n	n	na	1
PST100	Tacoma	Top Handler	79305	Taylor		Cummins		1993	250	1,500	Diesel	na	ULSD	YES	na	n	n	na	1
PST100	Tacoma	Top Handler	89306	Taylor		Cummins		1993	335	480	Diesel	na	ULSD	YES	na	n	n	na	1
PST100	Tacoma	Top Handler	89408	Taylor		Cummins		1994	250	480	Diesel	na	ULSD	YES	na	n	n	na	1
PST100	Tacoma	Yard Tractor	10352	Ottawa			6BT5.9	2003	148	1,300	Diesel	na	ULSD	YES	na	n	n	na	1
PST100	Tacoma	Yard Tractor	10519	Ottawa			QSB	2005	155	1,300	Diesel	na	ULSD	YES	na	n	n	na	1
PST100	Tacoma	Yard Tractor	10522	Ottawa			QSB	2005	155	1,300	Diesel	na	ULSD	YES	na	n	n	na	1
PST100	Tacoma	Yard Tractor	10575	Ottawa			QSB	2005	155	1,300	Diesel	na	ULSD	YES	na	n	n	na	1
PST100	Tacoma	Yard Tractor	10893	Ottawa		Cummins	QSB6.7	2008	160	1,300	Diesel	na	ULSD	YES	na	n	n	na	1
PST100	Tacoma	Yard Tractor	10895	Ottawa		Cummins	QSB6.7	2008	160	1,300	Diesel	na	ULSD	YES	na	n	n	na	1
PST100	Tacoma	Yard Tractor	108113	Ottawa			QSB6.7	2008	160	1,300	Diesel	na	ULSD	YES	na	n	n	na	1
PST100	Tacoma	Yard Tractor	108129	Ottawa		Cummins	•	2008	160	1,300	Diesel	na	ULSD	YES	na	n	n	na	1
PST020	Tacoma	Crane	CC-1	ZPMC	50-60LT	ELECTRIC		2005	0	0	Electric	0	Electric	n	na	n	n	na	0
PST020	Tacoma	Crane	CC-2	ZPMC	50-60LT	ELECTRIC		2005	0	0	Electric	0	Electric	n	na	n	n	na	0
PST020	Tacoma	Crane	CC-3	ZPMC	50-60LT	ELECTRIC	,	2005	0	0	Electric	0	Electric	n	na	n	n	na	0
PST020	Tacoma	Crane	CC-4	ZPMC	50-60LT	ELECTRIC		2005	0	0	Electric	0	Electric	n	na	n	n	na	0
PST020	Tacoma	Crane	CC-5	ZPMC	50-60LT	ELECTRIC		2005	0	0	Electric	0	Electric	n	na	n	n	na	0
PST020	Tacoma	Crane	CC-6	ZPMC	50-60LT	ELECTRIC	N/A	2005	0	0	Electric	0	Electric	n	na	n	n	na	0

													Alt. Fuel						
												Total Fuel	Used					Date	
				Equip								Consume	(Emulsifi	DOC		On-road	Other	Impleme	Number
Terminal			Equip	Manufact	Equip	Engine	Engine	Engine		Annual		d	ed Fuel,	Installed	Year DOC	Engine	Emission	nted	of
ID	Port	Equip Type	ID	urer	Model	Make	Model	Year	HP	Hours	Fuel Type	(gallons)	ULSD)	(y or n)	Installed	(y or n)	Control	(Mo/Yr)	Engines
PST020	Tacoma	Crane	CC-7	ZPMC	50-60LT	ELECTRI	ICN/A	2005	0	0	Electric	0	Electric	n	na	n	n	na	0
PST020	Tacoma	Forklift	F-01	MITSUBI	S13EM7B	MITSUBI	S13200	2005	155	225	Propane	387	Propane	n	na	n	n	na	1
PST020	Tacoma	Forklift	F-02	MITSUBI	S13EM7B	MITSUBI	S13200	2005	155	243	Propane	418	Propane	n	na	n	n	na	1
PST020	Tacoma	Forklift	F-03	MITSUBI	S13EM7B	MITSUBI	S13200	2005	155	245	Propane	421	Propane	n	na	n	n	na	1
PST020	Tacoma	Forklift	F-04	MITSUBI	S13EM7B	MITSUBI	S13200	2005	155	269	Propane	463	Propane	n	na	n	n	na	1
PST020	Tacoma	Forklift	F-05	MITSUBI	S13EM7B	MITSUBI	Sl3200	2005	155	117	Propane	201	Propane	n	na	n	n	na	1
PST020	Tacoma	Forklift	F-06	MITSUBI	S13EM7B	MITSUBI	S13200	2005	155	89	Propane	153	Propane	n	na	n	n	na	1
PST020	Tacoma	Forklift	L-01		Z 18 TON 7			2005	180	276	Diesel	726	ULSD	n	na	n	n	na	1
PST020	Tacoma	Forklift	L-02		Z 18 TON 7			2005	180	83	Diesel	218	ULSD	n	na	n	n	na	1
PST020	Tacoma	Side Handler	S-01		ZFDC25K8			2005	210	620	Diesel	1,736	ULSD	n	na	n	n	na	1
PST020	Tacoma	Side Handler	S-02		ZFDC25K8			2005	210	496	Diesel	1,389	ULSD	n	na	n	n	na	1
PST020	Tacoma	Side Handler	S-03		ZFDC25K8			2005	210	395	Diesel	1,106	ULSD	n	na	n	n	na	1
PST020	Tacoma	Side Handler	S-04	FANTUZ	ZFDC25K8	CUMMIN	IS 6CT	2005	210	607	Diesel	1,700	ULSD	n	na	n	n	na	1
PST020	Tacoma	Side Handler	S-05		ZFDC25K8			2005	210	478	Diesel	1,338	ULSD	n	na	n	n	na	1
PST020	Tacoma	Side Handler	S-06		ZFDC25K9			2006	210	983	Diesel	2,752	ULSD	n	na	n	n	na	1
PST020	Tacoma	Side Handler	S-07		ZFDC25K1			2006	210	1,244	Diesel	3,483	ULSD	n	na	n	DPF	2011	
PST020	Tacoma	Side Handler	S-08		ZFDC25K1			2006	210	638	Diesel	1,786	ULSD	n	na	n	DPF	2011	
PST020	Tacoma	Straddle Carrier	SC-01	NOELL	534ESW	CATERPI		2004	455	1,807	Diesel	5,276	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-02	NOELL	534ESW	CATERPI		2004	455	1,820	Diesel	5,314	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-03	NOELL	534ESW	CATERPI		2004	455	1,980	Diesel	5,782	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-04	NOELL	534ESW	CATERPI		2004	455	1,197	Diesel	3,495	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-05	NOELL	534ESW	CATERPI		2004	455	2,244	Diesel	6,552	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-06	NOELL	534ESW	CATERPI		2004	455	1,000	Diesel	2,920	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-07	NOELL	534ESW	CATERPI		2004	455	1,704	Diesel	4,976	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-08	NOELL	534ESW	CATERRI		2004	455	2,295	Diesel	6,701	ULSD	n	na	n	n	na	1
PST020 PST020	Tacoma	Straddle Carrier	SC-09	NOELL NOELL	534ESW	CATERRI		2004	455	1,210	Diesel Diesel	3,533	ULSD	n	na	n	n	na	1
PST020 PST020	Tacoma	Straddle Carrier	SC-10	NOELL	534ESW	CATERPI CATERPI		2004 2004	455	1,142	Diesel	3,335	ULSD	n	na	n	n	na	1
PST020 PST020	Tacoma Tacoma	Straddle Carrier Straddle Carrier	SC-11 SC-12	NOELL	534ESW 534ESW	CATERPI	-	2004	455 455	2,333 2,019	Diesel	6,812 5,895	ULSD ULSD	n	na	n	n	na	1
PST020 PST020	Тасота	Straddle Carrier	SC-12 SC-13	NOELL	534ESW	CATERPI		2004	455	3,086	Diesel	9,011	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-13	NOELL	534ESW	CATERPI		2004	455	3,666	Diesel	10.705	ULSD	n n	na	n n	n n	na	1
PST020	Tacoma	Straddle Carrier	SC-14 SC-15	NOELL	534ESW	CATERPI	-	2004	455	3,210	Diesel	9,373	ULSD	n	na na	n	n	na na	1
PST020	Tacoma	Straddle Carrier	SC-16	NOELL	534ESW	CATERPI		2004	455	2,866	Diesel	8,369	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-10	NOELL	534ESW	CATERPI		2004	455	1,282	Diesel	3,743	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-18	NOELL	534ESW	CATERPI		2004	455	1,822	Diesel	5,320	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-19	NOELL	534ESW	CATERPI		2004	455	703	Diesel	2,053	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-19	NOELL	534ESW	CATERPI		2004	455	1,592	Diesel	4,649	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-21	NOELL	534ESW	CATERPI		2004	455	660	Diesel	1,927	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-22	NOELL	534ESW	CATERPI		2004	455	962	Diesel	2,809	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-23	NOELL	534ESW	CATERPI		2004	455	1,470	Diesel	4,292	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-24	NOELL	534ESW	CATERPI		2004	455	2,519	Diesel	7,355	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-25	NOELL	534ESW	CATERPI		2004	455	2,001	Diesel	5,843	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-26	NOELL	534ESW	CATERPI		2004	455	1,877	Diesel	5,481	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-27	NOELL	534ESW	CATERPI		2004	455	1,805	Diesel	5,271	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-28	NOELL	534ESW	CATERPI		2004	455	3,084	Diesel	9,005	ULSD	n	na	n	n	na	1
0-0-0										- ,		. ,							•

													Alt. Fuel						
												Total Fuel	Used					Date	
				Equip								Consume	(Emulsifi	DOC		On-road	Other	Impleme	Number
Terminal			Equip	Manufact	Equip	Engine	Engine	Engine		Annual		d	ed Fuel,	Installed	Year DOC	Engine	Emission	nted	of
ID	Port	Equip Type	ID	urer	Model	Make	Model	Year	HP	Hours	Fuel Type	(gallons)	ULSD)	(y or n)	Installed	(y or n)	Control	(Mo/Yr)	Engines
PST020	Tacoma	Straddle Carrier	SC-29	NOELL	534ESW	CATERPII	LC-12	2004	455	3,122	Diesel	9,116	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-30	NOELL	534ESW	CATERPII	LC-12	2004	455	669	Diesel	1,953	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-31	NOELL	534ESW	CATERPII	LC-12	2004	455	1,835	Diesel	5,358	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-32	NOELL	534ESW	CATERPII	LC-12	2004	455	2,434	Diesel	7,107	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-34	NOELL	534ESW	CATERPII	LC-12	2004	455	2,028	Diesel	5,922	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-35	NOELL	534ESW	CATERPII		2005	455	1,629	Diesel	4,757	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-36	NOELL	534ESW	CATERPII		2005	455	1,654	Diesel	4,830	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-37	NOELL	534ESW	CATERPII		2005	455	2,667	Diesel	7,788	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-38	NOELL	534ESW	CATERPII		2005	455	2,262	Diesel	6,605	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-39	NOELL	534ESW	CATERPII		2005	455	1,350	Diesel	3,942	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-40	NOELL	534ESW	CATERPII		2005	455	2,440	Diesel	7,125	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-41	NOELL	534ESW	CATERPII		2005	455	2,044	Diesel	5,968	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-42	NOELL	534ESW	CATERPII		2005	455	2,195	Diesel	6,409	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-43	NOELL	534ESW	CATERPII		2005	455	2,039	Diesel	5,954	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-44	NOELL	534ESW	CATERPII		2005	455	2,237	Diesel	6,532	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-45	NOELL	534ESW	CATERPII		2005	455	2,423	Diesel	7,075	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-46	NOELL	534ESW	CATERPII		2005	455	1,719	Diesel	5,019	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-47	NOELL	534ESW	CATERPII		2005	455	2,297	Diesel	6,707	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-48	NOELL	534ESW	CATERPI		2005	455	2,379	Diesel	6,947	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-49	NOELL	534ESW	CATERPII		2005	455	2,104	Diesel	6,144	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-50	NOELL	534ESW	CATERPII		2005	455	1,947	Diesel	5,685	ULSD	n	na	n	n	na	1
PST020	Tacoma	Straddle Carrier	SC-51	NOELL		CATERPII		2005	455	2,256	Diesel	6,588	ULSD	n	na	n	n	na	1
PST020	Tacoma	Yard Tractor	H-01	CAPACIT		CUMMIN		2005	180	200	Diesel	262	ULSD	n	na	n	n	na	1
PST020	Tacoma	Yard Tractor	H-02	CAPACIT		CUMMIN		2005	180	929	Diesel	1,215	ULSD	n	na	n	n	na	1
PST020 PST020	Tacoma	Yard Tractor	H-03 H-04	CAPACIT		CUMMIN		2005 2006	180	790 489	Diesel	1,033 640	ULSD ULSD	n	na	n	n	na	1
PST020 PST010	Tacoma	Yard Tractor Backhoe	4535	CAPACIT Case	580E	CUMMIN			180	65	Diesel Diesel	69	ULSD	n	na	n	n	na	1
PST010 PST010	Tacoma	Backhoe			310SE LO	ADED	12",18",24 17940 LBS		350	271		455	ULSD	n	na	n	n	na	1
PST010 PST010	Tacoma Tacoma	Compressor	5491 4263	Savlor B	703-COM		1/940 LDS	1974	350 0	0	Diesel Electric	na	Electric	n n	na na	n n	n n	na na	0
PST010	Tacoma	Compressor	4464	,	P185WID	FKESSOK	185CF	1974	10	17	Diesel	16	ULSD	n	na	n	n	na	1
PST010	Tacoma	Compressor	4528		P185WJD		185CF	1984	10	61	Diesel	85	ULSD	n	na	n	n	na	1
PST010	Tacoma	Compressor	4542		P100AWE		10501	1985	10	4	Diesel	5	ULSD	n	na	n	n	na	1
PST010	Tacoma	Compressor	5407	Speedair	324206	,	165 PSI	1992	0	0	Electric	na	Electric	n	na	n	n	na	0
PST010	Tacoma	Compressor	5461	ING Rand			103 1 51	1996	10	O	Gasoline	0		n	na	n	n	na	1
PST010	Tacoma	Compressor	5488	Speedair	5F219B			1998	10		Gasoline	0		n	na	n	n	na	1
PST010	Tacoma	Compressor	5511	1	57219C		8 HP/8 G		10		Gasoline	0		n	na	n	n	na	1
PST010	Tacoma	Compressor	5543	1	2475F11G	HED	0111/00	2001	10		Gasoline	0		n	na	n	n	na	1
PST010	Tacoma	Compressor	10097	Thomas	T2820ST			2003	0	0	Electric	na	Electric	n	na	n	n	na	0
PST010	Tacoma	Compressor	10339		P185WIR			2004	10		Diesel	0	ULSD	n	na	n	n	na	1
PST010	Tacoma	Compressor	10340		P185WIR			2004	10		Diesel	0	ULSD	n	na	n	n	na	1
PST010	Tacoma	Compressor	10574	EMGLO	R5B120			1977	10		Diesel	0	ULSD	n	na	n	n	na	1
PST010	Tacoma	Crane	2077	Sumitomo			55 TN	1986	0	0	Electric	na	Electric	n	na	n	n	na	0
PST010	Tacoma	Crane	2078	IHI	6021-989		50 TN	1979	0	0	Electric	na	Electric	n	na	n	n	na	0
PST010	Tacoma	Crane	2241	Washingto			40 TN	1941	0	14	Electric	0	Electric	n	na	n	n	na	0
PST010	Tacoma	Crane	2301	Kone			66 TN	1989	0	0	Electric	na	Electric	n	na	n	n	na	0

Section Torona Came 2465 Z.P.M.C. Quayase CC 60 T. 1996 0 0 Electric ns Electric ns n n n n n n n n														Alt. Fuel						
Part													Total Fuel	Used					Date	
Pose					Equip								Consume	(Emulsifi	DOC		On-road	Other	Impleme	Number
PSTRION Tacoma Crance 2002 Konc. 66 TN 1889 0 0 Electric 0 1 Electric 0 0 1 Electric 0 0 0 Electric 0 0 1 Electric 0 0 0 Electric 0 Electric 0 0 Electric 0 0 Electric 0 Electric 0 0 Electric 0 0 Electric 0 0 Electric 0 Electric 0 0 Electric 0 0 Electric 0 Electric 0 0 Electric 0 Electric 0 0 Electric 0 Electric 0 Electric 0 Electric 0 0 Electric 0 0 Electric	Terminal			Equip	Manufact	Equip	Engine	Engine	Engine		Annual		d	ed Fuel,	Installed	Year DOC	Engine	Emission	nted	of
PSTUDID Tasoma Canca C	ID		Equip Type	ID	urer	Model	Make	Model	Year	HP	Hours	Fuel Type	(gallons)	ULSD)	(y or n)	Installed	(y or n)	Control	(Mo/Yr)	Engines
Section Tacoma Crane C	PST010	Tacoma	Crane	2302	Kone			66 TN	1989	0	0	Electric	na	Electric	n	na	n	n	na	0
STOID Tarona Crame Cra	PST010	Tacoma	Crane	2403	Sumitomo	RN26		55 TN	1986	0	0	Electric	na	Electric	n	na	n	n	na	0
Second Carne Car			Crane	2405	Z.P.M.C.	Quayside (CC	60 LT	1996	0		Electric	na	Electric	n	na	n	n	na	0
PST010 Tacoma Cance 449 DEMAG 20 Ton Stra 1976 0 0 Becenc na Becenc na na na na na na na		Tacoma						1				Electric		Electric	n	na	n	n	na	
STID Tacoms Crance 4425 American 15 TN 1974 0 0 Electric a Electric a a a a a a a a a		Tacoma			,	3337						Electric	0	Electric	n	na	n	n	na	0
No.					DEMAG								na		n	na	n	n	na	0
ST010 Tacoma Came					American								na		n	na	n	n	na	
PST010 Tacoma Crane 4432 Edder 7.5 TN 1974 0 0 Electric na Electric n na n n na 0 0 PST010 Tacoma Crane 4435 Niles 10 TN 1974 0 0 0 Electric na Electric n na n n na 0 0 PST010 Tacoma Crane 4435 Niles 10 TN 1974 0 0 0 Electric na Electric na na n n na 0 0 0 0 0 0 0 0 0											-				n	na	n	n	na	
PST010 Tacoma Cane																na	n	n	na	
INTO Tacoma Came																na	n	n		
Description Tacoma Cranc																				~
DST010 Tacoma Cane 4438 Robbins 1-ER-46 2 TN 1974 0 0 Electric na Electric n na n n na na na na																				~
PST010 Tacoma Crane 4440 Robbins 1-ER-46 2 TN 1974 0 0 Electric na Electric n na n n na na 0																na		n		~
PST010 Tacoma Crane 4441 Robbins 1-ER-46 2 TN 1974 0 0 Electric na Electric n na n n na 0 0 PST010 Tacoma Crane 4442 Robbins 1-ER-46 2 TN 1974 0 0 Electric na Electric n na n n na 0 0 PST010 Tacoma Crane 4443 Robbins 1-ER-46 2 TN 1974 0 0 Electric na Electric na na n n na 0 0 PST010 Tacoma Crane 4444 Robbins 1-ER-46 2 TN 1974 0 0 Electric na Electric na na n n na na 0 0 PST010 Tacoma Crane 4444 Robbins 1-ER-46 2 TN 1974 0 0 Electric na Electric na na na na na na na n																				
PST010 Tacoma Crane 4442 Robbins 1-ER-46 2-TN 1974 0 0 Electric na Electric na na n na na na na na																				
PST010 Tacoma Crane 4444 Robbins 7.5 TN 1974 0 0 Electric na Electric na na n n na 0											~									
PST010 Tacoma Crane 4444 Robbins 1-ER-46 2-TN 1974 0 0 Electric na Electric na na n na na na na na						1-ER-46														
PST010 Tacoma Crane 4446 American 2 TN 1974 0 0 Electric na Electric n na n n na na na na						4 ED 47														
PST010 Tacoma Crane Cr																				
PST010 Tacoma Crane Cr						309828-32														
PST010 Tacoma Crane Crane Crane Crane S415 Abelhowe J-904-140-12FS 2 TN 1993 0 0 Electric na Electric n na n n na n n na na 0						221 5426														
PST010 Tacoma Crane S415 Abelhowe J-904-140-12FS 2 TN 1993 0 0 Electric na Electric na na n n na na na na							120KN12													
PST010 Tacoma Crane 5434 Yale Hoi TRTB-20-79D 10 TN 1995 0 0 Electric na Electric n na n n na n na na																				
PST010 Tacoma Crane 5435 Yale Hoi TRTB-20-79D 5 TN 1995 0 0 Electric na Electric na Electric n na n n na na 0																				
PST010 Tacoma Crane 5443 Kone XL400 7.5 TN 1995 0 0 Electric na Electric n na n n na n na na																				~
PST010 Tacoma Crane 5504 American 4K CHAIN FALL 2 TN 1974 0 0 Electric na Electric na na n na n na na na							7710													0
PST010 Tacoma Crane 5505 Coffing EC4 2 TN 1974 0 0 Electric n na n							NIFALI				~									0
PST010 Tacoma Crane							1 1 1 1 1 1 1 1 1 1				-									0
PST010 Tacoma Crane					0		ALL.				~									0
PST010 Tacoma Crane					0	01111111					~									0
PST010 Tacoma Crane 5537 Venturo CT2004FB 800 LB 2000 0 Electric na Electric n na n n na						€5124M2					0									0
PST010 Tacoma Crane 2404T Sumitomo RN26 55 TN 1986 0 0 Electric na Electric n na n							3													
PST010 Tacoma Forklift 1105 Hyster S50C 5,000 cap 1971 60 0 Propane 0 Propane n na n											0									0
PST010 Tacoma Forklift 1107 Taylor Y62WO 62,000 cap 2011 174 37 Diesel 108 ULSD YES na n n n n na 1 1 PST010 Tacoma Forklift 1108 Taylor Y45WO 45,000 cap 2011 174 27 Diesel 95 ULSD YES na n n n n na 1 1 PST010 Tacoma Forklift 1117 Taylor Y30WO 30,000 cap 2011 174 10 Diesel 5 ULSD YES na n n n n na 1 1 PST010 Tacoma Forklift 1118 Taylor Y52WO/471 eng 52,000 cap 2011 174 72 Diesel 107 ULSD YES na n n n n na 1 1 PST010 Tacoma Forklift 1119 Taylor Y52WO 52,000 cap 2011 174 106 Diesel 73 ULSD YES na n n n n na 1 1 PST010 Tacoma Forklift 1168 Hyster H60HP 6,000 cap 1977 60 33 Propane 40 Propane n na n n n na 1 1 PST010 Tacoma Forklift 1174 Hyster H60HP 6,000 cap 1977 60 36 Propane 18 Propane n na n n n na 1 1 1 1 1 1 1 1 1 1 1 1 1											0									1
PST010 Tacoma Forklift 1108 Taylor Y45WO 45,000 cap 2011 174 27 Diesel 95 ULSD YES na n n n n na 1 1 PST010 Tacoma Forklift 1117 Taylor Y30WO 30,000 cap 2011 174 10 Diesel 5 ULSD YES na n n n n na 1 1 PST010 Tacoma Forklift 1118 Taylor Y52WO/471 eng 52,000 cap 2011 174 72 Diesel 107 ULSD YES na n n n n na 1 1 PST010 Tacoma Forklift 1119 Taylor Y52WO 52,000 cap 2011 174 106 Diesel 73 ULSD YES na n n n n na 1 1 PST010 Tacoma Forklift 1168 Hyster H60HP 6,000 cap 1977 60 33 Propane 40 Propane n na n n n na 1 1 PST010 Tacoma Forklift 1174 Hyster H60HP 6,000 cap 1977 60 36 Propane 0 Propane n na n n n na 1 1 PST010 Tacoma Forklift 1175 Hyster H60HP 6,000 cap 1977 60 36 Propane 18 Propane n na n n n na 1 1	PST010	Tacoma	Forklift	1107		Y62WO		, .		174	37		108			na	n	n	na	1
PST010 Tacoma Forklift 1118 Taylor Y52WO/471 eng 52,000 cap 2011 174 72 Diesel 107 ULSD YES na n n n n na 1 1 PST010 Tacoma Forklift 1119 Taylor Y52WO 52,000 cap 2011 174 106 Diesel 73 ULSD YES na n n n n na 1 1 PST010 Tacoma Forklift 1168 Hyster H60HP 6,000 cap 1977 60 33 Propane 40 Propane n na n n n na 1 1 PST010 Tacoma Forklift 1174 Hyster H60HP 6,000 cap 1977 60 0 Propane 0 Propane n na n n n na 1 1 PST010 Tacoma Forklift 1175 Hyster H60HP 6,000 cap 1977 60 36 Propane 18 Propane n na n n n na 1 1 1 1 1 1 1 1 1 1 1 1 1	PST010	Tacoma	Forklift	1108	,	Y45WO		, ,		174	27	Diesel	95	ULSD	YES	na	n	n	na	1
PST010 Tacoma Forklift 1119 Taylor Y52WO 52,000 cap 2011 174 106 Diesel 73 ULSD YES na n n n na 1 1 PST010 Tacoma Forklift 1168 Hyster H60HP 6,000 cap 1977 60 33 Propane 40 Propane n na n n n na 1 1 PST010 Tacoma Forklift 1174 Hyster H60HP 6,000 cap 1977 60 0 Propane 0 Propane n na n n n na 1 1 PST010 Tacoma Forklift 1175 Hyster H60HP 6,000 cap 1977 60 36 Propane 18 Propane n na n n n na 1 1	PST010	Tacoma	Forklift	1117	Taylor	Y30WO		30,000 cap	2011	174	10	Diesel	5	ULSD	YES	na	n	n	na	1
PST010 Tacoma Forklift 1168 Hyster H60HP 6,000 cap 1977 60 33 Propane 40 Propane n na n n na 1 1 PST010 Tacoma Forklift 1174 Hyster H60HP 6,000 cap 1977 60 0 Propane 0 Propane n na n n n na 1 1 PST010 Tacoma Forklift 1175 Hyster H60HP 6,000 cap 1977 60 36 Propane 18 Propane n na n n n na 1	PST010	Tacoma	Forklift	1118	Taylor	Y52WO/4	171 eng	52,000 cap	2011	174	72	Diesel	107	ULSD	YES	na	n	n	na	1
PST010 Tacoma Forklift 1174 Hyster H60HP 6,000 cap 1977 60 0 Propane 0 Propane n n n n n n n n n PST010 Tacoma Forklift 1175 Hyster H60HP 6,000 cap 1977 60 36 Propane 18 Propane n n n n n n n n 1	PST010	Tacoma	Forklift	1119	,		U	, 1				Diesel	73	ULSD	YES					1
PST010 Tacoma Forklift 1174 Hyster H60HP 6,000 cap 1977 60 0 Propane 0 Propane n	PST010	Tacoma	Forklift	1168	Hyster	H60HP		6,000 cap	1977	60	33	Propane	40	Propane	n	na	n	n	na	1
PST010 Tacoma Forklift 1175 Hyster H60HP 6,000 cap 1977 60 36 Propane 18 Propane n na n n na 1	PST010	Tacoma	Forklift	1174	Hyster	H60HP		6,000 cap	1977	60	0	Propane	0	•	n	na	n	n	na	1
PST010 Tacoma Forklift 1176 Hyster H60HP 6,000 cap 1977 60 0 Propane 0 Propane n na n n na 1	PST010	Tacoma	Forklift	1175	Hyster	H60HP		6,000 cap	1977	60	36	Propane	18	Propane	n	na	n	n	na	1
And the state of t	PST010	Tacoma	Forklift	1176	Hyster	H60HP		6,000 cap	1977	60	0	Propane	0	Propane	n	na	n	n	na	1
PST010 Tacoma Forklift 1178 Hyster H60HP 6,000 cap 1977 60 49 Propane 49 Propane n na n n na	PST010	Tacoma	Forklift	1178	Hyster	H60HP		6,000 cap	1977	60	49	Propane	49	Propane	n	na	n	n	na	1

Part	-													Alt. Fuel						
Part													Total Fuel	Used					Date	
Part					Equip								Consume	(Emulsifi	DOC		On-road	Other	Impleme	Number
Section Fortific 1180 Hyster Hoffliff 1600 C. 1777 011 01 0 Departe 0 Departe n na n na na na na na	Terminal			Equip	Manufact	Equip	Engine	Engine	Engine		Annual		d	ed Fuel,	Installed	Year DOC	Engine	Emission	nted	of
Part	ID	Port	Equip Type	ID	urer	Model	Make	Model	Year	HP	Hours	Fuel Type	(gallons)	ULSD)	(y or n)	Installed	(y or n)	Control	(Mo/Yr)	Engines
Section Tecoma Fooklist 1990 Tighter 1910 Tighter 1930 T	PST010	Tacoma	Forklift	1180	Hyster	H60HP		6,000 cap	1977	60	0	Propane	0	Propane	n	na	n	n	na	1
Part	PST010	Tacoma	Forklift	1183	Hyster	H150		15,000 cap	1977	200	0	Diesel	0	ULSD	n	na	n	n	na	1
	PST010	Tacoma	Forklift	1190	Hyster	H60HP		6,000 cap	1977	60	0	Propane	0	Propane	n	na	n	n	na	1
Part	PST010	Tacoma	Forklift	1193	Taylor	Y52WOM		52,000 cap	1978	200	59	Diesel	54	ULSD	n	na	n	n	na	1
	PST010	Tacoma	Forklift	1194	CAT	V140		14,000 cap	1979	200	0	Diesel	0	ULSD	n	na	n	n	na	1
Section Tacoms Forbitis 1206 CAT V80D 8,000 cap 1979 200 180 Dised 17 UISD n na n n na na na na	PST010	Tacoma	Forklift	1195	CAT	V140		14,000 cap	1979	200	0	Diesel	0	ULSD	n	na	n	n	na	1
PST010 Tacoms Portfift 1212 Tarbot T	PST010	Tacoma	Forklift	1204				8,000 cap	1979	200	34	Diesel		ULSD	n	na	n	n	na	1
PST010 Tacoms Forbliff 1212 Taylor TAGON_ C2,000 cap 1979 200 0 Dissel 0 ULSD n na n na na 1		Tacoma						/ 1				Diesel			n	na	n	n	na	1
Second Porchife 1215 CAT V60B 6,000 cm 1980 60 0 Propane 0 Propane 0 Propane 0 Propane 0 No															n	na	n	n	na	_
STOID Tacoma Forklift 1216 CAT V60B 6,000 cp 1980 60 0 Propane 0 Propane 0 Propane 0 n n n n n n n n n					,							Diesel			n	na	n	n	na	_
PST010 Tacoma Forklift 1217 CAT V6/B 6,000 cap 1980 60 0 Propane 0 Propane n n n n n n n n n															n	na	n	n	na	•
PST101 Tacoma Forklift 1224 CAT V60B 6,000 cap 1980 60 0 Propane 0 Propane n na n na 1								, 1						-		na				_
PST010 Tacoma Forklift 1224 CAT Wolf G,000 cap 1980 60 0 Propane 0 Propane n n n n n n n n n								, 1				1				na		n		-
PST010 Tacoma Forklift 1226 CAT V60B 6,000 cap 1980 60 24 Propane 49 Propane n na n n na na na na								, 1				1		-						1
PST010 Tacoma Forklift 1227 CAT V60B 6,000 cap 1980 60 24 Propane 17 Propane n na n n na 1								, 1												1
PST010 Tacoma Forklift 1230 CAT V60B/conteng 6,000 cap 1980 60 19 Propane 17 Propane n na n n na 1								, 1				1								-
PST010 Tacoma Forklift 1231 CAT V60B 6,000 cap 1980 60 15 Propane 10 Propane n n n n n n n n n								, 1						•						_
PST010 Tacoma Forklift 1234 CAT V150 15,000 cap 1981 200 1 Diesel 36 ULSD n na n n na n n na 1							it eng	, 1						•						_
PST010 Tacoma Forklift 1234 CAT V150 15,000 cap 1981 200 19 Diesel 15 U1SD n na n n na n n na n n								, 1				1								1
PST010 Tacoma Forklift 1236 CAT V150 15,000 cap 1981 200 18 Diesel 5 ULSD n na n n na n n na 1								, 1												1
PST010 Tacoma Forklift 1246 CAT V150 15,000 cap 1981 200 0 Diesel 0 ULSD n na n n na n na na								, 1												1
PST010 Tacoma Forklift 1240 Valmet 4212 92,000 cap 2011 375 181 Diesel 332 ULSD YES na n n n na na 1								, ,												1
PST010 Tacoma Forklift 1241 TCM FD70Z7 15,000 cap 1998 200 25 Diesel 21 ULSD n na n n na n n na n n																				1
PST010 Tacoma Forklift 1242 Hyster X80XLBCS 8,000 cap 1989 80 19 Propane 60 Propane n na n n na n na n na								, 1												1
PST010 Tacoma Forklift 1243 Hyster X80XLBCS 8,000 cap 1989 80 30 Propane 53 Propane n na n n na n n na 1							·c													1
PST010 Tacoma Forklift 1244 Hyster X80XLBCS 8,000 cap 1989 80 76 Propane 141 Propane n na n n n na 1								-				•		•						•
PST010 Tacoma Forklift 1245 Hyster X80XLBCS 8,000 cap 1989 80 91 Propane 225 Propane n na n n na n n na 1					,							•								-
PST010 Tacoma Forklift 1246 Hyster X80XLBCS 8,000 cap 1989 80 83 Propane 135 Propane n na n n n na 1 PST010 Tacoma Forklift 1247 Hyster X80XLBCS 8,000 cap 1989 80 109 Propane 204 Propane n na n n n na n 1 PST010 Tacoma Forklift 1248 Hyster H190XL 19,000 cap 1989 200 87 Diesel 85 ULSD n na n n n n na 1 PST010 Tacoma Forklift 1249 Hyster H190XL 19,000 cap 1989 200 32 Diesel 39 ULSD n na n n n n na 1 PST010 Tacoma Forklift 1250 Hyster H190XL 19,000 cap 1989 200 87 Diesel 84 ULSD n na n n n n na 1 PST010 Tacoma Forklift 1251 Hyster H190XL 19,000 cap 1989 200 83 Diesel 94 ULSD n na n n n n na 1 PST010 Tacoma Forklift 1251 Hyster H190XL 19,000 cap 1989 200 83 Diesel 94 ULSD n na n n n n na 1 PST010 Tacoma Forklift 1252 Hyster H190XL 19,000 cap 1989 200 83 Diesel 94 ULSD n na n n n n na 1 PST010 Tacoma Forklift 1255 CAT V925 95,000 cap 2001 200 288 Diesel 456 ULSD n na n n n n na 1 PST010 Tacoma Forklift 10055 CAT V925 95,000 cap 2001 200 101 Diesel 196 ULSD n na n n n n na 1 PST010 Tacoma Forklift 10055 CAT V925 95,000 cap 2001 200 79 Diesel 154 ULSD n na n n n n na 1 PST010 Tacoma Forklift 10055 CAT V925 95,000 cap 2004 200 497 Diesel 1512 ULSD N n na n n n n n n n n n 1 PST010 Tacoma Generator 4101 Taylor 0275DSPS 250KW 1996 0 Diesel 0 ULSD N n na n n n n n n n n n n n n n n n n					,		*							-						-
PST010 Tacoma Forklift 1247 Hyster X80XLBCS 8,000 cap 1989 80 109 Propane 204 Propane n na n n n na n n n na 1 1 PST010 Tacoma Forklift 1248 Hyster H190XL 19,000 cap 1989 200 87 Diesel 85 ULSD n na nn n n n na 1 1 PST010 Tacoma Forklift 1250 Hyster H190XL 19,000 cap 1989 200 32 Diesel 39 ULSD n na nn n n n nn nn na 1 1 PST010 Tacoma Forklift 1250 Hyster H190XL 19,000 cap 1989 200 75 Diesel 84 ULSD n nn nn n n n nn nn nn nn nn nn nn nn					,			, 1						•						-
PST010 Tacoma Forklift 1248 Hyster H190XL 19,000 cap 1989 200 87 Diesel 85 ULSD n na na n n n na 1 1 PST010 Tacoma Forklift 1249 Hyster H190XL 19,000 cap 1989 200 32 Diesel 39 ULSD n na na n n n na 1 1 PST010 Tacoma Forklift 1250 Hyster H190XL 19,000 cap 1989 200 75 Diesel 84 ULSD n na na n n n na 1 1 PST010 Tacoma Forklift 1251 Hyster H190XL 19,000 cap 1989 200 83 Diesel 94 ULSD n na na n n n na 1 1 PST010 Tacoma Forklift 1252 Hyster H190XL 19,000 cap 1989 200 883 Diesel 456 ULSD n na na n n n na 1 1 PST010 Tacoma Forklift 1255 CAT V925 95,000 cap 2001 200 101 Diesel 196 ULSD n na n n n na 1 1 PST010 Tacoma Forklift 10055 CAT V925 95,000 cap 2001 200 101 Diesel 196 ULSD n na n n n na 1 1 PST010 Tacoma Forklift 10196 Wiggins W360YXL 30,000 cap 2004 200 497 Diesel 154 ULSD n na n n n n na 1 1 PST010 Tacoma Generator 4101 Taylor 0275DSPS 250KW 1996 0 Diesel 0 ULSD YES na n n n n na 1 1 PST010 Tacoma Generator 4501 ONAN 600DYA15R14] 60 KW 1982 50 0 Diesel 0 ULSD n na n n n n na 1 1 PST010 Tacoma Generator 4506 Sears 580,32826 7.5 KW 1982 50 0 Gasoline 0 Gasoline n na n n n n na 1 1 PST010 Tacoma Generator 5486 Honda EM3500SXKI 3546972 1998 50 0 Gasoline 0 Gasoline n na n n n n na 1 1 PST010 Tacoma Generator 5486 Honda EM3500SXKI 3546972 1998 50 0 Gasoline 0 Gasoline n na n n n n na 1 1					,			/ 1												
PST010 Tacoma Forklift 1249 Hyster H190XL 19,000 cap 1989 200 32 Diesel 39 ULSD n na na n n n na 1 1 PST010 Tacoma Forklift 1250 Hyster H190XL 19,000 cap 1989 200 75 Diesel 84 ULSD n na na n n n na 1 1 PST010 Tacoma Forklift 1251 Hyster H190XL 19,000 cap 1989 200 83 Diesel 94 ULSD n na na n n n na 1 1 PST010 Tacoma Forklift 1252 Hyster H190XL 19,000 cap 1989 200 288 Diesel 456 ULSD n na na n n n na 1 1 PST010 Tacoma Forklift 1255 CAT V925 95,000 cap 2001 200 101 Diesel 196 ULSD n na na n n n na 1 1 PST010 Tacoma Forklift 10055 CAT V925 95,000 cap 2001 200 101 Diesel 196 ULSD n na na n n n na 1 1 PST010 Tacoma Generator 4101 Taylor 0275DSPS 250KW 1996 0 Diesel 0 ULSD YES na n n n na 1 1 PST010 Tacoma Generator 4501 ONAN 600DYA15R14J 60 KW 1982 50 0 Diesel 0 ULSD N na na n n n na 1 1 PST010 Tacoma Generator 4506 Sears 580.32826 7.5 KW 1982 50 0 Gasoline 0 Gasoline n na n n n na 1 1 PST010 Tacoma Generator 5486 Honda EM3500SXKI 3546972 1998 50 0 Gasoline 0 Gasoline n na n n n na 1 1 PST010 Tacoma Generator 5486 Honda EM3500SXKI 3546972 1998 50 0 Gasoline 0 Gasoline n na n n n na 1 1 Tacoma Generator 5486 Honda EM3500SXKI 3546972 1998 50 0 Gasoline 0 Gasoline n na n n n n na 1 1 Tacoma Generator 5549 Honda EM3500SXKI 3546972 1998 50 0 Gasoline 0 Gasoline n na n n n na 1 1 Tacoma Generator 5549 Honda EM3500SXKI 3546972 1998 50 0 Gasoline 0 Gasoline n na n n n na 1 1 Tacoma Generator 5486 Honda EM3500SXKI 3546972 1998 50 0 Gasoline 0 Gasoline n na n n n na n n n na 1 1 Tacoma Generator 5486 Honda EM3500SXKI 3546972 1998 50 0 Gasoline 0 Gasoline n na n n n n na 1 1 Tacoma Generator 5486 Honda EM3500SXKI 3546972 1998 50 0 Gasoline 0 Gasoline n na n n n n na 1 1 Tacoma Generator 5486 Honda EM3500SXKI 3546972 1998 50 0 Gasoline 0 Gasoline n na n n n n na 1 1 Tacoma Generator 5486 Honda EM3500SXKI 3546972 1998 50 0 Gasoline 0 Gasoline n na n n n n na 1 1 Tacoma Generator 5486 Honda EM3500SXKI 3546972 1998 50 0 Gasoline 0 Gasoline n na n n n n n na 1 1 1 Tacoma Generator 5486 Honda EM3500SXKI 3546972 1998 50 0 Gasoline 0 G					,			, 1						-						
PST010 Tacoma Forklift 1250 Hyster H190XL 19,000 cap 1989 200 75 Diesel 84 ULSD n na na n n n na 1 1 PST010 Tacoma Forklift 1251 Hyster H190XL 19,000 cap 1989 200 83 Diesel 94 ULSD n na na n n n na 1 1 PST010 Tacoma Forklift 1252 Hyster H190XL 19,000 cap 1989 200 288 Diesel 456 ULSD n na na n n n na 1 1 PST010 Tacoma Forklift 1255 CAT V925 95,000 cap 2001 200 101 Diesel 196 ULSD n na na n n n na 1 1 PST010 Tacoma Forklift 10055 CAT V925 95,000 cap 2001 200 79 Diesel 154 ULSD n na na n n n na 1 1 PST010 Tacoma Forklift 10196 Wiggins W360YXL 30,000 cap 2004 200 497 Diesel 1512 ULSD YES na n n n na 1 1 PST010 Tacoma Generator 4101 Taylor 0275DSPS 250KW 1996 0 Diesel 0 ULSD YES na n n n na 1 1 PST010 Tacoma Generator 4501 ONAN 600DYA15R14J 60 KW 1982 50 0 Diesel 0 ULSD n na n n n n na 1 1 PST010 Tacoma Generator 4506 Sears 580.32826 7.5 KW 1982 50 0 Gasoline 0 Gasoline n na n n n n na 1 1 PST010 Tacoma Generator 5486 Honda EM3500SXKI 3546972 1998 50 0 Gasoline 0 Gasoline n na n n n n na 1 1 PST010 Tacoma Generator 549 Honda EM3500SXKI 3546972 1998 50 0 Gasoline 0 Gasoline n na n n n n na 1 1					,			, 1												_
PST010 Tacoma Forklift 1251 Hyster H190XL 19,000 cap 1989 200 83 Diesel 94 ULSD n na na n n n na 1 PST010 Tacoma Forklift 1252 Hyster H190XL 19,000 cap 1989 200 288 Diesel 456 ULSD n na na n n n na 1 PST010 Tacoma Forklift 1255 CAT V925 95,000 cap 2011 200 101 Diesel 196 ULSD n na na n n n na 1 PST010 Tacoma Forklift 10055 CAT V925 95,000 cap 2011 200 79 Diesel 154 ULSD n na na n n n na 1 PST010 Tacoma Forklift 10196 Wiggins W360YXL 30,000 cap 2004 200 497 Diesel 1512 ULSD YES na n n n na 1 PST010 Tacoma Generator 4101 Taylor 0275DSPS 250KW 1996 0 Diesel 0 ULSD YES na n n n na 1 PST010 Tacoma Generator 4501 ONAN 600DYA15R14J 60 KW 1982 50 0 Diesel 0 ULSD N n na na n n n na 1 PST010 Tacoma Generator 5486 Honda EM3500SXKI 3546972 1998 50 0 Gasoline 0 Gasoline n na n n n n na 1 PST010 Tacoma Generator 5486 Honda EM3500SXKI 3546972 1998 50 0 Gasoline 0 Gasoline n na n n n n na 1 1					,			/ 1												_
PST010 Tacoma Forklift 1252 Hyster H190XL 19,000 cap 1989 200 288 Diesel 456 ULSD n na na n n n na 1 PST010 Tacoma Forklift 1255 CAT V925 95,000 cap 2011 200 101 Diesel 196 ULSD n na na n n n na 1 PST010 Tacoma Forklift 10055 CAT V925 95,000 cap 2011 200 79 Diesel 154 ULSD n na na n n n na 1 PST010 Tacoma Forklift 10196 Wiggins W360YXL 30,000 cap 2004 200 497 Diesel 1512 ULSD YES na n n n na 1 PST010 Tacoma Generator 4101 Taylor 0275DSPS 250KW 1996 0 Diesel 0 ULSD YES na n n n na 1 PST010 Tacoma Generator 4501 ONAN 600DYA15R14J 60 KW 1982 50 0 Diesel 0 ULSD N n na na n n n na 1 PST010 Tacoma Generator 4506 Sears 580.32826 7.5 KW 1982 50 0 Gasoline 0 Gasoline n na n n n na 1 PST010 Tacoma Generator 5486 Honda EM3500SXKI 3546972 1998 50 0 Gasoline 0 Gasoline n na n n n n na 1 PST010 Tacoma Generator 5549 Honda EM3000C 2001 50 0 Gasoline 0 Gasoline n na n n n n na 1 1					,			, ,												1
PST010 Tacoma Forklift 1255 CAT V925 95,000 cap 2001 200 101 Diesel 196 ULSD n na na n n n na 1 1 PST010 Tacoma Forklift 10055 CAT V925 95,000 cap 2001 200 79 Diesel 154 ULSD n na na n n n na 1 1 PST010 Tacoma Forklift 10196 Wiggins W360YXL 30,000 cap 2004 200 497 Diesel 1512 ULSD YES na n n n n na 1 1 PST010 Tacoma Generator 4101 Taylor 0275DSPS 250KW 1996 0 Diesel 0 ULSD YES na n n n n na 1 1 PST010 Tacoma Generator 4501 ONAN 600DYA15R14J 60 KW 1982 50 0 Diesel 0 ULSD Na na n n n na 1 1 PST010 Tacoma Generator 4506 Sears 580.32826 7.5 KW 1982 50 0 Gasoline 0 Gasoline n na n n n na 1 1 PST010 Tacoma Generator 5486 Honda EM3500SXKI 3546972 1998 50 0 Gasoline 0 Gasoline n na n n n n na 1 1 PST010 Tacoma Generator 5549 Honda EM3000C					,															
PST010 Tacoma Forklift 10055 CAT V925 95,000 cap 2001 200 79 Diesel 154 ULSD n na n n n na 1 PST010 Tacoma Forklift 10196 Wiggins W360YXL 30,000 cap 2004 200 497 Diesel 1512 ULSD YES na n					,															1
PST010 Tacoma Forklift 10196 Wiggins W360YXL 30,000 cap 2004 200 497 Diesel 1512 ULSD YES na n </td <td>PST010</td> <td>Tacoma</td> <td>Forklift</td> <td>10055</td> <td></td> <td>V925</td> <td></td> <td></td> <td></td> <td>200</td> <td>79</td> <td>Diesel</td> <td>154</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>	PST010	Tacoma	Forklift	10055		V925				200	79	Diesel	154							1
PST010 Tacoma Generator 4501 ONAN 600DYA15R14J 60 KW 1982 50 0 Diesel 0 ULSD n na na n n n na 1 1 PST010 Tacoma Generator 4506 Sears 580.32826 7.5 KW 1982 50 0 Gasoline 0 Gasoline n na n n n na 1 1 PST010 Tacoma Generator 5486 Honda EM3500SXKI 3546972 1998 50 0 Gasoline 0 Gasoline n na n n n n na 1 1 PST010 Tacoma Generator 5549 Honda EM3000C 2001 50 0 Gasoline 0 Gasoline n na n n n n na 1 1	PST010	Tacoma	Forklift	10196	Wiggins	W360YXL	4	30,000 cap	2004	200	497	Diesel	1512	ULSD	YES	na	n	n	na	1
PST010 Tacoma Generator 4506 Sears 580.32826 7.5 KW 1982 50 0 Gasoline 0 Gasoline n na n n n na 1 1 PST010 Tacoma Generator 5486 Honda EM3500SXKI 3546972 1998 50 0 Gasoline 0 Gasoline n na n n n na 1 1 PST010 Tacoma Generator 5549 Honda EM3000C 2001 50 0 Gasoline 0 Gasoline n na n n n n na 1	PST010	Tacoma	Generator	4101	Taylor	0275DSPS		250KW	1996		0	Diesel	0	ULSD	YES	na	n	n	na	1
PST010 Tacoma Generator 4506 Sears 580.32826 7.5 KW 1982 50 0 Gasoline 0 Gasoline n na n n n na 1 1 PST010 Tacoma Generator 5486 Honda EM3500SXKI 3546972 1998 50 0 Gasoline 0 Gasoline n na n n n na 1 1 PST010 Tacoma Generator 5549 Honda EM3000C 2001 50 0 Gasoline 0 Gasoline n na n n n n na 1	PST010	Tacoma	Generator	4501	,	600DYA1	5R14J	60 KW	1982	50	0		0	ULSD	n	na	n	n	na	1
PST010 Tacoma Generator 5549 Honda EM3000C 2001 50 0 Gasoline 0 Gasoline n na n n na 1	PST010	Tacoma	Generator	4506	Sears		-	7.5 KW	1982	50	0	Gasoline	0	Gasoline	n	na	n	n		1
	PST010	Tacoma	Generator	5486	Honda	EM3500S2	XKI	3546972	1998	50	0	Gasoline	0	Gasoline	n	na	n	n	na	1
PST010 Tacoma Generator 5552 Honda 3000 2002 50 0 Gasoline 0 Gasoline n na n n na 1	PST010	Tacoma	Generator	5549	Honda	EM3000C			2001	50	0	Gasoline	0	Gasoline	n	na	n	n	na	1
	PST010	Tacoma	Generator	5552	Honda	3000			2002	50	0	Gasoline	0	Gasoline	n	na	n	n	na	1

													Alt. Fuel						
												Total Fuel	Used					Date	
				Equip								Consume	(Emulsifi	DOC		On-road	Other	Impleme	Number
Terminal			Equip	Manufact	Equip	Engine	Engine	Engine		Annual		d	ed Fuel,	Installed	Year DOC	Engine	Emission	nted	of
ID	Port	Equip Type	ID	urer	Model	Make	Model	Year	HP	Hours	Fuel Type	(gallons)	ULSD)	(y or n)	Installed	(y or n)	Control	(Mo/Yr)	Engines
PST010	Tacoma	Generator	10261	Olympian	97A067A0	06459-S		1997		0	Diesel	0	ULSD	n	na	n	n	na	1
PST010	Tacoma	Generator	10460	ONAN	150DGFA	\-148	150 KW	1999	100	401	Gasoline	1133	Gasoline	YES	na	n	n	na	1
PST010	Tacoma	Generator	10843	Honda	EU6500			2007		1,264	Gasoline	165	Gasoline	n	na	n	n	na	1
PST010	Tacoma	Generator	10891	Honda	EU300cka	ı		2008		0	Gasoline	0	Gasoline	n	na	n	n	na	1
PST010	Tacoma	Generator	11324	Luminite	C-00221			2011		0		0	Gasoline	n	na	n	n	na	1
PST010	Tacoma	Manlift	4583	Simon	MP60		500 LB	1984	60	52		79		n	na	n	n	na	1
PST010	Tacoma	Manlift	5418	Genie	Z601342V		500 LB	1993	60	226		284	Gasoline	n	na	n	n	na	1
PST010	Tacoma	Manlift	5530	GMC	7C7H042	ECH50	600 LB	2000	60	218	Propane	420	1	n	na	n	n	na	1
PST010	Tacoma	Manlift	10341	Genie	GS2632		500/250 L		0	0	Electric	0	Electric	n	na	n	n	na	0
PST010	Tacoma	Manlift	10620	JLG	3394RT		500LB	2006		54	Diesel	30	ULSD	n	na	n	n	na	1
PST010	Tacoma	Manlift	11308	JLG	135OSJ		500LB	2011		146	Diesel	223	ULSD	YES	na	n	n	na	1
PST010	Tacoma	Manlift	11335	Genie	S60		500LB	2004		52	Gasoline	30	Gasoline	n	na	n	n	na	1
PST010	Tacoma	Straddle Carrier	1541	Valmet	40109367		88,200 lbs		185	147	Diesel	649	ULSD	YES	na	n	n	na	2
PST010	Tacoma	Straddle Carrier	1542	Valmet	40109367		88,200 lbs		185	213	Diesel	931	ULSD	YES	na	n	n	na	2
PST010	Tacoma	Straddle Carrier	1543	Valmet	40109367		88,200 lbs		185	275	Diesel	1206	ULSD	YES	na	n	n	na	2
PST010	Tacoma	Straddle Carrier	1544	Valmet	40109367		88,200 lbs		185	267	Diesel	1257	ULSD	YES	na	n	n	na	2
PST010	Tacoma	Straddle Carrier	1545	Valmet	40109367		88,200 lbs		185	332	Diesel	1546	ULSD	YES	na	n	n	na	2
PST010	Tacoma	Straddle Carrier	1546	Valmet	40109367		88,200 lbs		185	276	Diesel	1282	ULSD	YES	na	n	n	na	2
PST010	Tacoma	Straddle Carrier	1547	Valmet	40109367		88,200 lbs		185	372	Diesel	1841	ULSD	YES	na	n	n	na	2 2
PST010	Tacoma	Straddle Carrier	1548	Valmet	40109367	81	88,200 lbs		185	522	Diesel	2634	ULSD	YES	na	n	n DPF	na 2016	
PST010	Tacoma	Straddle Carrier	1553	Kalmar	CSC340		40 LT	2002	185	2,102	Diesel	12505	ULSD	n	na	n	DPF	2010 2010	
PST010 PST010	Tacoma Tacoma	Straddle Carrier Straddle Carrier	1554 1555	Kalmar Kalmar	CSC340 CSC340		40 LT 40 LT	2002 2002	185 185	2,239 2,330	Diesel Diesel	14881 17224	ULSD ULSD	n	na	n	DPF	2010	
PST010	Tacoma	Straddle Carrier	1556	Kalmar	CSC340		40 LT	2002	185	0	Diesel	0	ULSD	n	na	n n	DPF	2010	
PST010	Tacoma	Straddle Carrier	1557	Kalmar	CSC340		40 LT	2002	185	1,192	Diesel	7703	ULSD	n n	na na	n	DPF	2010	
PST010	Tacoma	Straddle Carrier	1558	Kalmar	CSC340		40 LT	2002	185	1,604	Diesel	10177	ULSD	n	na	n	DPF	2010	
PST010	Tacoma	Straddle Carrier	1559	Kalmar	CSC340		40 LT	2002	185	1,567	Diesel	9968	ULSD	n	na	n	DPF	2010	
PST010	Tacoma	Straddle Carrier	1560	Kalmar	CSC340		40 LT	2002	185	1,513	Diesel	10133	ULSD	n	na	n	DPF	2010	
PST010	Tacoma	Straddle Carrier	1561	Kalmar	CSC340		40 LT	2004	185	1,777	Diesel	14691	ULSD	n	na	n	DPF	2010	
PST010	Tacoma	Straddle Carrier	1562	Kalmar	CSC340		40 LT	2004	185	1,838	Diesel	17059	ULSD	n	na	n	DPF	2010	
PST010	Tacoma	Straddle Carrier	1563	Kalmar	CSC340		40 LT	2004	185	2,023	Diesel	13725	ULSD	n	na	n	DPF	2010	
PST010	Tacoma	Straddle Carrier	1564	Kalmar	CSC340		40 LT	2004	185	1,715	Diesel	12694	ULSD	n	na	n	DPF	2010	
PST010	Tacoma	Straddle Carrier	1565	Kalmar	CSC340		40 LT	2004	185	1,749	Diesel	12002	ULSD	n	na	n	DPF	2010	
PST010	Tacoma	Straddle Carrier	1566	Kalmar	CSC340		40 LT	2008	185	1,523	Diesel	14857	ULSD	n	na	n	DPF	2010	
PST010	Tacoma	Straddle Carrier	1567	Kalmar	CSC340		40 LT	2008	185	1,528	Diesel	14651	ULSD	n	na	n	DPF	2010) 2
PST010	Tacoma	Straddle Carrier	1568	Kalmar	CSC340		40 LT	2008	185	1,622	Diesel	14834	ULSD	n	na	n	DPF	2010) 2
PST010	Tacoma	Straddle Carrier	1569	Kalmar	CSC340		40 LT	2008	185	1,347	Diesel	13680	ULSD	n	na	n	DPF	2010	2
PST010	Tacoma	Straddle Carrier	1570	Kalmar	CSC340		40 LT	2008	185	1,516	Diesel	14324	ULSD	n	na	n	DPF	2010	2
PST010	Tacoma	Straddle Carrier	1571	Kalmar	CSC340		40 LT	2008	185	1,472	Diesel	14625	ULSD	n	na	n	DPF	2010	2
PST010	Tacoma	Straddle Carrier	1572	Kalmar	CSC340		40 LT	2008	185	1,505	Diesel	15262	ULSD	n	na	n	DPF	2010	2
PST010	Tacoma	Sweeper	4599	PWRBOSS	SW90HD			1989	50	8	Propane	10	Propane	n	na	n	n	na	1
PST010	Tacoma	Sweeper	5428	Elgin	SERIES F	(PELICAN)	3 Cubic Ya	r 1994	175	82	Diesel	173	ULSD	YES	na	n	n	na	1
PST010	Tacoma	Sweeper	10259	TENNAN	Power Sw	eeper/Rider	20,000 lb	2004	50	219	Diesel	630	ULSD	YES	na	n	n	na	1
PST010	Tacoma	Truck	3284		Water Tar	ık Truck		1984		47	Diesel	na	ULSD	n	na	n	n	na	1
PST010	Tacoma	Truck	3293		Dump Tr	uck		1985		8	Diesel	na	ULSD	n	na	n	n	na	1

													Alt. Fuel						
												Total Fuel	Used					Date	
				Equip								Consume	(Emulsifi	DOC		On-road	Other	Impleme	Number
Terminal			Equip	Manufact	Equip	Engine	Engine	Engine		Annual		d	ed Fuel,	Installed	Year DOC	Engine	Emission	nted	of
ID	Port	Equip Type	ID	urer	Model	Make	Model	Year	HP	Hours	Fuel Type	(gallons)	ULSD)	(y or n)	Installed	(y or n)	Control	(Mo/Yr)	Engines
PST010	Tacoma	Truck	3373		Fuel Truck	ζ		1996		13	Diesel	na	ULSD	n	na	n	n	na	1
PST010	Tacoma	Truck	3408		Fuel Truck	ζ		1999		47	Gasoline	na	Gasoline	n	na	n	n	na	1
PST010	Tacoma	Truck	3420					2001	0	0	Electric	na	Electric	n	na	n	n	na	0
PST010	Tacoma	Truck	10040	Ford	F550 V/1	0 ENG	19500 GV	V 2003	130	1,665	Gasoline	9480	Gasoline	n	na	n	n	na	1
PST010	Tacoma	Truck	10644		Dump Tr	ıck		1996		203	Diesel	na	ULSD	YES	na	n	n	na	1
PST010	Tacoma	Truck	10696		Fuel Truc	ζ.		2000		4	Diesel	na	ULSD	n	na	n	n	na	1
PST010	Tacoma	Truck	10864		Rollback			1999		70	Diesel	na	ULSD	YES	na	n	n	na	1
PST010	Tacoma	Truck	10893		Vactor			1994		53	Diesel	na	ULSD	YES	na	n	n	na	1
PST010	Tacoma	Yard Tractor	3303	Ottowa		ANDEM AX	30000	1987	110	16	Diesel	22	ULSD	YES	na	n	n	na	1
PST010	Tacoma	Yard Tractor	3348	Capacity	TJ5500			1991	110	43	Diesel	43	ULSD	YES	na	n	n	na	1
PST010	Tacoma	Yard Tractor	10066	Ottowa	COMMA	NDO59 4629	170,000 pu	ıl 2003	110	65	Gasoline	131	Gasoline	YES	na	n	n	na	1
PST080	Tacoma	Forklift	1F					2002		660	Propane	na	Propane	n	na	n	n	na	1
PST040	Tacoma	Yard Tractor	139	Ottawa	Command	lo CAT	3208	1998	210	600	Diesel	1080	ULSD	n	na	n	n	na	1
PST040	Tacoma	Yard Tractor	140	Ottawa	Command		3208	1998	210	300	Diesel	588	ULSD	n	na	n	n	na	1
PST040	Tacoma	Yard Tractor	149	Ottawa	Command		3208	1994	210	400	Diesel	920	ULSD	n	na	n	n	na	1
PST040	Tacoma	Yard Tractor	150	Ottawa	Command		3208	1994	210	400	Diesel	872	ULSD	n	na	n	n	na	1
PST040	Tacoma	Yard Tractor	153	Ottawa	Command		3208	1995	210	420	Diesel	938	ULSD	n	na	n	n	na	1
PST040	Tacoma	Yard Tractor	156	Ottawa	Command		3208	1996	210	316	Diesel	760	ULSD	n	na	n	n	na	1
PST040	Tacoma	Yard Tractor	157	Ottawa	Command		3208	1996	210	336	Diesel	676	ULSD	n	na	n	n	na	1
PST040	Tacoma	Yard Tractor	158	Ottawa	Command		3208	1996	210	336	Diesel	564	ULSD	n	na	n	n	na	1
PST040	Tacoma	Yard Tractor	169	Ottawa	Command		3208	1997	210	444	Diesel	1052	ULSD	n	na	n	n	na	1
PST040	Tacoma	Yard Tractor	170	Ottawa	Command		3208	1998	210	372	Diesel	984	ULSD	n	na	n	n	na	1
PST040	Tacoma	Yard Tractor	171	Ottawa	Command		3208	1998	210	324	Diesel	848	ULSD	n	na	n	n	na	1
PST040	Tacoma	Yard Tractor	172	Ottawa	Command		3208	1999	210	444	Diesel	1158	ULSD	n	na	n	n	na	1
PST040	Tacoma	Yard Tractor	173	Ottawa	Command		3208	1999	210	396	Diesel	914	ULSD	n	na	n	n	na	1
PST040	Tacoma	Yard Tractor	174	Ottawa	Command		3208	1999	210	160	Diesel	982	ULSD	n	na	n	n	na	1
PST040	Tacoma	Yard Tractor	175	Ottawa	Command		3208	1999	210		Diesel	na	ULSD	n	na	n	n	na	1
PST040 PST040	Tacoma	Yard Tractor	178 179	Ottawa	Command		3208	2000	210	660	Diesel	1186	ULSD	n	na	n	n	na	1
	Tacoma	Yard Tractor		Ottawa	Command		3208	1998	210	576	Diesel	986	ULSD	n	na	n	n	na	1
PST040 PST040	Tacoma	Yard Tractor	301	Ottawa	Command		C8.3	1998	210	168	Diesel	642	ULSD	n	na	n	n	na	1
PST040 PST040	Tacoma	Yard Tractor Yard Tractor	305 306	Ottawa	Command		C8.3 C8.3	1998 1998	210 210	372 328	Diesel	1040 1190	ULSD ULSD	n	na	n	n	na	1 1
PST040 PST040	Tacoma	Yard Tractor	307	Ottawa	Command		C8.3	1998	210	388	Diesel	920	ULSD	n	na	n	n	na	1
PST040 PST040	Tacoma Tacoma	Yard Tractor	309	Ottawa Ottawa	Command		C8.3	1998	210	300 476	Diesel Diesel	980	ULSD	n	na	n	n	na	1
PST040	Tacoma	Yard Tractor	311	Ottawa	Command		C8.3	1998	210	480	Diesel	924	ULSD	n	na	n	n	na	1
PST040	Tacoma	Yard Tractor	312	Ottawa	Command		C8.3	1999	210	408	Diesel	964	ULSD	n	na	n	n	na	1
PST040	Tacoma	Yard Tractor	315	Ottawa	Command		C8.3	1998	210	472	Diesel	916	ULSD	n n	na	n n	n n	na na	1
PST040	Tacoma	Yard Tractor	318	Ottawa	Command		C8.3	1999	210	376	Diesel	1236	ULSD	n	na	n	n	na	1
PST040	Tacoma	Yard Tractor	319	Ottawa	Command		C8.3	1999	210	640	Diesel	908	ULSD	n	na	n	n	na	1
PST040	Tacoma	Yard Tractor	322	Ottawa	Command		C8.3	2000	210	444	Diesel	1044	ULSD	n	na na	n	n	na	1
PST040	Tacoma	Yard Tractor	324	Ottawa	Command		C8.3	2000	210	496	Diesel	1216	ULSD	n	na	n	n	na	1
PST040	Tacoma	Yard Tractor	325	Ottawa	Command		QSB6.7	2008	210	1,032	Diesel	1748	ULSD	n	na	n	n	na	1
PST040	Tacoma	Yard Tractor	326	Ottawa	Command		QSB6.7 QSB6.7	2008	220	717	Diesel	2012	ULSD	n	na	n	n	na	1
PST040	Tacoma	Yard Tractor	328	Ottawa	Command		QSB6.7 QSB6.7	2009	220	453	Diesel	2012	ULSD	n	na	n	n	na	1
PST040	Tacoma	Yard Tractor	329	Ottawa	Command		QSB6.7 QSB6.7	2009	220	785	Diesel	1940	ULSD	n	na	n	n	na	1
101070	1 acoma	raid riactor	347	Juawa	Command	000111	ZDD0.7	2007		, 03	10001	1770	CLOD	11	1144		11	114	1

													Alt. Fuel						
												Total Fuel	Used					Date	
				Equip								Consume	(Emulsifi	DOC		On-road	Other	Impleme	Number
Terminal			Equip	Manufact	Equip	Engine	Engine	Engine		Annual		d	ed Fuel,	Installed	Year DOC	Engine	Emission	nted	of
ID	Port	Equip Type	ID	urer	Model	Make	Model	Year	HP	Hours	Fuel Type	(gallons)	ULSD)	(y or n)	Installed	(y or n)	Control	(Mo/Yr)	Engines
PST060	Tacoma	Forklift	721	Mitsubishi	F15C-500	69 Mitsubishi	N/A	1999	130	54	Diesel	na	ULSD	n	na	n	n	na	1
PST060	Tacoma	Forklift	722	Hyster	D019D01	7(Perkins	N/A	1964	130	30	Diesel	na	ULSD	n	na	n	n	na	1
PST060	Tacoma	Reach Stacker	201	Kalmar	DRD450-	-8(Volvo	TWD1231	X1998	375	946	Diesel	na	ULSD	n	na	n	DPF	na	1
PST060	Tacoma	Reach Stacker	202	Kalmar	DRD450-	-8(Volvo	TWD1231	X1998	375	615	Diesel	na	ULSD	n	na	n	n	na	1
PST060	Tacoma	Reach Stacker	203	Kalmar	DRD450-	-8(Volvo	TWD1231	X1998	375	679	Diesel	na	ULSD	n	na	n	n	na	1
PST060	Tacoma	Reach Stacker	204	Sisu	RSD4540	-5 Cummins	M11	1999	330	1,149	Diesel	na	ULSD	n	na	n	DPF	na	1
PST060	Tacoma	Reach Stacker	205	Kalmar		-S Cummins	M11	1999	330	1,321	Diesel	na	ULSD	n	na	n	DPF	na	1
PST060	Tacoma	Reach Stacker	206	Kalmar		-8(Cummins	M11	2001	375	815	Diesel	na	ULSD	n	na	n	DPF	na	1
PST060	Tacoma	Side Handler	301	Kalmar	DCD80-4		TWD7311		228	171	Diesel	na	ULSD	n	na	n	n	na	1
PST060	Tacoma	Top Handler	207	Hyster		ClCummins	QSM11	2005	365	1,502	Diesel	na	ULSD	n	na	n	DPF	na	1
PST060	Tacoma	Top Handler	208	Hyster		ClCummins	QSM11	2010	365	474	Diesel	na	ULSD	n	na	n	n	na	1
PST060	Tacoma	Top Handler	209	Hyster		ClCummins	QSM11	2007	365	1,787	Diesel	na	ULSD	n	na	n	DPF	na	1
PST060	Tacoma	Yard Tractor	501	Ottawa		do Cummins	6BT5.9	1998	174	452	Diesel	na	ULSD	YES	na	n	n	na	1
PST060	Tacoma	Yard Tractor	502	Ottawa		do Cummins	6BT5.9	1998	174	680	Diesel	na	ULSD	YES	na	n	n	na	1
PST060	Tacoma	Yard Tractor	503	Ottawa		do Cummins	6BT5.9	1998	174	457	Diesel	na	ULSD	YES	na	n	n	na	1
PST060	Tacoma	Yard Tractor	504	Ottawa		do Cummins	6BT5.9	1998	174	739	Diesel	na	ULSD	YES	na	n	n	na	1
PST060	Tacoma	Yard Tractor	505	Ottawa		do Cummins	6BT5.9	1998	174	777	Diesel	na	ULSD	YES	na	n	n	na	1
PST060	Tacoma	Yard Tractor	506	Ottawa		do Cummins	6BT5.9	1998	174	723	Diesel	na	ULSD	YES	na	n	n	na	1
PST060	Tacoma	Yard Tractor	507	Ottawa		do Cummins	6BT5.9	1998	174	770	Diesel	na	ULSD	YES	na	n	n	na	1
PST060	Tacoma	Yard Tractor	508	Ottawa		do Cummins	6BT5.9	1998	174	630	Diesel	na	ULSD	YES	na	n	n	na	1
PST060	Tacoma	Yard Tractor	509	Ottawa		do Cummins	6BT5.9	1998	174	497	Diesel	na	ULSD	YES	na	n	n	na	1
PST060	Tacoma	Yard Tractor	510	Ottawa		do Cummins	6BT5.9	1998	174	1,049	Diesel	na	ULSD	YES	na	n	n	na	1
PST060	Tacoma	Yard Tractor	511	Ottawa		do Cummins	6BT5.9	1998	174	754	Diesel	na	ULSD	YES	na	n	n	na	1
PST060	Tacoma	Yard Tractor	512	Ottawa		do Cummins	6BT5.9	1998	174	1,139	Diesel	na	ULSD	YES	na	n	n	na	1
PST060	Tacoma	Yard Tractor	513	Ottawa		do Cummins	6BT5.9	1998	174	925	Diesel	na	ULSD	YES	na	n	n	na	1
PST060	Tacoma	Yard Tractor	514	Ottawa		do Cummins	6BT5.9	1998	174	2,550	Diesel	na	ULSD	YES	na	n	n	na	1
PST060	Tacoma	Yard Tractor	516	Ottawa		do Cummins	6BT5.9	1998	174	466	Diesel	na	ULSD	YES	na	n	n	na	1
PST060 PST060	Tacoma	Yard Tractor	517	Ottawa		do Cummins	6BT5.9 6BT5.9	1998	174	389	Diesel	na	ULSD ULSD	YES YES	na	n	n	na	1
PST060 PST060	Tacoma	Yard Tractor	518	Ottawa		do Cummins		1998	174	1,961	Diesel	na			na	n	n	na	1
PST060 PST060	Tacoma	Yard Tractor Yard Tractor	519	Ottawa		do Cummins do Cummins	6BT5.9 6BT5.9	1998 1998	174 174	996 979	Diesel	na	ULSD ULSD	YES YES	na	n	n	na	1
PST060 PST060	Tacoma Tacoma	Yard Tractor Yard Tractor	520 521	Ottawa Ottawa		do Cummins	6BT 5.9	1998	174	979	Diesel Diesel	na	ULSD	YES	na na	n	n	na	1
PST060	Tacoma	Yard Tractor	522	Ottawa		do Cummins	6BT 5.9	1998	174	646	Diesel	na	ULSD	YES		n	n	na	1
PST060 PST060	Тасота	Yard Tractor	523	Ottawa		do Cummins	6BT 5.9	1998	174	705	Diesel	na na	ULSD	YES	na na	n n	n	na na	1
PST060	Tacoma	Yard Tractor	524	Ottawa		do Cummins	6BT 5.9	1998	174	991	Diesel	na	ULSD	YES	na	n	n n	na	1
PST060	Tacoma	Yard Tractor	525	Ottawa		do Cummins	6BT 5.9	1998	174	569	Diesel	na	ULSD	YES	na	n	n	na	1
PST060	Tacoma	Yard Tractor	526	Ottawa		do Cummins	6BT 5.9	1998	174	946	Diesel	na	ULSD	YES	na	n	n	na	1
PST060	Tacoma	Yard Tractor	527	Ottawa		do Cummins	6BT5.9	1998	174	1,311	Diesel	na	ULSD	YES	na	n	n	na	1
PST060	Tacoma	Yard Tractor	528	Ottawa		do Cummins	6BT 5.9	1998	174	1,138	Diesel	na	ULSD	YES	na	n	n	na	1
PST060	Tacoma	Yard Tractor	529	Ottawa		do Cummins	6BT5.9	1998	174	1,404	Diesel	na	ULSD	YES	na		n	na	1
PST060	Tacoma	Yard Tractor	531	Ottawa		do Cummins	QSB5.9	2005	175	1,303	Diesel	na	ULSD	n n	na	n n	DPF	na	1
PST060	Tacoma	Yard Tractor	532	Ottawa		do Cummins	QSB5.9 QSB5.9	2005	175	1,446	Diesel	na	ULSD	n	na	n	DPF	na	1
PST060	Tacoma	Yard Tractor	533	Ottawa		do Cummins	QSB5.9 QSB5.9	2005	175	1,339	Diesel	na	ULSD	n	na	n	DPF	na	1
PST060	Tacoma	Yard Tractor	534	Ottawa		do Cummins	QSB5.9 QSB5.9	2005	175	1,029	Diesel	na	ULSD	n	na	n	DPF	na	1
PST060	Tacoma	Yard Tractor	535	Ottawa		do Cummins	QSB5.9 QSB5.9	2003	175	1,876	Diesel	na	ULSD	n	na	n	DPF	na	1
101000	1 acoma	Tard Tractor	333	Juawa	Command	ao cumminis	Q5D5.7	2000	113	1,070	1710301	1141	CLOD		1144	11	~11	114	1

													Alt. Fuel						
												Total Fuel	Used					Date	
				Equip								Consume	(Emulsifi	DOC		On-road	Other	Impleme	Number
Terminal			Equip	Manufact	Equip	Engine	Engine	Engine		Annual		d	ed Fuel,	Installed	Year DOC	Engine	Emission	nted	of
ID	Port	Equip Type	ID	urer	Model	Make	Model	Year	HP	Hours	Fuel Type	(gallons)	ULSD)	(y or n)	Installed	(y or n)	Control	(Mo/Yr)	Engines
PST060	Tacoma	Yard Tractor	536	Ottawa	Commande	o Cummins	QSB5.9	2006	175	1,682	Diesel	na	ULSD	n	na	n	DPF	na	1
PST060	Tacoma	Yard Tractor	537	Ottawa	Commande	o Cummins	QSB5.9	2006	175	1,172	Diesel	na	ULSD	n	na	n	DPF	na	1
PST060	Tacoma	Yard Tractor	538	Ottawa	Commande	o Cummins	QSB5.9	2006	175	1,727	Diesel	na	ULSD	n	na	n	DPF	na	1
PST060	Tacoma	Yard Tractor	539	Ottawa	Commande	o Cummins	QSB5.9	2006	175	1,220	Diesel	na	ULSD	n	na	n	DPF	na	1
PST060	Tacoma	Yard Tractor	540	Ottawa	Command	o Cummins	QSB5.9	2006	175	2,259	Diesel	na	ULSD	n	na	n	DPF	na	1
PST060	Tacoma	Yard Tractor	541	Ottawa		o Cummins	ISB02	2006	200	520	Diesel	na	ULSD	n	na	YES	n	na	1
PST060	Tacoma	Yard Tractor	542	Ottawa		c Cummins	ISB07	2008	200	1,288	Diesel	na	ULSD	n	na	YES	n	na	1
PST060	Tacoma	Yard Tractor	543	Ottawa		c Cummins	ISB07	2008	200	2,049	Diesel	na	ULSD	n	na	YES	n	na	1
PST060	Tacoma	Yard Tractor	544	Ottawa		c Cummins	ISB07	2008	200	1,712	Diesel	na	ULSD	n	na	YES	n	na	1
PST060	Tacoma	Yard Tractor	545	Ottawa		c Cummins	ISB07	2008	200	1,188	Diesel	na	ULSD	n	na	YES	n	na	1
PST060	Tacoma	Yard Tractor	546	Ottawa		c Cummins	ISB07	2008	200	1,729	Diesel	na	ULSD	n	na	YES	n	na	1
PST060	Tacoma	Yard Tractor	547	Ottawa		c Cummins	ISB07	2008	200	1,542	Diesel	na	ULSD	n	na	YES	n	na	1
PST060	Tacoma	Yard Tractor	548	Ottawa	YT 50	Cummins	6CT8.3	1998	215	149	Diesel	na	ULSD	n	na	n	n	na	1
PST060	Tacoma	Yard Tractor	549	Ottawa	YT 50	Cummins	6CT8.3	1998	215	392	Diesel	na	ULSD	n	na	n	n	na	1
PST060	Tacoma	Yard Tractor	550	Ottawa	YT 50	Cummins	6CT8.3	1998	215	229	Diesel	na	ULSD	n	na	n	n	na	1
PST060	Tacoma	Yard Tractor	551	Ottawa	YT 50	Cummins	6CT8.3	1998	215	263	Diesel	na	ULSD	n	na	n	n	na	1
PST060	Tacoma	Yard Tractor	552	Ottawa	YT 50	Cummins	6CT8.3	1999	215	292	Diesel	na	ULSD	n	na	n	n	na	1
PST060	Tacoma	Yard Tractor	553	Ottawa	YT 50	Cummins	6CT8.3	1999	215	350	Diesel	na	ULSD	n	na	n	n	na	1
PST060	Tacoma	Yard Tractor	554	Ottawa	YT 50	Cummins	6CT8.3	1999	215	360	Diesel	na	ULSD	n	na	n	n	na	1
PST060	Tacoma	Yard Tractor	555	Ottawa	YT 50	Cummins	6CT8.3	1999	215	427	Diesel	na	ULSD	n	na	n	n	na	1
SIG Yard SIG Yard	BNSF BNSF	Loader		Titan-Taylo Titan-Taylo				1997 1997	355 355		Diesel	na	ULSD ULSD	n	na	n	n	na	1 1
SIG Yard	BNSF	Loader Loader		Titan-Taylo				2003	355 355		Diesel Diesel	na	ULSD	n	na	n	n	na	1
SIG Yard	BNSF	Loader		Titan-Taylo				2005	355		Diesel	na na	ULSD	n	na	n	n	na	1
SIG Yard	BNSF	Side Handler		Taylor	950			1993	250		Diesel	na	ULSD	n	na	n	n	na	1
SIG Yard	BNSF	Side Handler		Taylor	950			1991	250		Diesel	na	ULSD	n n	na na	n n	n n	na na	1
SIG Yard	BNSF	Side Handler		Taylor	950			1993	250		Diesel	na	ULSD	n	na	n	n	na	1
SIG Yard	BNSF	Side Handler		Taylor	950			1993	250		Diesel	na	ULSD	n	na	n	n	na	1
SIG Yard	BNSF	Side Handler		Taylor	950			2000	250		Diesel	na	ULSD	n	na	n	n	na	1
SIG Yard	BNSF	Yard Tractor		Ottawa				2008	155		Diesel	na	ULSD	n	na	n	n	na	1
SIG Yard	BNSF	Yard Tractor		Ottawa				2008	155		Diesel	na	ULSD	n	na	n	n	na	1
SIG Yard	BNSF	Yard Tractor		Ottawa				2008	155		Diesel	na	ULSD	n	na	n	n	na	1
SIG Yard	BNSF	Yard Tractor		Ottawa				2004	155		Diesel	na	ULSD	n	na	n	n	na	1
PSO020	Olympia	Log Loader	#118	Linkbelt	LS2800Q	Isuzu	6 cyl	2000	120		Diesel	na	ULSD	n	na	n	n	na	1
PSO020	Olympia	Log Loader	#124	Doosan Lo	§ 225S	Doosan	6 cyl	2007	150		Diesel	na	ULSD	n	na	n	n	na	1
PSO020	Olympia	Log Loader	#125	Linkbelt	240LXTL	Isuzu	6 cyl	2007	197		Diesel	na	ULSD	n	na	n	n	na	1
PSO020	Olympia	Log Loader	#130	Doosan Lo	¿DX300LL0	CDoosan	6 cyl	2011	197		Diesel	na	ULSD	n	na	n	n	na	1
PSO020	Olympia	Log Loader	#131	Linkbelt	240LXTL	Isuzu	6 cyl	2011	197		Diesel	na	ULSD	n	na	n	n	na	1
PSO020	Olympia	Log Stacker	#511	Wagner Sta	uL90	Cummins	6 cyl		440		Diesel	na	ULSD	n	na	n	n	na	1
PSO020	Olympia	Log Stacker	#512	Wagner Sta	uL90	Cummins	6 cyl		440		Diesel	na	ULSD	n	na	n	n	na	1
PSO020	Olympia	Log Stacker	#514	Cat Log Sta	a 988-B	Caterpillar	6 cyl		375		Diesel	na	ULSD	n	na	n	n	na	1
PSO020	Olympia	Log Stacker	#517	Cat Log Sta	a 988-B	Caterpillar	6 cyl		375		Diesel	na	ULSD	n	na	n	n	na	1
PSO020	Olympia	Log Stacker	#518	Wagner Sta	uL80	Cummins	6 cyl		415		Diesel	na	ULSD	n	na	n	n	na	1
PSO020	Olympia	Log Stacker	#520	Wagner Sta		Cummins	,		415		Diesel	na	ULSD	n	na	n	n	na	1
PSO020	Olympia	Log Stacker	#522	Cat Log Sta	a 988-B	Caterpillar	6 cyl	1987	375		Diesel	na	ULSD	n	na	n	n	na	1

													Alt. Fuel						
												Total Fuel						Date	
7				Equip	.	.							(Emulsifi		W DOG	On-road		Impleme	
Terminal		TD 1 707	Equip	Manufact		Engine	Engine	Engine	TTD	Annual	E 175	d (")	ed Fuel,		Year DOC		Emission		of E
PSO020	Port Olympia	Equip Type Backhoe	#603	Case Backh	Model	Make Cummins	Model	Year 1991	HP 65	Hours	Fuel Type Diesel	na	ULSD)	(y or n)	Installed	(y or n)	Control	(Mo/Yr)	Engines
PSO020 PSO020		Skid Steer Loader		Case Backin		Caterpillar	,	1991	170		Diesel		ULSD		na	n	n	na	1
PSO020	Olympia	Skid Steer Loader		Komatsu W		Cummins	,		192		Diesel	na	ULSD	n	na	n	n	na	1
PSO020 PSO020	Olympia Olympia		#611	Cat Skid Sto		Caterpillar	,	2007	51		Diesel	na na	ULSD	n n	na	n	n	na	1
PSO020	Olympia		#853	Ford	L8000	Cummins	ž .	1995	210		Diesel	na	ULSD	n	na	n n	n n	na	1
PSO020	Olympia	Log Stacker	15	Letourneau		Cummins	,	2000	475	500	Diesel		ULSD		na			na	1
PSO030	Olympia	Log Stacker	16	Letourneau		Cummins	,	2000	475	1000	Diesel	na na	ULSD	n n	na na	n n	n n	na na	1
PSO030	Olympia	Log Stacker	21	Letourneau		Caterpillar	,	1994	425	500	Diesel	na	ULSD	n	na	n	n	na	1
PSO030	Olympia	Log Stacker	22	Letourneau		Caterpillar		1995	425	1800	Diesel	na	ULSD	n	na	n	n	na	1
PSO030	Olympia	Log Stacker	23	Letourneau		Caterpillar		1996	425	1500	Diesel	na	ULSD	n	na	n	n	na	1
PSO030	Olympia	Log Stacker	24	Letourneau		Detriot	6 cyl	2007	425	1800	Diesel	na	ULSD	n	na	n	n	na	1
PSO030	Olympia	Log Stacker	25	Letourneau		Detriot	6 cyl	2000	425	1500	Diesel	na	ULSD	n	na	n	n	na	1
PSO030	Olympia	Log Stacker	19	Caterpillar		Caterpillar	,	2007	500	1200	Diesel	na	ULSD	n	na	n	n	na	1
PSO030	Olympia	Log Stacker	20	Caterpillar		Caterpillar	,	2011	500	2000	Diesel	na	ULSD	n	na	n	n	na	1
PSO030	Olympia	Log Handler	53	1	PC300-6	Cummins	* .	2000	200	500	Diesel	na	ULSD	n	na	n	n	na	1
PSO030	Olympia	Log Handler	54	Komatsu	PC300-6	Cummins	,	2001	200	800	Diesel	na	ULSD	n	na	n	n	na	1
PSO030	Olympia	Log Handler	55	Komatsu	PC300-6	Cummins	,	2001	200	1500	Diesel	na	ULSD	n	na	n	n	na	1
PSO030	Olympia	Log Handler	132	Komatsu	PC300-6		6 cvl	2000	200	1800	Diesel	na	ULSD	n	na	n	n	na	1
PSO030	Olympia	Log Handler	134	Komatsu	PC300-6		6 cvl	2001	200	1800	Diesel	na	ULSD	n	na	n	n	na	1
PSO030	Olympia	Log Handler	919	Komatsu	PC300-6		6 cvl	2001	200	100	Diesel	na	ULSD	n	na	n	n	na	1
PSO030	Olympia	Skid Steer Loader	13	Volvo	120	Volvo	4 cvl	1998	200	300	Diesel	na	ULSD	n	na	n	n	na	1
PSO030	Olympia	Skid Steer Loader		Bobcat		Kubota	4 cvl	1994	100	75	Diesel	na	ULSD	n	na	n	n	na	1
PSO030	Olympia	Forklift		Hyster		GM	4 cyl		120	250	Propane	na	ULSD	n	na	n	n	na	1
PSO030	Olympia	Crane		Drott		Perkins	4 cyl		100	20	Diesel	na	ULSD	n	na	n	n	na	1
PSO030	Olympia	Truck		Kenworth		Cummins	6 cyl	1995	460	50	Diesel	na	ULSD	n	na	YES	n	na	1
PSO030	Olympia	Truck		Kenworth		Cummins	6 cyl	1991	400	250	Diesel	na	ULSD	n	na	YES	n	na	1

APPENDIX B - SUPPORTING DATA

HEAVY-DUTY VEHICLE DATA

MEMORANDUM April 20, 2012

To: Ron Stuart, Port of Tacoma

From: Kelly McGourty

Program Manager

Subject: 2011 Puget Sound Emissions Inventory Update - On-Road Heavy-Duty

Diesel Vehicle Emissions

This memo transmits the methodology and estimated on-road emissions from port-related heavy duty diesel vehicle traffic in the Puget Sound region for calendar year 2011. This documentation is provided as part of the 2011 Puget Sound Emissions Inventory Update.

BACKGROUND AND METHODOLOGY

PSRC participated with the "HDV LDV Technical Work Group" for the 2011 Puget Sound Emissions Inventory Update since November 2011. Related to on-road emissions, the group discussed the appropriate models to be used, the methodology for estimating port-related vehicle miles traveled (VMT), and the pollutants to be analyzed.

The methodology is similar to that used for the 2005 emissions inventory, with two exceptions: 1) the estimation of port-related VMT and 2) the potential use of the Environmental Protection Agency's new Motor Vehicle Emission Simulator (MOVES).

Vehicle Miles Traveled (VMT)

In 2005, PSRC utilized our current travel demand model at that time to estimate on-road heavy duty diesel VMT related to port traffic. This methodology is described in the August 25, 2006 memo, "Estimating Regional Heavy Truck VMT for 2000 associated with Port traffic." A growth factor was used to forecast calendar year 2000 VMT to 2005 for the emissions inventory. Also, since certain port-related trips were considered to be underrepresented in the model, an additional adjustment was applied as described in the above referenced memo.

Since that time, PSRC has made improvements to our travel demand model, with specific improvements made based on information provided by the Ports on special generators. As such, for the 2011 update there was no need to make any additional adjustments to the model output. Since 2010 is an existing model analysis year, and since it was determined that there would be little to no differences in port-related VMT between 2010 and 2011, the decision was made to use the 2010 analysis year as a surrogate for the 2011 emissions inventory data. This decision was discussed with the Technical Workgroup.

Emissions Models

Per discussions with the Technical Workgroup, PSRC and the Washington State Department of Ecology were to prepare emission factors using both the existing EPA software, MOBILE6.2, as well as the new MOVES model. The MOVES model is significantly different from MOBILE6.2, designed around a database and graphical user interface, and containing the most up to date estimation of vehicle emissions. The comparison of emissions between the two models varies depending on the pollutant, with MOVES estimating higher emissions for some pollutants but lower for others compared to MOBILE6.2. However, based on preliminary research, the trend between years by pollutant are similar between the two models. Given the complexity of MOVES, EPA has granted an additional one year extension before the new model must be used for transportation conformity analyses.

Both Ecology and PSRC are continuing to transition to MOVES, which is a very complicated and time consuming process. As such, we are not yet prepared to perform emissions estimations using MOVES at this time. For the 2011 emissions inventory, MOBILE6.2 was used to estimate on-road emissions from port-related traffic. In addition, emission factors were prepared and forwarded to Starcrest Consulting Group for their use in estimating on-port emissions. We are committed, however, to continue to work towards the use of MOVES. By the time of the next update to the emissions inventory, we expect to be fully transitioned to the MOVES model. In addition, we will continue to work towards accelerating this schedule to the extent possible; if we are able to do so in the next several months, we will provide estimated emissions for the 2011 emissions inventory using MOVES, to be included as an appendix to the main report.

Modeling Parameters

Starcrest Consulting Group provided updated vehicle distribution data for the Ports of Seattle, Tacoma and Olympia, representing Class 8 heavy duty diesel vehicles. In consultation with Ecology, the variation between the data representing just the Ports of Seattle and Tacoma (within the Puget Sound region) and the data for all three ports was considered to be minimal and would not produce any significant differences in emissions output. Also, the majority of the truck trips were to and from the Seattle and Tacoma ports. Therefore, the all ports distribution was used for this analysis.

Using MOBILE6.2, the following pollutants were analyzed for Class 8 heavy duty vehicles:

- carbon monoxide (CO)
- nitrogen oxides (NOx)
- volatile organic compounds (VOC)
- carbon dioxide (CO₂)
- sulfur dioxide (SO₂)
- fine particulates (PM_{2.5}) and coarse particulates (_{PM10})
 - brake wear particulate (Brake)
 - tire wear particulate (Tire)
 - diesel particulate matter
 - elemental carbon portion of diesel exhaust particulate (ECARBON)
 - organic carbon portion of diesel exhaust particulate (OCARBON)
 - sulfate portion of exhaust particulate (SO4)

Emission factors for CO, NOx and VOCs were created for speeds between 2.5 and 65 miles per hour. MOBILE6.2 produces emission factors for CO₂, SO₂ and particulate matter that are the same regardless of speed. These emission factors were then applied to the output from PSRC's travel demand model for on-road port-related traffic. The results of the analysis are provided in the tables below.

TABLE 1: ESTIMATED 2011 DAILY ON-ROAD PORT-RELATED TRUCK VMT

DAILY VMT

Location	Everett	Seattle	Tacoma
Distribution Centers	1,577.18	16,198.1	8,520.2
I-5 South	7,317.41	7,823.6	7,570.3
I-90	3,617.75	4,875.8	8,543.4
I-5 North	1,265.10	4,496.4	8,724.1
other externals	682.39	854.3	877.2
Rest of King County	12,955.98	97,218.8	88,182.5
Snohomish County	1,723.24	45,829.5	24,934.9
Rest of Pierce County	4,528.55	54,359.5	13,275.6
Kitsap County	1,330.16	22,909.6	13,116.9
Rail yards	0.00	0.00	0.00
Total VMT	34,997.76	254,565.50	173,745.10
TOTAL Daily VMT	463,308.36		

Table 2: Estimated 2011 Daily On-Road Port-Related Diesel Truck Emissions

DAILY EMISSIONS

EMISSIONS				2011	2011
				2011	2011
D 11	.	01	T	Emissions	Emissions
Pollutant	Everett	Seattle	Tacoma	(grams/day)	(tons/day)
CO	81,473.60	727,107.64	424,715.31	1,233,296.55	1.36
VOC	18,509.87	158,686.24	95,801.08	272,997.19	0.30
NOx	351,110.21	2,445,764.76	1,753,167.73	4,550,042.69	5.02
CO_2	56,073,131.09	407,862,759.51	278,372,977.22	742,308,867.82	818.26
SO_2	523.22	3,805.75	2,597.49	6,926.46	0.01
TOTAL PM ₁₀	8,261.89	60,095.02	41,015.83	109,372.73	0.12
Brake	437.47	3,182.07	2,171.81	5,791.35	0.01
Tire	1,259.92	9,164.36	6,254.82	16,679.10	0.02
ECARBON	4,689.35	34,109.23	23,280.10	62,078.68	0.07
OCARBON	1,837.38	13,364.69	9,121.62	24,323.69	0.03
SO ₄	37.76	274.68	187.47	499.91	0.00
TOTAL PM _{2.5}	6,543.85	47,598.40	32,486.68	86,628.92	0.10
Brake	185.49	1,349.20	920.85	2,455.53	0.00
Tire	314.98	2,291.09	1,563.71	4,169.77	0.00
ECARBON	4,315.22	31,387.92	21,422.77	57,125.91	0.06
OCARBON	1,690.39	12,295.51	8,391.89	22,377.79	0.02
SO ₄	37.76	274.68	187.47	499.91	0.00

Table 3: Estimated 2011 Annual On-Road Port-Related Diesel Truck Emissions

ANNUAL EMISSIONS

Pollutant	2011 Emissions (tons)
CO	496.04
VOC	109.83
NOx	1,830.66
CO_2	298,663.08
SO_2	2.79
TOTAL PM ₁₀	44.00
TOTAL PM _{2.5}	34.82

Some key differences to note between the 2005 and 2011 analyses include the updated VMT estimation for port-related traffic, as well as the updated port-related vehicle distribution data provided by Starcrest Consulting Group. These have resulted in greater emissions estimated in 2011 for all pollutants with the exception of SO₂.

Please contact Kelly McGourty at (206)971-3601 or *kmcgourty@psrc.org* if you have any questions or would like additional information regarding this analysis.

cc: Sally Otterson, Ecology Joseph Ray, Starcrest Consulting Group

Puget Sound Emissions Inventory On-Terminal HDV Data and Driving Emissions, tpy

	Avg.	Driving	Driving	Driving					Driving	Emissio	ons, tpy				
Terminal	Speed	Per Trip	Per Trip	All Trips	NO_x	VOC	CO	SO_2	PM_{10}	$PM_{2.5}$	DPM	CO_2	N_2O	$\mathbf{CH_4}$	CO_2E
ID	(mph)	(hours)	(miles)	(miles)											
PSS070	15	0.07	1.00	301,444	4.12	0.31	1.65	0.005	0.062	0.057	0.062	532	0.0016	0.0017	533
PSS050	15	0.12	1.75	1,126,416	15.38	1.17	6.15	0.019	0.233	0.214	0.233	1,989	0.0060	0.0063	1,991
PSS060	15	0.13	1.90	168,562	2.30	0.18	0.92	0.003	0.035	0.032	0.035	298	0.0009	0.0009	298
PSS080	15	0.07	1.00	320,268	4.37	0.33	1.75	0.005	0.066	0.061	0.066	566	0.0017	0.0018	566
PSS030	10	0.05	0.50	19,240	0.30	0.02	0.15	0.000	0.004	0.004	0.004	34	0.0001	0.0001	34
PSS020A	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
PSS020B	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
PST070	15	0.02	0.28	25,704	0.35	0.03	0.14	0.000	0.005	0.005	0.005	45	0.0001	0.0001	45
PST030	10	0.10	0.95	51,937	0.81	0.07	0.39	0.001	0.011	0.010	0.011	92	0.0003	0.0003	92
PST050	15	0.07	1.00	144,300	1.97	0.15	0.79	0.002	0.030	0.027	0.030	255	0.0008	0.0008	255
PST020	15	0.04	0.66	137,280	1.87	0.14	0.75	0.002	0.028	0.026	0.028	243	0.0007	0.0008	243
PST040	15	0.05	0.68	63,158	0.86	0.07	0.35	0.001	0.013	0.012	0.013	112	0.0003	0.0004	112
PST060	15	0.10	1.53	194,266	2.65	0.20	1.06	0.003	0.040	0.037	0.040	343	0.0010	0.0011	343
PST100	25	0.04	1.04	78,000	0.90	0.06	0.25	0.001	0.016	0.015	0.016	138	0.0004	0.0004	138
PST010	8	0.03	0.25	1,795	0.03	0.00	0.02	0.000	0.000	0.000	0.000	3	0.0000	0.0000	3
PST090	15	0.03	0.50	2,031	0.03	0.00	0.01	0.000	0.000	0.000	0.000	4	0.0000	0.0000	4
PST120	5	0.06	0.30	4,500	0.08	0.01	0.05	0.000	0.001	0.001	0.001	8	0.0000	0.0000	8
PST110	10	0.02	0.24	2,430	0.04	0.00	0.02	0.000	0.001	0.000	0.001	4	0.0000	0.0000	4
PST130	5	0.08	0.40	15,840	0.29	0.03	0.17	0.000	0.003	0.003	0.003	28	0.0001	0.0001	28
PSA010	5	0.05	0.25	1,999	0.04	0.00	0.02	0.000	0.000	0.000	0.000	4	0.0000	0.0000	4
PSE010	8	0.13	1.00	4,025	0.07	0.01	0.03	0.000	0.001	0.001	0.001	7	0.0000	0.0000	7
PSO010	5	0.05	0.25	1,902	0.04	0.00	0.02	0.000	0.000	0.000	0.000	3	0.0000	0.0000	3
BNSF SIG	15	0.07	1.00	217,264	2.97	0.23	1.19	0.004	0.045	0.041	0.045	384	0.0011	0.0012	384
UP Argo	15	0.07	1.00	193,333	2.64	0.20	1.06	0.003	0.040	0.037	0.040	342	0.0010	0.0011	342

Puget Sound Emissions Inventory HDV Composite Emission Factors, HDDV8A, HDDV8B, grams/mile (g/hr for idle)

Speed	NO_x	voc	СО	SO ₂	\mathbf{PM}_{10}	$\mathbf{PM}_{2.5}$	DPM	CO ₂	N ₂ O	\mathbf{CH}_{4}
Idle										
(g/hr)	46.4647	4.2577	30.5090	0.0374	0.4690	0.4318	0.4690	4,005	0.0120	0.0128
2.5	18.5859	1.7031	12.2036	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
3	18.0035	1.6346	11.4568	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
4	17.2753	1.5487	10.5229	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
5	16.8378	1.4968	9.9626	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
6	15.9569	1.3895	8.9312	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
7	15.3278	1.3132	8.1952	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
8	14.8553	1.2555	7.6424	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
9	14.4879	1.2109	7.2131	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
10	14.1942	1.1752	6.8697	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
11	13.7011	1.1117	6.3477	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
12	13.2908	1.0585	5.9136	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
13	12.9428	1.0142	5.5452	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
14	12.6453	0.9765	5.2305	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
15	12.3866	0.9427	4.9567	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
16	12.0843	0.9004	4.6538	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
17	11.8178	0.8636	4.3864	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
18	11.5804	0.8299	4.1482	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
19	11.3677	0.8001	3.9351	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
20	11.1771	0.7739	3.7440	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
21	10.9963	0.7440	3.5569	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
22	10.8318	0.7170	3.3870	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
23	10.6812	0.6918	3.2319	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
24	10.5431	0.6697	3.0899	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
25	10.4167	0.6485	2.9587	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
26	10.3244	0.6273	2.8411	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
27	10.2397	0.6078	2.7321	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
28	10.1609	0.5896	2.6298	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
29	10.0870	0.5722	2.5354	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
30	10.0181	0.5558	2.4475	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
31	10.0005	0.5405	2.3732	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
32	9.9831	0.5259	2.3037	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
33	9.9676	0.5123	2.2382	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
34	9.9528	0.4997	2.1763	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051

Puget Sound Emissions Inventory HDV Composite Emission Factors, HDDV8A, HDDV8B, grams/mile (g/hr for idle)

Speed	NO _x	VOC	СО	SO ₂	PM_{10}	PM _{2.5}	DPM	CO_2	N ₂ O	CH ₄
35	9.9384	0.4873	2.1186	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
36	9.9889	0.4757	2.0741	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
37	10.0375	0.4652	2.0326	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
38	10.0832	0.4554	1.9930	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
39	10.1270	0.4458	1.9555	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
40	10.1677	0.4362	1.9197	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
41	10.2914	0.4284	1.8976	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
42	10.4091	0.4208	1.8772	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
43	10.5218	0.4138	1.8570	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
44	10.6286	0.4062	1.8379	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
45	10.7317	0.3995	1.8203	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
46	10.9407	0.3947	1.8165	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
47	11.1401	0.3889	1.8137	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
48	11.3325	0.3841	1.8109	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
49	11.5163	0.3793	1.8087	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
50	11.6925	0.3743	1.8059	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
51	12.0104	0.3705	1.8213	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
52	12.3156	0.3677	1.8349	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
53	12.6101	0.3639	1.8493	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
54	12.8932	0.3609	1.8628	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
55	13.1655	0.3581	1.8754	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
56	13.6310	0.3561	1.9102	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
57	14.0795	0.3551	1.9439	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
58	14.5131	0.3531	1.9767	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
59	14.9320	0.3521	2.0076	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
60	15.3366	0.3503	2.0384	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
61	16.0122	0.3503	2.0983	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
62	16.6655	0.3503	2.1560	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
63	17.2977	0.3503	2.2111	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
64	17.9112	0.3503	2.2660	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051
65	18.5052	0.3503	2.3181	0.0150	0.2361	0.1870	0.2361	1,602	0.0048	0.0051

APPENDIX B - SUPPORTING DATA

FLEET VEHICLE DATA

	Terminal						Avg Speed	Mileage	Hours
Port	ID	ID No.	YEAR	MAKE	MODEL	ENGINE	(mph)	2011	2011
Anacortes	PSA010	A1	1970	Ford	F800	Gasoline	15	864	
Anacortes	PSA010	A2	1990	Chevrolet	3/4 ton	Gasoline	15	1274	
Anacortes	PSA010	A3	1994	Chevrolet	1/2 ton	Gasoline	15	733	
Anacortes	PSA010	A4	1995	Chevrolet	1 ton Van	Gasoline	15	177	
Anacortes	PSA010	A5	1995	Chevrolet	1 ton	Gasoline	15	3145	
Anacortes	PSA010	A6	2006	Ford	truck	Gasoline	15	2947	
Anacortes	PSA010	A7	1995	Taurus	V6	Gasoline	25	653	
Anacortes	PSA010	A8	1999	Jeep		Gasoline	15	2165	
Anacortes	PSA010	A9	2007	Taurus	V6	Gasoline	25	2237	
Anacortes	PSA010	A10	2008	Ford	F250	Gasoline	15	3800	
Anacortes	PSA010	A11	2011	Ford	F350	Gasoline	15	2675	
Anacortes	PSA010	A12	1995	Ford	F150	Gasoline	15	6664	
Everett	PSE010	1	1984	International	2 Ton Flatbed	Diesel	10	2500	250
Everett	PSE010	41	1989	Chevrolet	1 Ton	Gasoline	10	4000	400
Everett	PSE010	42	1989	Chevrolet	1 Ton	Gasoline	10	4000	400
Everett	PSE010	44	1991	Chevrolet	1 Ton	Gasoline	10	4000	400
	PSE010 PSE010	50	1983	Ford	F100	Gasoline	10	4000	400
Everett									
Everett	PSE010 PSE010	51 52	1983 1983	Ford Ford	F100 F100	Gasoline Gasoline	10 10	4000	400 400
Everett								4000	
Everett	PSE010	53	1996	Ford	F250	Gasoline	10	4000	400
Everett	PSE010	54	1992	Ford	Ranger	Gasoline	10	4000	400
Everett	PSE010	55	1992	Ford	F350 1 Ton	Gasoline	10	4000	400
Everett	PSE010	58	1994	Chevrolet	S10 SC	Gasoline	10	4000	400
Everett	PSE010	59	1995	Ford	Crown Victory	Gasoline	10	4000	400
Everett	PSE010	66	1996	Ford	F350	Gasoline	10	4000	400
Everett	PSE010	67	1997	Ford	F100	Gasoline	10	4000	400
Everett	PSE010	68	1997	Ford	F250 4WD	Gasoline	10	4000	400
Everett	PSE010	69	1997	Ford	F250	Gasoline	10	4000	400
Everett	PSE010	70	1998	Chevrolet	1 Ton	Gasoline	10	4000	400
Everett	PSE010	81	1999	Chevrolet	Sonoma	Gasoline	10	4000	400
Everett	PSE010	135	2008	Ford	Escape	Gasoline	10	4000	400
Everett	PSE010	136	2008	Ford	Escape	Gasoline	10	4000	400
Everett	PSE010	137	2008	Ford	Escape	Gasoline	10	4000	400
Everett	PSE010	124	2008	Ford	F350SD	Gasoline	10	4000	400
Everett	PSE010	125	2008	Ford	F350SD	Gasoline	10	4000	400
Everett	PSE010	126	2008	Ford	F350SD	Gasoline	10	4000	400
Everett	PSE010	127	2008	Ford	F350SD	Gasoline	10	4000	400
Everett	PSE010	128	2008	Ford	F350SD	Gasoline	10	4000	400
Everett	PSE010	129	2008	Ford	F350SD	Gasoline	10	4000	400
Everett	PSE010	130	2008	Ford	F350SD	Gasoline	10	4000	400
Everett	PSE010	131	2008	Ford	F350SD	Gasoline	10	4000	400
Everett	PSE010	132	2008	Ford	F350SD	Gasoline	10	4000	400
Everett	PSE010	133	2008	Ford	F350SD	Gasoline	10	4000	400
Everett	PSE010	134	2008	Ford	F350SD	Gasoline	10	4000	400
Everett	PSE010	82	1999	Ford	F150 Ect cab	Gasoline	10	5000	500
Everett	PSE010	84	2000	GMC	Seerra 1500	Gasoline	10	5000	500
Everett	PSE010	121	2008	Dodge	Sprinter	Gasoline	10	5000	500
Everett	PSE010	33	1981	Travel Lift	30 AMO	Gasoline	10	6000	600
Everett	PSE010	118	2008	Ford	Escape Hybrid	Gasoline	10	10000	1000
Everett	PSE010	119	2008	Ford	Escape Hybrid	Gasoline	10	10000	1000
Everett	PSE010	103	2007	Linde	C4535	Gasoline	10	11000	1100
Everett	PSE010	104	2007	Linde	C4535	Gasoline	10	11000	1100

	Terminal						Avg Speed	Mileage	Hours
Port	ID	ID No.	YEAR	MAKE	MODEL	ENGINE	(mph)	2011	2011
Everett	PSE010	138	2007	Ford	F350SD	Gasoline	10	11000	1100
Everett	PSE010	122	2007	Hyster	H400HD	Gasoline	10	12500	1250
Everett	PSE010	2	1991	Chevrolet	1/2 Ton	Gasoline	10		
Everett	PSE010	3	1991	Ford	Ranger	Gasoline	10		
Everett	PSE010	5	1991	Ford	F250	Gasoline	10		
Everett	PSE010	6	1978	GMC	1 Ton	Gasoline	10		
Everett	PSE010	8	1991	Ford	F250	Gasoline	10		
Everett	PSE010	10	1994	GMC	1 Ton	Gasoline	10		
Everett	PSE010	13	1986	Ford	Ranger	Gasoline	10		
Everett	PSE010	14	1992	Ford	Ranger SC	Gasoline	10		
Everett	PSE010	15	1986	Ford	Ranger	Gasoline	10		
Everett	PSE010	16	1992	Ford	Ranger SC	Gasoline	10		
Everett	PSE010	20	1989	Chevrolet	S10	Gasoline	10		
Everett	PSE010	23	1989	Ford	LTD	Gasoline	10		
Everett	PSE010	24	1989	Chevrolet	S10	Gasoline	10		
Everett	PSE010	25	1989	Chevrolet	S10	Gasoline	10		
Everett	PSE010	30	1981	Mercury	Marque	Gasoline	10		
Everett	PSE010	31	1994	GMC	3500 1 Ton	Gasoline	10		
Everett	PSE010	34	1991	Chevrolet	1 Ton	Gasoline	10		
Everett	PSE010	36	1991	Chevrolet	1 Ton	Gasoline	10		
Everett	PSE010	37	1991	Chevrolet	Astro	Gasoline	10		
Everett	PSE010	38	1988	Chevrolet	Celebrity Sedan	Gasoline	10		
Everett	PSE010	39	1983	Travel Lift	35BFM	Gasoline	10		
Everett	PSE010	40	1994	GMC	Safari XT	Gasoline	10		
Everett	PSE010	43	1981	GMC	1/2 Ton	Gasoline	10		
Olympia	PSO010	04953C	1998	Chevrolet	Astro	Gasoline	15	40	
Olympia	PSO010	30143C	1995	Ford	Taurus	Gasoline	15	130	
Olympia	PSO010	43669C	1997	Chevrolet	Lumina	Gasoline	15	32	
Olympia	PSO010	46343C	1993	Ford	Cube Van	Gasoline	15	370	
Olympia	PSO010	07785C	1969	GMC	Fuel Truck	Gasoline	15	9	
Olympia	PSO010	C56359	1981	International	Dump/Water Truck		15	34	
	PSO010	66034C	1996	International	Service Truck 4700	Gasoline	15	480	
Olympia	PSO010 PSO010	13154C	1990	Chevrolet		Gasoline	15	216	
Olympia		15154C 15857E	2005		3/4 Ton Pickup Ext Cab Pickup F350		15	501	
Olympia	PSO010			Ford					
Olympia	PSO010	43693C	1998	Chevrolet	Pickup 2500	Gasoline	15	38	
Olympia	PSO010	13155C	1990	Chevrolet	1/2 Ton Pickup	Gasoline	15	12	
Olympia	PSO010	46344C	1993	Ford	Cube Van	Gasoline	15	3	
Olympia	PSO010	19142C	1991	GMC	Sierra	Gasoline	15	52	
Olympia	PSO010	30141C	1986	Chevrolet	S-10	Gasoline	15	0	
Seatlle	PSS050	T 902	2003	Ford	F 150	Gasoline	15		
Seatlle	PSS050	T 903	1991	Ford	F 700	Gasoline	15		
Seatlle	PSS050	T 904	2000	Ford	Taurus	Gasoline	15		
Seatlle	PSS050	T 905	1994	Ford	E 350	Gasoline	15		
Seatlle	PSS050	T 906	1996	Ford	E 350	Gasoline	15		
Seatlle	PSS050	T 907	2004	Ford	F 150	Gasoline	15		
Seatlle	PSS050	T 908	1997	Chev	1 Ton	Gasoline	15		
Seatlle	PSS050	T 911	2001	Ford	F 150	Gasoline	15		
Seatlle	PSS050	T 913	2001	Ford	Ranger	Gasoline	15		
Seatlle	PSS050	T 914	2007	Ford	F 150	Gasoline	15		
Seatlle	PSS050	T 915	1992	Ford	Ranger	Gasoline	15		
Seatlle	PSS050	T 917	1988	Ford	F 450	Gasoline	15		
Seatlle	PSS050	T 918	2007	Ford	F 150	Gasoline	15		

	Terminal						Avg Speed	Mileage	Hours
Port	ID	ID No.	YEAR	MAKE	MODEL	ENGINE	(mph)	2011	2011
Seatlle	PSS050	T 920	2002	Ford	F 150	Gasoline	15		
Seatlle	PSS050	T 921	1998	International		Diesel	15		
Seatlle	PSS050	T 922	1985	International		Diesel	15		
Seatlle	PSS050	T 923	1985	Ford	F 750	Gasoline	15		
Seatlle	PSS050	T 926	1999	Ford	Ranger	Gasoline	15		
Seatlle	PSS050	T 927	1995	Chev	S 10	Gasoline	15		
Seatlle	PSS050	T 928	2004	Ford	Ranger	Gasoline	15		
Seatlle	PSS050	T 929	2000	Ford	Ranger	Gasoline	15		
Seatlle	PSS050	T 930	2006	Ford	F 150	Gasoline	15		
Seatlle	PSS050	T 932	1997	Ford	Ranger	Gasoline	15		
Seatlle	PSS050	T 933	2001	Chev	CT3	Gasoline	15		
Seatlle	PSS050	T 934	2001	Chev	CT3	Gasoline	15		
Seatlle	PSS050	T 935	2007	Ford	F 150	Gasoline	15		
Seatlle	PSS050	T 936		Ford		Gasoline	15		
			2001		Ranger				
Seatlle	PSS050 PSS050	T 938 T 939	1998 1995	Ford	Ranger	Gasoline Gasoline	15 15		
Seatlle				Dodge	D				
Seatlle	PSS050	T 940	1997	Ford	Ranger	Gasoline	15		
Seatlle	PSS050	T 941	1997	Ford	Ranger	Gasoline	15		
Seatlle	PSS050	T 942	1997	Ford	Ranger	Gasoline	15		
Seatlle	PSS050	T 943	1997	Ford	Ranger	Gasoline	15		
Seatlle	PSS050	T 944	2006	Ford	F 150	Gasoline	15		
Seatlle	PSS050	T 945	2007	Ford	F 150	Gasoline	15		
Seatlle	PSS050	T 946	1997	Ford	F 350	Gasoline	15		
Seatlle	PSS050	T 947	1996	Ford	F 350	Gasoline	15		
Seatlle	PSS050	T 949	2004	Ford	F 150	Gasoline	15		
Seatlle	PSS050	T 950	1998	Ford	E 350	Gasoline	15		
Seatlle	PSS050	T 951	2002	Ford	F 150	Gasoline	15		
Seatlle	PSS050	T 952	1994	Nissan		Gasoline	15		
Seatlle	PSS050	T 953	2005	Ford	F 150	Gasoline	15		
Seatlle	PSS050	T 954	2005	Ford	F 150	Gasoline	15		
Seatlle	PSS050	T 955	2005	Ford	F 150	Gasoline	15		
Seatlle	PSS050	T 956	1989	Ford	LTN	Diesel	15		
Seatlle	PSS050	T 957	1990	GMC	V-2	Diesel	15		
Seatlle	PSS050	T 958	2000	Ford	F 250	Gasoline	15		
Seatlle	PSS050	T 959	2000	Ford	F 250	Gasoline	15		
Seatlle	PSS050	T 960	1999	Ford	F 250	Gasoline	15		
Seatlle	PSS050	T 961	2001	Ford	F 250	Gasoline	15		
Seatlle	PSS050	T 962	2006	Ford	F 150	Gasoline	15		
Seatlle	PSS050	T 963	2001	Ford	F 150	Gasoline	15		
Seatlle	PSS050	T 964	2001	Ford	F 150	Gasoline	15		
Seatlle	PSS050	T 965	2002	Chev	1500	Gasoline	15		
Seatlle	PSS050	T 966	2000	Chev	1500	Gasoline	15		
Seatlle	PSS050 PSS050	T 966	2000 1997	Chev	S 10	Gasoline	15		
	PSS050 PSS050	T 968							
Seatlle			2006	Ford	F 150	Gasoline	15		
Seatlle	PSS050	T 969	1997	Chev	S 10	Gasoline	15		
Seatlle	PSS050	T 970	1997	Chev	S 10	Gasoline	15		
Seatlle	PSS050	T 971	1997	Chev	S 10	Gasoline	15		
Seatlle	PSS050	T 972	2002	Ford	F 150	Gasoline	15		
Seatlle	PSS050	T 973	2001	Ford	F 250	Gasoline	15		
Seatlle	PSS050	T 974	2003	Ford	F 250	Gasoline	15		
Seatlle	PSS050	T 975	2007	Ford	F 150	Gasoline	15		
Seatlle	PSS050	T 976	2001	Ford	F 150	Gasoline	15		

	Terminal						Avg Speed	Mileage	Hours
Port	ID	ID No.	YEAR	MAKE	MODEL	ENGINE	(mph)	2011	2011
Seatlle	PSS050	T 978	1998	Chev	2500	Gasoline	15		
Seatlle	PSS050	T 979	1997	Chev	2500	Gasoline	15		
Seatlle	PSS050	T 980	1996	Chev	S 10	Gasoline	15		
Seatlle	PSS050	T 981	2001	Ford	F 150	Gasoline	15		
Seatlle	PSS050	T 982	2001	Dodge		Gasoline	15		
Seatlle	PSS050	T 983	2002	Dodge		Gasoline	15		
Seatlle	PSS050	T 984	2001	Ford	F 150	Gasoline	15		
Seatlle	PSS050	T 985	2006	Ford	F 150	Gasoline	15		
Seatlle	PSS050	T 986	2007	Ford	F 150	Gasoline	15		
Seatlle	PSS050	T 987	1996	Chev	S 10	Gasoline	15		
Seatlle	PSS050	T 988	1996	Chev	S 10	Gasoline	15		
Seatlle	PSS050	T 989	1995	Nissan	5 10	Gasoline	15		
Seatlle	PSS050	T 990	2001	Ford	Ranger	Gasoline	15		
Seatlle	PSS050	T 995	2004	Ford	F 150	Gasoline	15		
	PSS050	T 996					15		
Seatlle	PSS050 PSS050	T 996 T 997	2005 1999	Dodge	1500 F 150	Gasoline Gasoline	15		
Seatlle				Ford	F 150				
Seatlle	PSS050	T 998	2000	Ford	F 150	Gasoline	15		
Seatlle	PSS050	T 999	1999	Ford	F 150	Gasoline	15		
Seatlle	PSS050	T 800	1991	Chev	1500	Gasoline	15		
Seatlle	PSS050	T 801	1989	Chev	S 10	Gasoline	15		
Seatlle	PSS050	T 802	1989	Chev	S 10	Gasoline	15		
Seatlle	PSS050	T 804	1999	Ford	Ranger	Gasoline	15		
Seatlle	PSS050	T 805	1999	Ford	Ranger	Gasoline	15		
Seatlle	PSS050	T 806	1999	Ford	Ranger	Gasoline	15		
Seatlle	PSS050	T 807	1999	Ford	Ranger	Gasoline	15		
Seatlle	PSS050	T 809	1992	Chev	1500	Gasoline	15		
Seatlle	PSS050	T 812	1989	Ford	E 350	Gasoline	15		
Seatlle	PSS050	T 813	1991	Ford	E 350	Gasoline	15		
Seatlle	PSS050	T 814		Ford	Ranger	Gasoline	15		
Seatlle	PSS050	T 815	1996	Ford	Ranger	Gasoline	15		
Seatlle	PSS050	T 816	1999	Ford	Ranger	Gasoline	15		
Seatlle	PSS050	T 820	2005	Ford	Ranger	Gasoline	15		
Seatlle	PSS050	T 821	2005	Ford	Ranger	Gasoline	15		
Seatlle	PSS050	T 822	2005	Ford	Ranger	Gasoline	15		
Seatlle	PSS050	T 823	2005	Ford	Ranger	Gasoline	15		
Seatlle	PSS050	T 824	1998	Ford	Ranger	Gasoline	15		
Seatlle	PSS050	T 826	1998	Ford	Ranger	Gasoline	15		
Seatlle	PSS050	T 827	1999	Ford	Ranger	Gasoline	15		
					~				
Seatlle	PSS050	T 828	2000	Ford	Ranger	Gasoline	15 15		
Seatlle	PSS050	T 829	2000	Ford	Ranger	Gasoline			
Seatlle	PSS050	T 830	2000	Ford	Ranger	Gasoline	15		
Seatlle	PSS050	T 833	1996	Ford	E 350	Gasoline	15		
Seatlle	PSS050	T 834	2000	Ford	F 150	Gasoline	15		
Seatlle	PSS050	T 835	2004	Ford	F 150	Gasoline	15		
Seatlle	PSS050	T 836	2001	Ford	F 150	Gasoline	15		
Seatlle	PSS050	T 1227	1992	Chev	1500	Gasoline	15		
Seatlle	PSS050	T 1240		Dodge		Gasoline	15		
Seatlle	PSS050	CM 0	2002	Ford	F 150	Gasoline	15		
Seatlle	PSS050	CM 1	1989	Step Van		Gasoline	15		
Seatlle	PSS050	CM 2		Step Van		Gasoline	15		
Seatlle	PSS050	CM 3	1979	Step Van		Gasoline	15		
Seatlle	PSS050	CM 4	2000	Iszusu	NPR	Diesel	15		

	Terminal						Avg Speed	Mileage	Houre
Port	ID	ID No.	YEAR	MAKE	MODEL	ENGINE	(mph)	2011	2011
Seatlle	PSS050	CM 5	1999	Step Van	WORK	Gasoline	15		
Seatlle	PSS050	CM 6	1996	Step Van	WORK	Gasoline	15		
Seatlle	PSS050	CM 20	1999	Step Van	Frtliner	Diesel	15		
Seatlle	PSS050	CM 21	2002	Step Van	WORK	Gasoline	15		
Seatlle	PSS050	CM 22	1999	Step Van	Frtliner	Diesel	15		
Seatlle	PSS050	CM 23	1999	Step Van	Frtliner	Diesel	15		
Seatlle	PSS050	CM 24	1999	Step Van	Frtliner	Diesel	15		
Seatlle	PSS050	CM 25	1999	Step Van	Frtliner	Diesel	15		
Seatlle	PSS050	CM 69	1986	GMC	THIRT	Diesel	15		
	PSS060	T 992			1500		15		
Seatlle			2004	Chev	1500	Gasoline			
Seatlle	PSS060	T 993	2006	Chev	1500	Gasoline	15		
Seatlle	PSS060	T 994	2002	Chev	1500	Gasoline	15		
Seatlle	PSS060	T 808	1994	Ford	Ranger	Gasoline	15		
Seatlle	PSS060	T 811	1997	Ford	Ranger	Gasoline	15		
Seatlle	PSS060	T 817	2004	Ford	Ranger	Gasoline	15		
Seatlle	PSS060	T 825	1998	Ford	Ranger	Gasoline	15		
Seatlle	PSS060	T 831	2001	Ford	Ranger	Gasoline	15		
Seatlle	PSS060	T 832		Ford	F 150	Gasoline	15		
Seatlle	PSS080	EMSU332	1998	Ford	F150	Gasoline	15		
Seatlle	PSS080	EMSU337	1998	Ford	F150	Gasoline	15		
Seatlle	PSS080	EMSU397	2000	Ford	F150	Gasoline	15		
Seatlle	PSS080	EMSU398	2000	Ford	F150	Gasoline	15		
Seatlle	PSS080	EMSU399	2000	Ford	F150	Gasoline	15		
Seatlle	PSS080	EMSU476	2005	Chevrolet	Silverado	Gasoline	15		
Seatlle	PSS080	EMSU477	2005	Chevrolet	Silverado	Gasoline	15		
Seatlle	PSS080	EMSU478	2005	Chevrolet	Silverado	Gasoline	15		
Seatlle	PSS080	EMSU479	2005	Chevrolet	Silverado	Gasoline	15		
Seatlle	PSS080	EMSU480	2005	Chevrolet	Silverado	Gasoline	15		
Seatlle	PSS080	EMSU528	2006	Chevrolet	Silverado	Gasoline	15		
Seatlle	PSS080	EMSU529	2006	Chevrolet	Silverado	Gasoline	15		
Seatlle	PSS080	EMSU530	2006	Chevrolet	Silverado	Gasoline	15		
Seatlle	PSS080	EMSU531	2006	Chevrolet	Silverado	Gasoline	15		
Seatlle	PSS080	EMSU532	2006	Chevrolet	Silverado	Gasoline	15		
	PSS080						15		
Seatlle		EMSU533	2006	Chevrolet	Silverado	Gasoline			
Seatlle	PSS080	EMSU534	2006	Chevrolet	Silverado	Gasoline	15		
Seatlle	PSS080	EMSU535	2006	Chevrolet	Silverado	Gasoline	15		
Seatlle	PSS080	EMSU536	2006	Chevrolet	Silverado	Gasoline	15		
Seatlle	PSS080	EMSU537	2006	Chevrolet	Silverado	Gasoline	15		
Seatlle	PSS080	EMSU538	2006	Chevrolet	Silverado	Gasoline	15		
Seatlle	PSS080	EMSU539	2006	Chevrolet	Silverado	Gasoline	15		
Seatlle	PSS080	EMSU581	2007	Dodge	RAM 1500	Gasoline	15		
Seatlle	PSS080	EMSU582	2007	Dodge	RAM 1500	Gasoline	15		
Seatlle	PSS080	EMSU583	2007	Dodge	RAM 1500	Gasoline	15		
Seatlle	PSS080	EMSU584	2007	Dodge	RAM 1500	Gasoline	15		
Seatlle	PSS080	EMSU585	2007	Dodge	RAM 1500	Gasoline	15		
Seatlle	PSS080	EMSU587	2007	Dodge	RAM 1500	Gasoline	15		
Seatlle	PSS080	EMSU588	2007	Dodge	RAM 1500	Gasoline	15		
Seatlle	PSS080	EMSU589	2007	Dodge	RAM 1500	Gasoline	15		
Seatlle	PSS080	EMSU590	2007	Dodge	RAM 1500	Gasoline	15		
Seatlle	PSS080	EMSU591	2007	Dodge	RAM 1500	Gasoline	15		
Seatlle	PSS080	EMSU592	2007	Dodge	RAM 1500	Gasoline	15		
Seatlle	PSS080	EMSU593	2007	Dodge	RAM 1500	Gasoline	15		

	Terminal						Avg Speed	Mileage	Ношто
Port	ID	ID No.	VEAR	MAKE	MODEL	ENGINE	(mph)	2011	2011
Seatlle	PSS080	EMSU594	2007	Dodge	RAM 1500	Gasoline	15	2011	2011
Seatlle	PSS080	EMSU595	2007	Dodge	RAM 1500	Gasoline	15		
Seatlle	PSS080	EMSU619	2007	Chevrolet	Silverado	Gasoline	15		
Seatlle	PSS080	EMSU620	2007	Chevrolet	Silverado	Gasoline	15		
Seatlle	PSS080	EMSU621	2007	Chevrolet	Silverado	Gasoline	15		
Seatlle	PSS080	EMSU622	2007	Chevrolet	Silverado	Gasoline	15		
Seatlle	PSS080	EMSU623	2007	Chevrolet	Silverado	Gasoline	15		
Seatlle	PSS080	EMSU623	2007	Chevrolet	Silverado	Gasoline	15		
Seatlle	PSS080	EMSU625	2007	Chevrolet	Silverado	Gasoline	15		
Seatlle	PSS080	EMSU626	2007	Chevrolet	Silverado	Gasoline	15		
	PSS080				Silverado	Gasoline	15		
Seatlle	PSS080	EMSU627	2007	Chevrolet			15		
Seatlle		EMSU628	2007	Chevrolet	Silverado	Gasoline			
Seatlle	PSS080	EMSU629	2007	Chevrolet	Silverado	Gasoline	15		
Seatlle	PSS080	EMSU630	2007	Chevrolet	Silverado	Gasoline	15		
Seatlle	PSS080	EMSU693	2008	Chevrolet	Silverado	Gasoline	15		
Seatlle	PSS080	EMSU694	2008	Chevrolet	Silverado	Gasoline	15		
Seatlle	PSS080	EMSU695	2008	Chevrolet	Silverado	Gasoline	15		
Seatlle	PSS080	EMSU696	2008	Chevrolet	Silverado	Gasoline	15		
Seatlle	PSS080	EMSU697	2008	Chevrolet	Silverado	Gasoline	15		
Seatlle	PSS080	EMSU698	2008	Chevrolet	Silverado	Gasoline	15		
Seatlle	PSS080	EMSU699	2008	Chevrolet	Silverado	Gasoline	15		
Seattle	PSS010	51	1992	DODGE	CARAVAN	Gasoline	30	1047	
Seattle	PSS010	289	1990	CHEV	1-TON UTILITY TI	Gasoline	30	913	
Seattle	PSS010	359	1992	CHEV	3/4-TON PICKUP	Gasoline	30	2100	
Seattle	PSS010	527	1996	CONDOR	210' HIGH REACH	B20	30	180	
Seattle	PSS010	612	1992	FORD	EXPLORER	Gasoline	30	1858	
Seattle	PSS010	785	1991	CHEV	SUBURBAN 4X4	Gasoline	30	2131	
Seattle	PSS010	791	1991	DODGE	D250 3/4-TON PIC	l Gasoline	30	787	
Seattle	PSS010	800	1992	FORD	TAURUS WAGON	Gasoline	30	886	
Seattle	PSS010	823	1993	IHI	FUEL TRUCK	B20	30	1243	
Seattle	PSS010	852	1993	GMC	SONOMA 1/2 Ton	Gasoline	30	1160	
Seattle	PSS010	853	1994	CHEV	1-TON H/D 3500 F	l Gasoline	30	534	
Seattle	PSS010	857	1994	NISSAN	ALTIMA 4/DR SDN		30	1000	
Seattle	PSS010	861	1994	CHEV	1-TON H/D 3500 T		30	2552	
Seattle	PSS010	862	1994	CHEV	1-TON H/D 3500 T		30	2379	
Seattle	PSS010	864	1994	CHEV	1-TON H/D 3500 T		30	1348	
Seattle	PSS010	865	1994	CHEV	1-TON H/D 3500 T		30	2204	
Seattle	PSS010	871	1994	FORD	AEROSTAR VAN		30	731	
Seattle	PSS010	877	1994	JEEP	CHEROKEE 4/DR		30	82	
Seattle	PSS010	878	1994	JEEP	CHEROKEE 4/DR		30	837	
Seattle	PSS010	880	1994	GMC	SONOMA PICKUP		30	278	
Seattle	PSS010	882	1994	GMC	SONOMA PICKUP		30	1472	
Seattle	PSS010	891	1995	IHI	ROLLBACK DUAL		30	2881	
Seattle	PSS010	895	1995	CHEV	S-10 CHEV PICKUI		30	769	
Seattle	PSS010	915	1995	FORD	RANGER PICKUP		30	35	
								33 1711	
Seattle	PSS010	917	1995	CHEV	1-TON H/D 3500 T		30		
Seattle	PSS010	922	1995	CHEV	1-TON H/D 3500 T		30	3747	
Seattle	PSS010	924	1996	FORD	RANGER 1/2 TON		30	3526	
Seattle	PSS010	933	1996	CHEV	1 TON UTILITY	Gasoline	30	2680	
Seattle	PSS010	935	1996	CHEV	1-TON H/D 3500 T		30	3218	
Seattle	PSS010	936	1996	CHEV	1-TON H/D 3500 T		30	2216	
Seattle	PSS010	938	1996	CHEV	1-TON H/D 3500 T	Gasoline	30	48	

	Terminal						Avg Speed	Mileage	Hours
Port	ID	ID No.	YEAR	MAKE	MODEL	ENGINE	(mph)	2011	2011
Seattle	PSS010	945	1996	FORD	RANGER 1/2 TON		30	1489	
Seattle	PSS010	946	1996	FORD	RANGER 1/2 TON		30	402	
Seattle	PSS010	948	1996	FORD	RANGER 1/2 TON		30	1634	
Seattle	PSS010	949	1996	FORD	RANGER 1/2 TON		30	215	
Seattle	PSS010	955	1996	DODGE	CARGO VAN	Gasoline	30	2465	
Seattle	PSS010	971	1997	FORD	H/D E-250 CARGO		30	2811	
Seattle	PSS010	972	1997	FORD	H/D E-250 CARGO		30	4033	
Seattle	PSS010	994	1997	CHEV	BLAZER S-10 4X4		30	1821	
Seattle	PSS010	1005	1998	FORD	WINSTAR VAN	Gasoline	30	2237	
Seattle	PSS010	1006	1998	FORD	WINSTAR VAN	Gasoline	30	2990	
Seattle	PSS010	1007	1999	CHEV	1-TON H/D 3500 T		30	619	
Seattle	PSS010	1007	1999	CHEV	1-TON H/D 3500 T		30	2573	
Seattle	PSS010	1010	1999	CHEV	1-TON H/D 3500 F		30	1249	
Seattle	PSS010	1010	1999	CHEV	1-TON H/D 3500 T		30	1323	
Seattle	PSS010	1011	1998	DODGE	2500-PICKUP 3/4 T		30	1693	
Seattle	PSS010	1012	1998	DODGE	2500-PICKUP 3/4 T		30	1559	
	PSS010	1013		CHEV			30	641	
Seattle	PSS010	1014	1999	CHEV	1500-PICKUP TRUC			517	
Seattle	PSS010 PSS010		1998		3500-CARGO VAN		30	8272	
Seattle		1016	1998	FORD	F-150 1/2 TON PIC		30		
Seattle	PSS010	1017	1998	FORD	F-150 1/2 TON PIC		30	3441	
Seattle	PSS010	1018	1998	CHEV	1500 1/2 TON PICK		30	952	
Seattle	PSS010	1027	1998	DODGE	CARAVAN VAN	Gasoline	30	4100	
Seattle	PSS010	1060	1999	CHEV	BLAZER 4 X 4	Gasoline	30	4386	
Seattle	PSS010	1067	1999	JEEP	CHEROKEE 4 DR		30	1278	
Seattle	PSS010	1068	1999	CHEV	1500 1/5 TON PICK		30	1964	
Seattle	PSS010	1069	2000	FORD	F-250 3/4 TON PIC		30	2723	
Seattle	PSS010	1070	1999	CHEV	3500 FLAT BED TR		30	3523	
Seattle	PSS010	1071	1999	CHEV	3500 1 TON UTILIT		30	3983	
Seattle	PSS010	1072	1999	CHEV	CARGO VAN	Gasoline	30	2911	
Seattle	PSS010	1073	1999	GMC	CARGO VAN	Gasoline	30	5217	
Seattle	PSS010	1074	1999	GMC	3500 UTILITY TRU		30	486	
Seattle	PSS010	1075	1999	FORD	F-550 UTILITY TRU		30	3631	
Seattle	PSS010	1091	1999	JEEP	CHEROKEE 4 DR		30	481	
Seattle	PSS010	1092	1999	JEEP	CHEROKEE 4 DR		30	519	
Seattle	PSS010	1099	1999	FORD	WINDSTAR	Gasoline	30	252	
Seattle	PSS010	1107	1999	GMC-VOLVO	DUAL-TAMDEM T		30	3301	
Seattle	PSS010	1117	1996	FORD	3/4-TON CARGO V	Gasoline	30	1915	
Seattle	PSS010	1119	1999	CHEV	MAILIBU 4 DR SDN	Gasoline	30	3111	
Seattle	PSS010	1122	2000	FORD	F-250 PICKUP SUP		30	6353	
Seattle	PSS010	1131	1996	FORD	CARGO VAN E 25	Gasoline	30	1847	
Seattle	PSS010	1137	2000	FORD	TAURUS 4 DR STA	FLEX	30	1523	
Seattle	PSS010	1138	2000	DODGE	3/4 TON PICKUP T	Gasoline	30	820	
Seattle	PSS010	1139	2000	FORD	F-450 SUPER DUTY	Gasoline	30	1932	
Seattle	PSS010	1140	2000	FORD	F-450 SUPER DUTY	Gasoline	30	2197	
Seattle	PSS010	1141	2001	FORD	F-450 SUPER DUTY	Gasoline	30	2424	
Seattle	PSS010	1142	2000	FORD	F-450 SUPER DUTY	Gasoline	30	3442	
Seattle	PSS010	1143	2001	FORD	F-450 SUPER DUTY	Gasoline	30	4288	
Seattle	PSS010	1144	2000	CHEV	WORK HORSE, (RI	Gasoline	30	193	
Seattle	PSS010	1145	2000	DODGE	3/4 TON PICKUP T		30	1766	
Seattle	PSS010	1146	2000	DODGE	3/4 TON PICKUP T		30	3401	
Seattle	PSS010	1147	2000	CHEV	1/2 TON PICKUP T		30	6445	
Seattle	PSS010	1151	2000	JEEP	CHEROKEE 4 DR		30	2210	

						Avg	
	Terminal					Speed	Mileage Hours
Port	ID	ID No.	YEAR	MAKE	MODEL ENGINE	(mph)	2011 2011
Seattle	PSS010	1157	2000	CHEV	1/2 TON PICKUP T Gasoline	30	7635
Seattle	PSS010	1158	2001	FORD	1/2 TON CC PICKI Gasoline	30	1236
Seattle	PSS010	1165	2000	CHEV	BLAZER 4 DR Gasoline	30	1661
Seattle	PSS010	1169	2000	FORD	F-550 FORD UTILI DIESEL	30	282
Seattle	PSS010	1182	2001	JOHNSON	JOHNSON 605 TRUB20	30	3404
Seattle	PSS010	1183	2001	FORD	TAURUS 4 DR STA' FLEX	30	4561
Seattle	PSS010	1184	2001	FORD	TAURUS 4 DR STA' FLEX	30	5036
Seattle	PSS010	1185	2001	FORD	TAURUS 4 DR STA' FLEX	30	7996
Seattle	PSS010	1187	2001	FORD	TAURUS 4 DR STA' FLEX	30	4170
Seattle	PSS010	1188	2001	FORD	TAURUS 4 DR STA' FLEX	30	4877
Seattle	PSS010	1189	2001	FORD	TAURUS 4 DR STA' FLEX	30	5781
Seattle	PSS010	1190	2001	FORD	TAURUS 4 DR STA' FLEX	30	3821
Seattle	PSS010	1191	2001	FORD	F-550 FORD UTILI' DIESEL	30	3984
Seattle	PSS010	1192	2001	FORD	F-450 FORD UTILI' Gasoline	30	2129
Seattle	PSS010	1193	2001	FORD	F-450 FORD UTILI' Gasoline	30	1134
Seattle	PSS010	1194	2001	FORD	F-450 FORD UTILI B20	30	1451
Seattle	PSS010	1195	2001	FORD	F-450 FORD UTILI Gasoline	30	3826
Seattle	PSS010	1196	2001	FORD	F-450 FORD UTILI Gasoline	30	3693
Seattle	PSS010	1197	2001	FORD	F-450 FORD UTILI' Gasoline	30	3505
Seattle	PSS010	1198	2001	CHEV	PASSENGER VAN Gasoline	30	220
Seattle	PSS010	1199	2001	DODGE	2500-PICKUP TRUC Gasoline	30	1233
Seattle	PSS010	1200	2001	DODGE	2500-PICKUP TRUC Gasoline	30	3049
Seattle	PSS010	1244	2001	FORD	TAURUS 4 DR STA' FLEX	30	3192
Seattle	PSS010	1245	2001	FORD	TAURUS 4 DR STA' FLEX	30	668
Seattle	PSS010	1245	2001	FORD	TAURUS 4 DR STA' FLEX	30	2111
Seattle	PSS010	1248	2001	CHEV	BLAZER 4X4 4 DO(FLEX	30	2930
	PSS010	1249	2001	GMC	PICKUP 1500 WHI FLEX	30	11251
Seattle	PSS010 PSS010	1249				30	
Seattle			2001	GMC	PICKUP 1500 PEW FLEX		4015
Seattle	PSS010	1262	2003	CHEV	BLAZER 4X4 4 DO Gasoline	30	1670
Seattle	PSS010	1263	2003	HONDA	CIVIC HYBRID 4 D Hybrid	30	7711
Seattle	PSS010	1265	2004	CHEV	SILVERADO EXT (CNG	30	32
Seattle	PSS010	1267	2006	CHEV	SILVERADO EXT (CNG	30	1563
Seattle	PSS010	1283	2006	FORD	F550 SD Gasoline	30	2673
Seattle	PSS010	1289	2006	FORD	ESCAPE, HYBRID (Hybrid	30	1536
Seattle	PSS010	1290	2007	CHEV	SILVERADO FLAT B20	30	4262
Seattle	PSS010	1291	2007	CHEV	SILVERADO FLAT B20	30	4074
Seattle	PSS010	1293	2006	JEEP	GRAND CHEROKI Gasoline	30	5400
Seattle	PSS010	1295	2007	CHEV	SILVERADO FLAT B20	30	8537
Seattle	PSS010	1296	2006	DODGE	SPRINTER VAN 25/B20	30	1823
Seattle	PSS010	1297	2006	DODGE	SPRINTER VAN 25/B20	30	3218
Seattle	PSS010	1298	2007	TOYOTA	PRIUS HYBRID Hybrid	30	2448
Seattle	PSS010	1299	2007	TOYOTA	PRIUS HYBRID Hybrid	30	4423
Seattle	PSS010	1303	2006	FORD	CROWN VIC Gasoline	30	22567
Seattle	PSS010	1322	2004	CHEV	SILVERADO PICK Gasoline	30	2988
Seattle	PSS010	1323	2004	CHEV	SILVERADO PICK Gasoline	30	1255
Seattle	PSS010	1324	2004	CHEV	SILVERADO PICK Gasoline	30	203
Seattle	PSS010	1325	2004	CHEV	SILVERADO PICK Gasoline	30	380
Seattle	PSS010	1326	2004	CHEV	SILVERADO PICK Gasoline	30	7473
Seattle	PSS010	1327	2004	CHEV	SILVERADO PICK Gasoline	30	1575
Seattle	PSS010	1338	2007	HONDA	CIVIC HYBRID 4 D Hybrid	30	7373
Seattle	PSS010	1342	2007	HONDA	CIVIC HYBRID Hybrid	30	7125
Seattle	PSS010	1343	2007	HONDA	CIVIC HYBRID Hybrid	30	7249

	Terminal						Avg Speed	Mileage	Hours
Port	ID	ID No.	YEAR	MAKE	MODEL	ENGINE	(mph)	2011	2011
Seattle	PSS010	1344	2007	HONDA	CIVIC HYBRID	Hybrid	30	8172	
Seattle	PSS010	1345	2007	JEEP	GRAND CHEROK	I Gasoline	30	1206	
Seattle	PSS010	1346	2007	HONDA	CIVIC HYBRID	Hybrid	30	3213	
Seattle	PSS010	1347	2005	DODGE	SPRINTER SHUTT	1B20	30	969	
Seattle	PSS010	1348	2007	DODGE	SPRINTER VAN 35	6(B20	30	75	
Seattle	PSS010	1349	2007	CHEV	1 TON FLATBED	B20	30	4541	
Seattle	PSS010	1350	2007	CHEV	1 TON FLATBED	B20	30	3058	
Seattle	PSS010	1352	2008	FORD	CROWN VIC	Gasoline	30	16320	
Seattle	PSS010	1357	2007	DODGE	SPRINTER VAN 25	6(B20	30	1330	
Seattle	PSS010	1358	2007	DODGE	SPRINTER VAN 25	6(B20	30	2876	
Seattle	PSS010	1359	2007	CHEV	1 TON FLATBED		30	2829	
Seattle	PSS010	1360	2008	TOYOTA	PRIUS HYBRID PH		30	3451	
Seattle	PSS010	1370	2008	FORD	CROWN VIC	Gasoline	30	25868	
Seattle	PSS010	1371	2007	E-RIDE	ELECTRIC TRUCK		30	711	
Seattle	PSS010	1372	2009	TOYOTA	PRIUS HYBRID	Hybrid	30	1716	
Seattle	PSS010	1373	2008	TOYOTA	PRIUS HYBRID	Hybrid	30	5027	
Seattle	PSS010	1374	2009	TOYOTA	PRIUS HYBRID	Hybrid	30	948	
Seattle	PSS010	1375	2009	TOYOTA	PRIUS HYBRID	Hybrid	30	1812	
Seattle	PSS010	1376	2009	TOYOTA	PRIUS HYBRID	Hybrid	30	1200	
Seattle	PSS010	1377	2009	TOYOTA	PRIUS HYBRID	Hybrid	30	1092	
Seattle	PSS010	1380	2008	DODGE	SPRINTER	Diesel	30	3122	
Seattle	PSS010	1381	2008	DODGE	SPRINTER	Diesel	30	667	
Seattle	PSS010	1387	2009	ELGIN	SWEEPER, NISSAN		30	6888	
Seattle	PSS010	1388	2009	HONDA	CIVIC HYBRID	Hybrid	30	6966	
Seattle	PSS010	1390	2010	FORD		B20	30	2661	
Seattle	PSS010	1390	2010	FORD	BUCKET TRUCK		30	1067	
Seattle	PSS010	1392	2010	DODGE	GRAND CARAVAI		30	1500	
	PSS010	1395	2010	PETERBILT	DUMP TRUCK	B20	30	13074	
Seattle Seattle	PSS010						30	47	
Seattle	PSS010	1396 1398	2008 2007	DODGE PETERBILT	SPRINTER VAN VACCON INDUST	B20	30	1852	
	PSS010 PSS010	1398						3804	
Seattle			2012	FORD		Hybrid	30		
Seattle	PSS010	1430	2011	MERCEDES	3500 SPRINTER	diesel	30	1067	
Seattle	PSS010	1434	2011	FORD	TRANSIT	Gasoline	30	2000	
Seattle	PSS010	1435	2011	FORD	TRANSIT	Gasoline	30	2000	
Seattle	PSS010	5016	1998	CHEV	BLAZER	Gasoline	30	2020	
Seattle	PSS010	5017	1999	CHEV	BLAZER	Gasoline	30	214	
Seattle	PSS010	5018	1997	FORD	EXPLORER	Gasoline	30	4686	
Seattle	PSS010	5020	1998	GMC	JIMMY	Gasoline	30	1424	
Seattle	PSS010	5022	1999	CHEV	S10 EXTENDED C		30	3329	
Seattle	PSS010	5024	1999	CHEV	4DOOR BLAZER	Gasoline	30	145	
Seattle	PSS010	5025	2000	CHEV	4DOOR BLAZER	Gasoline	30	656	
Seattle	PSS010	5028	1999	CHEV	4DOOR BLAZER	Gasoline	30	1289	
Seattle	PSS010	5029	1999	CHEV	4DOOR BLAZER	Gasoline	30	1345	
Seattle	PSS010	5030	1999	CHEV	4DOOR BLAZER	Gasoline	30	4282	
Seattle	PSS010	5033	1999	FORD	TAURUS 4 DR. SE		30	440	
Seattle	PSS010	5034	1999	FORD	TAURUS 4 DR. SE		30	444	
Seattle	PSS010	5037	1999	FORD	TAURUS 4 DR. SE		30	539	
Seattle	PSS010	5039	1999	FORD	TAURUS 4 DR. SE		30	3376	
Seattle	PSS010	5040	1999	FORD	TAURUS 4 DR. SE		30	644	
Seattle	PSS010	5041	1999	FORD	TAURUS 4 DR. SE	Gasoline	30	343	
Seattle	PSS010	5042	1999	FORD	TAURUS 4 DR. SE	Gasoline	30	94	
Seattle	PSS010	5044	2000	FORD	RANGER 4X2 PICI	Gasoline	30	46	

	Terminal						Avg Speed	Mileage	Hours
Port	ID	ID No.	YEAR	MAKE	MODEL	ENGINE	(mph)	2011	2011
Seattle	PSS010	5045	2000	FORD	RANGER 4X2 P	ICK Gasoline	30	1402	
Seattle	PSS010	5046	2000	FORD	RANGER 4X2 P	ICK Gasoline	30	1640	
Seattle	PSS010	5047	2000	FORD	RANGER 4X2 P	ICK Gasoline	30	1884	
Seattle	PSS010	5048	1999	CHEV	BLAZER 4X44	DO Gasoline	30	2427	
Seattle	PSS010	5049	1999	CHEV	BLAZER 4X44	DO Gasoline	30	2524	
Seattle	PSS010	5050	1999	CHEV	BLAZER 4X44	DO Gasoline	30	1789	
Seattle	PSS010	5056	2001	CHEV	BLAZER 4X44	DO Gasoline	30	1360	
Seattle	PSS010	5057	2000	FORD	RANGER 4X2 P	ICK Gasoline	30	1663	
Seattle	PSS010	5058	2000	FORD	RANGER 4X2 P	ICK Gasoline	30	2746	
Seattle	PSS010	5060	2000	CHEV	BLAZER 4X44	DO Gasoline	30	3251	
Seattle	PSS010	5061	2000	CHEV	BLAZER 4X44	DO Gasoline	30	1839	
Seattle	PSS010	5062	2000	CHEV	BLAZER 4X44		30	2436	
Seattle	PSS010	5063	2000	CHEV	BLAZER 4X44		30	1000	
Seattle	PSS010	5069	2000	FORD	RANGER 4X2 P		30	238	
Seattle	PSS010	5070	2000	CHEV	BLAZER 4X4 4 I		30	535	
Seattle	PSS010	5071	2000	FORD	RANGER 4X2 P		30	1633	
Seattle	PSS010	5073	2000	FORD	RANGER 4X2 P		30	1975	
Seattle	PSS010	5076	2000	CHEV	BLAZER 4 X 4 4		30	1474	
Seattle	PSS010	5078	2001	CHEV	BLAZER 4 X 4 4		30	1829	
Seattle	PSS010	5079	2001	FORD	RANGER 4X2 P		30	128	
Seattle	PSS010	5080	2001	FORD	RANGER 4X2 P		30	1832	
	PSS010	5081		CHEV			30	3272	
Seattle			2002		TRAILBLAZER		30	589	
Seattle	PSS010	5087	1999	FORD	EXPLORER 4X4				
Seattle	PSS010	5088	1999	FORD	EXPLORER 4X4		30	2819	
Seattle	PSS010	5089	1998	FORD	EXPLORER 4X4		30	83	
Seattle	PSS010	5090	2003	CHEV	TRAILBLAZER		30	2798	
Seattle	PSS010	5096	2010	FORD	Ford Edge 4DR S		30	8000	2.1
Tacoma	PST055	59101	2002	Chevrolet	Astro	Gasoline	15	465	
Tacoma	PST055	5947	2000	Chevrolet	C1500	Gasoline	15	1110	74
Tacoma	PST055	59238	2001	Chevrolet	S10	Gasoline	20	1500	75
Tacoma	PST055	5730	1990	Chevrolet	Kodiak	Gasoline	15	1425	95
Tacoma	PST055	59725	2006	Chevrolet	Silverado	Gasoline	20	2160	108
Tacoma	PST055	59438	2004	Chevrolet	C1500	Gasoline	15	2025	135
Tacoma	PST055	5911	2000	Chevrolet	C1500	Gasoline	20	3260	163
Tacoma	PST055	5859	2000	Chevrolet	Silverado	Gasoline	15	2670	178
Tacoma	PST055	59540	2005	Chevrolet	C1500	Gasoline	15	2715	181
Tacoma	PST055	59441	2004	Chevrolet	C1500	Gasoline	15	4200	280
Tacoma	PST055	59549	2005	Chevrolet	C1500	Gasoline	15	4320	288
Tacoma	PST055	59832	2005	Chevrolet	Express G350	Gasoline	15	4590	306
Tacoma	PST055	59842	2007	Ford	Express G350	Gasoline	15	5085	339
Tacoma	PST055	59841	2008	Ford	Express G350	Gasoline	15	7140	476
Tacoma	PST055	59444	2004	Chevrolet	C1500	Gasoline	15	9030	602
Tacoma	PST055	59544	2005	Chevrolet	C1500	Gasoline	15	9030	602
Tacoma	PST055	59443	2004	Chevrolet	C1500	Gasoline	15	10800	720
Tacoma	PST055	59543	2005	Chevrolet	C1500	Gasoline	15	10800	720
Tacoma	PST055	59445	2004	Chevrolet	C1500	Gasoline	15	11205	747
Tacoma	PST055	59545	2005	Chevrolet	C1500	Gasoline	15	11205	747
Tacoma	PST055	59546	2005	Chevrolet	C1500	Gasoline	15	13485	
Tacoma	PST055	59547	2005	Chevrolet	C1500	Gasoline	15	13740	
Tacoma	PST055	59442	2004	Chevrolet	C1500	Gasoline	15	14205	947
Tacoma	PST055	59542	2005	Chevrolet	C1500	Gasoline	15	14205	
Tacoma	PST055	59548	2005	Chevrolet	C1500	Gasoline	15	15045	
- acoma	101033	37310	2000	JIIC VIOLE	01300	Casonine	1.5	13013	1003

	Terminal						Avg Speed	Mileage	
Port	ID	ID No.		MAKE	MODEL	ENGINE	(mph)	2011	2011
Tacoma	PST055	59724	2007	Chevrolet	Silverado	Gasoline	15	20025	1335
Tacoma	PST055	59550	2005	Chevrolet	C3000	Gasoline	15	28470	1898
Tacoma	PST055	59541	2005	Chevrolet	C1500	Gasoline	15	30390	2026
Tacoma	PST055	59608	2006	Chevrolet	Cororado	Gasoline	25	1181	
Tacoma	PST080	1G	1998	GMC	Flatbed	Gasoline		4800	
Tacoma	PST080	2G	2009	Chevy	Silverado 1500	Gasoline		14100	
Tacoma	PST120	#912	2000	Kenworth	T800B	Diesel	25	1500	
Tacoma	PST120	#915	2005	Kenworth	T800B	Diesel	25	1250	
Tacoma	PST120	#918	2008	Kenworth	T800B	Diesel	25	1500	
Tacoma	PST055	H71064	2004	Ford	F150	Gasoline	15	500	
Tacoma	PST055	H6872	1983	GMC	TC20903	Gasoline	15	500	
Tacoma	PST055	H71114	2002	Chevrolet	G2500	Gasoline	15	500	
Tacoma	PST055	H7514	1990	Ford	350	Gasoline	15	500	
Tacoma	PST030	PC53	1999	FORD	Taurus	Gasoline	10	1100	
Tacoma	PST030	PC55	2003	MERCURY	Sable	Gasoline	10	1238	
Tacoma	PST030	PG54	1996	CHEVROLET	3500HD	Gasoline	10	860	
Tacoma	PST030	PB41	1999	FORD-DIAMO		Gasoline	10	5366	
Tacoma	PST030	PB42	2005	FORD-DIAMO		Gasoline	10	1404	
Tacoma	PST030	PB43	1999	FORD-ELDOR		Gasoline	10	2294	
Tacoma	PST030	PSR56	1995	FORD	F-350XL	Gasoline	2	16	
Tacoma	PST030	PF67	1979	INTERNATIO		Gasoline	2	2	
Tacoma	PST030	PF68	2000	PETERBILT	NAL	Diesel	2	12	
Tacoma	PST030	PF69	2005	INTERNATIO	N 4200 / T466	Diesel	2	160	
		P64				Gasoline	10	398	
Tacoma	PST030		1991	ISUZUU	Pickup Truck				
Tacoma	PST030	P66	1991	ISUZU	Pickup Truck	Gasoline	10	472	
Tacoma	PST030	P68	1993	TOYOTA	Pickup Truck	Gasoline	10	417	
Tacoma	PST030	P-70	1993	TOYOTA	Pickup Truck	Gasoline	10	1100	
Tacoma	PST030	P-73	2001	DODGE	RAM 1500	Gasoline	10	1122	
Tacoma	PST030	P-74	2001	DODGE	RAM 1500	Gasoline	10	1001	
Tacoma	PST030	P-75	2001	DODGE	RAM 1500	Gasoline	10	2039	
Tacoma	PST030	P-76	2002	FORD	F-150	Gasoline	10	1766	
Tacoma	PST030	P-77	2002	FORD	F-150	Gasoline	10	2966	
Tacoma	PST030	P-78	2002	FORD	F-150	Gasoline	10	1452	
Tacoma	PST030	P-79	2003	FORD	F-150	Gasoline	10	2864	
Tacoma	PST030	P-80	2003	DODGE	RAM 1500	Gasoline	10	1042	
Tacoma	PST030	P-81	2003	DODGE	RAM 1500	Gasoline	10	3602	
Tacoma	PST030	P-82	2005	FORD	F-150	Gasoline	10	3265	
Tacoma	PST030	P-83	2005	FORD	F-150	Gasoline	10	1559	
Tacoma	PST030	P-84	2005	FORD	F-150	Gasoline	10	2573	
Tacoma	PST030	P-85	2005	FORD	F-150	Gasoline	10	2927	
Tacoma	PST030	P-86	2003	FORD	F-150	Gasoline	10	4734	
Tacoma	PST030	P-87	2002	FORD	F-150	Gasoline	10	670	
Tacoma	PST030	P-88	2004	FORD	F-150	Gasoline	10	3437	
Tacoma	PST030	P-89	2000	FORD	F-150	Gasoline	10	4434	
Tacoma	PST030	P-90	2008	FORD	F-150	Gasoline	10	1877	
Tacoma	PST130	1N	2008	FORD	F450	Diesel		30000	
Tacoma	PST130	2N	2010	FORD	E350	Gasoline		10000	
Tacoma	PST130	3N	1979	GRUMAN	G350	Gasoline		5000	
Tacoma	PST130	4N	2004	GMC	E350	Gasoline		5000	
Tacoma	PST130	5N	2003	FORD	F350	Gasoline		1000	
Tacoma	PST070	14094	1998	Ford Eldorado S		Gasoline	15	1113	
Tacoma	PST070	15096	2000	Ford Ranger	Ranger	Gasoline	15	1118	

	Terminal						Avg Speed	Mileage	Hours
Port	ID	ID No.	YEAR	MAKE	MODEL	ENGINE	(mph)	2011	2011
Tacoma	PST070	15172	2000	Ford Ranger	Ranger	Gasoline	15	534	
Tacoma	PST070	15175	2000	Ford Ranger	Ranger	Gasoline	15	455	
Tacoma	PST070	15343	2004	Ford Ranger	Ranger	Gasoline	15	235	
Tacoma	PST070	15426	2007	GMC Sierra	Sierra	Gasoline	15	1016	
Tacoma	PST070	15479	2007	GMC Sierra	Sierra	Gasoline	15	935	
Tacoma	PST070	15525	2003	Ford -150	F-150	Gasoline	15	302	
Tacoma	PST070	15548	1989	Dodge	Dakota	Gasoline	15	75	
Гасота	PST070	15550	1990	Dodge	Dakota	Gasoline	15	75	
Tacoma	PST070	15553	1989	Dodge	Dakota	Gasoline	15	452	
Гасота	PST070	15561	2003	Forf F-150	F-150	Gasoline	15	510	
Гасота	PST070	17024	1998	GMC	Savana	Gasoline	15	1108	
Гасота	PST070	18011	1991	Ford F-350	F-350	Gasoline	15	107	
Tacoma	PST020	J01	2004	Ford	F350	Gasoline	15	836	
Гасота	PST020	J02	2004	Toyota	Tacoma	Gasoline	10	243	
Гасота	PST020	J02 J11	2005	Ford	F250	Gasoline	5	175	
Гасота Гасота	PST020	J11 J12	2005	Ford	F250	Gasoline	5	2539	
Tacoma Tacoma	PST020	J12 J13	2005	Ford	F250	Gasoline	5	2400	
Гасопіа Гасота	PST020	J13 J51	2005	Ford		Gasoline	15	2769	
	PST020 PST020				Ranger		15	2769	
Tacoma		J52	2005	Ford	Ranger	Gasoline			
Tacoma	PST020	J53	2005	Ford	Ranger	Gasoline	15	1607	
Гасота	PST020	J54	2005	Ford	Ranger	Gasoline	15	1915	
Гасота	PST020	J55	2005	Ford	Ranger	Gasoline	15	1122	
Гасота	PST020	J56	2005	Ford	Ranger	Gasoline	15	868	
Гасота	PST020	J57	2005	Ford	Ranger	Gasoline	15	1264	
Гасота	PST020	J58	2005	Ford	Ranger	Gasoline	15	1249	
Гасота	PST020	J59	2005	Ford	Ranger	Gasoline	15	4967	
Tacoma	PST020	J60	2005	Ford	Ranger	Gasoline	15	1355	
Гасота	PST020	J61	2005	Ford	Ranger	Gasoline	15	2678	
Гасота	PST020	J62	2005	Ford	Ranger	Gasoline	15	2241	
Tacoma	PST020	J63	2005	Ford	Ranger	Gasoline	15	3037	
Tacoma	PST020	J64	2005	Ford	Ranger	Gasoline	15	1121	
Гасота	PST020	J65	2005	Ford	Ranger	Gasoline	15	929	
Гасота	PST020	J66	2005	Ford	Ranger	Gasoline	15	1303	
Гасота	PST020	J67	2005	Ford	Ranger	Gasoline	15	822	
Tacoma	PST020	J68	2005	Ford	Ranger	Gasoline	15	2529	
Tacoma	PST020	J69	2005	Ford	Ranger	Gasoline	15	1077	
Tacoma	PST020	J70	2003	Ford	Ranger	Gasoline	15	1463	
Гасота	PST020	J71	2002	Ford	Ranger	Gasoline	15	125	
Гасота	PST020	J72	2002	Chevrolet	S10	Gasoline	15	613	
Tacoma	PST020	J73	2003	Ford	Ranger	Gasoline	15	2784	
Tacoma	PST020	J74	2000	Chevrolet	S10	Gasoline	15	447	
Гасота	PST020	U01	2004	Acroft	Ford E350 Cutaway		15	6865	
Tacoma	PST020	U02	2004	Acroft	Ford450 (perimeter s		15	3536	
Гасота	PST020	O01	2005	Pacific Tank	5000 gal Fuel Truck		5	538	
Tacoma Tacoma	PST020	O02	2005	Pacific Tank	2500 gal Fuel Truck		5	453	
Гасоппа Гасота	PST1020 PST100	1P	2003	Ford	~	Gasoline	15	6000	
					1/2 Ton				
Tacoma	PST100	2P	2000	Chevrolet	1/2 Ton	Gasoline	15 15	4800	
Tacoma	PST100	3P	2005	Toyota	1/2 Ton	Gasoline	15	840 5400	
Гасота	PST100	4P	2004	Toyota	1/2 Ton	Gasoline	15	5400	
Гасота	PST100	5P	2005	Toyota	1/2 Ton	Gasoline	15	2400	
Гасота	PST010	3237	1979	Chevrolet	C60	Gasoline	15	321	
Tacoma	PST010	3369	1995	Ford	F250XL	Gasoline	15	1768	

	Terminal						Avg Speed	Mileage	Hours
Port	ID	ID No.	YEAR	MAKE	MODEL	ENGINE	(mph)	2011	2011
Tacoma	PST010	3371	1995	Ford	F350XL FLATBED	Gasoline	15	2027	
Tacoma	PST010	3375	1996	Ford	F250HD	Gasoline	15	1872	
Tacoma	PST010	3380	1996	Ford	F250 TRANS(OVEF	R Gasoline	15	2534	
Tacoma	PST010	3382	1997	Ford	F250	Gasoline	15	7431	
Tacoma	PST010	3383	1997	Ford	F250	Gasoline	15	4760	
Tacoma	PST010	3387	1997	Chevrolet	CM11006 ASTRO	Gasoline	15	2019	
Tacoma	PST010	3405	1999	Dodge	RAM BR2L62 5.9L	I Gasoline	15	1299	
Tacoma	PST010	3411	2000	Ford	F56 SERVICEBDY	Gasoline	15	1339	
Tacoma	PST010	3430	1994	Chevrolet	1500C Cheyenne 199	Gasoline .	15	2168	
Tacoma	PST010	3431	1994	Chevrolet	1500C CHEYENNE	E Gasoline	15	1027	
Tacoma	PST010	3432	1995	Chevrolet	C3500 350 CID	Gasoline	15	477	
Tacoma	PST010	10169	1998	Chevrolet	USED, meter 68417	l Gasoline	15	1830	
Tacoma	PST010	10333	2005	Ford	ESCAPE 4x2 U95	Gasoline	15	1259	
Tacoma	PST010	10436	1998	Dodge	Ram 1500 4WD	Gasoline	15	1291	
Tacoma	PST010	10627	1999	Ford	Ranger	Gasoline	15	618	
Tacoma	PST010	10643	2000	Ford	EXPLORER	Gasoline	15	2501	
Tacoma	PST010	10695	2007	Ford	F250XL	Gasoline	15	4724	
Tacoma	PST010	10936	2008	Miles	ZX40ST	Gasoline	15	10	
Tacoma	PST010	10926	2008	Ford	F350	Gasoline	15	2458	
Tacoma	PST010	11249	2010	Ford	XLT CARGO VAN		15	3163	
Tacoma	PST010	11250	2010	Ford	XLT CARGO VAN		15	1631	
Tacoma	PST010	3377	1996	Ford	F450 SUPERDUTY		15	783	
Tacoma	PST010	3388	1997	Ford	F350	Gasoline	15	7077	
Tacoma	PST010	3395	1998	Dodge	RAM PU BR2L62	Gasoline	15	3539	
Tacoma	PST010	3398	1998	Dodge	RAM PU	Gasoline	15	11373	
Tacoma	PST010	3399	1998	DODGE	RAM PU	Gasoline	15	2566	
Tacoma	PST010	3402	1998	Chevrolet	CP30842	Gasoline	15	6992	
Tacoma	PST010	3404	1999	Chevrolet	CG31503	Gasoline	15	3458	
Tacoma	PST010	3409	1999	Chevrolet		Gasoline	15	9671	
Tacoma	PST010	3410	2000	Chevrolet	CC31403 C3300111	Gasoline	15	9472	
Tacoma	PST010	3412	2000	Chevrolet	ASTROVAN	Gasoline	15	4034	
Tacoma	PST010	3414	2000	Chevrolet	G3500 EXPRESS V.		15	2669	
Tacoma	PST010	3421	2000	Dodge	RAM 2500 BR2L62		15	4284	
Tacoma	PST010	10168	1996	Chevrolet	G3500 P SERIES	Gasoline	15	4575	
Tacoma	PST010	10108	1990	Chevrolet	USED, meter 100,86		15	5835	
Tacoma	PST010	10179	1992	Chevrolet	P30 Multistop WAL		15	3594	
	PST010 PST010	10245	2000			Gasoline	15	2671	
Tacoma	PST010 PST010	10437		Jeep	Cherokee				
Tacoma			2001	Ford	F-150/7700 HD	Propane	15	2267	
Tacoma	PST010	10529	1992	GMC	3500 2WD	Gasoline	15	151	
Tacoma	PST010	10689	2004	Ford	E250 C/V	Gasoline	15	4987	
Tacoma	PST010	10749	2008	Ford	F350	Gasoline	15	6864	
Tacoma	PST010	10823	2008	Ford	F350	Gasoline	15	7387	
Tacoma	PST010	10925	2008	Ford	EXPLORER XL	Gasoline	15	2376	
Tacoma	PST010	10934	2008	Ford	F250	Gasoline	15	9120	
Tacoma	PST010	10937	2008	Ford	F350	Gasoline	15	9538	
Tacoma	PST010	10938	2008	Ford	F250XL	Gasoline	15	5296	
Tacoma	PST010	11248	2010	Ford	XLT CARGO VAN		15	6769	
Tacoma	PST010	10935	2008	Miles	ZX40S	Gasoline	15	88	
Tacoma	PST010	3396	1998	DODGE	RAM PU 2500	Gasoline	15	1954	
Tacoma	PST010	3424	2002	GMC	SONOMA TS10653		15	2224	
Tacoma	PST010	3400	1998	DODGE	D20	Gasoline	15	2198	
Tacoma	PST010	3352	1992	Isuzu	S14	Gasoline	15	229	

	Terminal						Avg Speed	Mileage Hours
Port	ID	ID No.	YEAR	MAKE	MODEL	ENGINE	(mph)	2011 2011
Tacoma	PST010	3357	1993	Ford	RANGER139166	Gasoline	15	761
Tacoma	PST010	3362	1994	Chevrolet	CC20903	Gasoline	15	427
Tacoma	PST010	3385	1997	Chevrolet	DBL CAB C3500	Gasoline	15	1438
Tacoma	PST010	3423	1994	Chevrolet	C2500 350 2WD	Gasoline	15	4343
Tacoma	PST010	10103	1996	DODGE	DODGE 1500	Gasoline	15	1595
Tacoma	PST010	3374	1996	Ford	F250HD	Gasoline	15	1043
Tacoma	PST010	10516	2002	Mitsubishi	Sport XLS	Gasoline	15	2189
Tacoma	PST010	10101	1998	Ford	Ranger 98 XCab	Gasoline	15	1401
Tacoma	PST010	3317	1988	Isuzu	S14 2.6L	Gasoline	15	297
Tacoma	PST010	3425	2002	GMC	SONOMA TS10653	Gasoline	15	515
Tacoma	PST010	3356	1993	Ford	RANGER 136514	Gasoline	15	335
Tacoma	PST010	3419	1994	Chevrolet	K1PU 1500S	Gasoline	15	1859
Tacoma	PST010	3422	1994	Jeep	CHEROKEE	Gasoline	15	3441
Tacoma	PST010	10657	1997	Chevrolet	K2500 4WD	Gasoline	15	2072
Tacoma	PST010	10658	2002	Ford	RANGER EXT-CAI		15	7059
Tacoma	PST010	10773	2001	Ford	Taurus	Gasoline	15	4132
Tacoma	PST010	11259	2005	Ford	F250 2WD	Gasoline	15	6729
Tacoma	PST010	11318	2006	Ford	F250 2WD	Gasoline	15	2964
Tacoma	PST010	10555	2006	Ford	ESCAPE	Gasoline	15	3090
Tacoma	PST010	10716	2006	Ford	ESCAPE	Gasoline	15	3124
Tacoma	PST010	3397	1998	GMC	C15 FULL EXT CAI		15	1983
Tacoma	PST010	3427	2002	Ford	EXPLORER	Gasoline	15	545
Tacoma	PST010	3434	2003	Ford	Explorer SUV	Gasoline	15	715
Tacoma	PST010	10093	2003	Ford	Explorer SUV	Gasoline	15	777
Tacoma	PST010	10260	2005	Toyota	Prius	Gasoline	15	4310
Tacoma	PST010	10394	2005	Ford	ESCAPE 4x2 U95	Gasoline	15	604
Tacoma	PST010	10435	2005	Ford	Escape Hybrid 2WD		15	1614
Tacoma	PST010	10662	2007	Ford	ESC4D	Gasoline	15	3625
Tacoma	PST010	10807	2007	Ford	F-150 PICKUP SUP-		15	6284
Tacoma	PST010	10807	2008	Ford	F-15 PICKUP SUP-0		15	4886
Tacoma	PST010	10862	2000	Ford	EXPLORER XL	Gasoline	15	228
Tacoma	PST010	3413	2000	Chevrolet	CL11006 VAN,ASTI		15	641
Tacoma	PST010 PST010	10645	2006	Kia	SEDONA LX	Gasoline	15	3115
Tacoma	PST010 PST010	10863	2000	Ford		Gasoline	15	2901
	PST010 PST010			Ford	Escape SP		15	
Tacoma		10331	2005		103 Escape Hybrid	Gasoline		4282
Tacoma	PST010	10674	2000	Chevrolet	C3500	Gasoline	15	1863
Tacoma	PST010	3379	1996	Dodge	NEON HIGHLINE		15	303
Tacoma	PST010	3381	1997	Ford	CLUB WAGON 15 I		15	955
Tacoma	PST010	3426	2002	Kia	SEDONA	Gasoline	15	2730
Tacoma	PST010	11021	2009	Ford	F150 4 X 4 CREW C		15	20552
Tacoma	PST010	10094	2003	Ford	Explorer SUV	Gasoline	15	26816
Tacoma	PST010	3433	2003	Ford	Explorer	Gasoline	15	27711
Tacoma	PST010	10429	2005	Ford	Crown Victoria Inter		15	5808
Tacoma	PST010	10752	2007	Ford	EXPLORER U73	Gasoline	15	12276
Tacoma	PST010	10753	2007	Ford	EXPLORER U73	Gasoline	15	8678
Tacoma	PST010	10337	2005	Ford	EXPLORER	Gasoline	15	7620
Tacoma	PST010	3435	2003	Chevrolet	K15 EXT CAB PICE		15	4284
Tacoma	PST040	21	2004	FORD	VAN	Diesel	5	600
Tacoma	PST040	22	1985	FORD	LN8000	Diesel	5	600
Tacoma	PST040	23	1995	FORD	TANKER	Diesel	5	600
Tacoma	PST040	27	1985	GMC	P-30 VAN	Diesel	5	600
Tacoma	PST040	28	1985	GMC	P-30 VAN	Diesel	5	600

	Terminal						Avg Speed	Mileage	Hours
Port	ID	ID No.	YEAR	MAKE	MODEL	ENGINE	(mph)	2011	2011
Tacoma	PST040	30	1985	GMC	P-30 VAN	Diesel	5	600	
Tacoma	PST040	35	1987	GMC	P-30 VAN	Diesel	5	600	
Tacoma	PST040	48	1984	FORD	VAN	Diesel	5	600	
Tacoma	PST040	49	2002	FORD	VAN	Diesel	5	600	
Tacoma	PST040	54	1978	GMC	P-30 VAN	Diesel	5	600	
Tacoma	PST040	55	1978	GMC	P-30 VAN	Diesel	5	600	
Tacoma	PST040	56	1978	GMC	P-30 VAN	Diesel	5	600	
Tacoma	PST040	68	1985	CHEV	P-30 VAN	Diesel	5	600	
Tacoma	PST040	69	1985	CHEV	P-30 VAN	Diesel	5	600	
Tacoma	PST040	70	1985	CHEV	P-30 VAN	Diesel	5	600	
Tacoma	PST040	74	1984	CHEV	P-30 VAN	Diesel	5	600	
Tacoma	PST040	75	1984	CHEV	P-30 VAN	Diesel	5	600	
Tacoma	PST040	77	1984	CHEV	P-30 VAN	Diesel	5	600	
Tacoma	PST040	SSA2	1994	DODGE	RAM	Gasoline	5	600	
Tacoma	PST040	SSA3	1991	CHEV	SPORT VAN	Gasoline	5	600	
Tacoma	PST040	SSA6	1977	GMC	VAN	Gasoline	5	600	
Tacoma	PST060	832	1999	Dodge	Terminal Passenger		15	540	
Tacoma	PST060	851	2006	Chevrolet	Pickup Truck 1/2 To		15	1875	125
Tacoma	PST060	816	1999	Dodge	Pickup Truck 1/2 To		15	2340	
Tacoma	PST060	860	2008	Chevrolet	Pickup Truck 1/2 To		15	2490	
Tacoma	PST060	846	2005	Chevrolet	Pickup Truck 1/2 To		15	4290	
Tacoma	PST060	858	2008	Chevrolet	Pickup Truck 1/2 To		15	4410	
Tacoma	PST060	830	1999	Chevrolet	Step Van 16 Foot	Diesel	15	5640	
Tacoma	PST060	828	1999	Chevrolet	Step Van 14 Foot	Diesel	15	7905	527
Tacoma	PST060	825	1999	Mack	Fuel Truck	Diesel	15	9180	
Tacoma	PST060	848	2005	Chevrolet	Pickup Truck 3/4 To		15	10080	
Tacoma	PST060	824	1999	Dodge	Pickup Truck 1 Ton		15	10200	
Tacoma	PST060	831	1999	Chevrolet	Step Van 16 Foot	Diesel	15	10980	
Tacoma	PST060	866	2001	Freightliner	Step Van 16 Foot	Diesel	15	11220	
Tacoma	PST060	845	2005	Chevrolet	Pickup Truck 1/2 To		15	12645	
Tacoma	PST060	834	2004	Chevrolet	Pickup Truck 1/2 To		15	12930	
Tacoma	PST060	812	1999	Dodge	Pickup Truck 1/2 To		15	14070	
Tacoma	PST060	801	1999	Dodge	Pickup Truck 1/2 To		15	14265	951
Tacoma	PST060	865	2001	Freightliner	Step Van 16 Foot	Diesel	15	14385	959
Tacoma	PST060	826	1999	Dodge	Pickup Truck - Dako		15	14760	984
Tacoma	PST060	840	2004	Chevrolet	Pickup Truck 1/2 To		15	15120	
Tacoma	PST060 PST060	857	2004	Chevrolet			15	16125	1008
					Pickup Truck 3/4 To				
Tacoma	PST060	847	2005	Chevrolet	Pickup Truck 1/2 To		15	16425	1095
Tacoma	PST060	850	2006	Chevrolet	Pickup Truck 1/2 To		15	17010	
Tacoma	PST060	869	2006	Chevrolet	Pickup Truck 1/2 To		15	18810	
Tacoma	PST060	856	2006	Chevrolet	Pickup Truck 3/4 To		15	19365	1291
Tacoma	PST060	844	2005	Chevrolet	Pickup Truck 1/2 To		15	19605	1307
Tacoma	PST060	861	2008	Chevrolet	Pickup Truck 1/2 To		15	20100	
Tacoma	PST060	839	2004	Chevrolet	Pickup Truck 1/2 To		15	20670	
Tacoma	PST060	868	2006	Chevrolet	Pickup Truck 1/2 To		15	20985	
Tacoma	PST060	855	2006	Chevrolet	Pickup Truck 1/2 To		15	21375	
Tacoma	PST060	867	2001	Freightliner	Step Van 16 Foot	Diesel	15	22425	
Tacoma	PST060	849	2005	Chevrolet	Pickup Truck 3/4 To		15	22860	
Tacoma	PST060	843	2005	Chevrolet	Pickup Truck 1/2 To		15	23145	
Tacoma	PST060	842	2005	Chevrolet	Pickup Truck 1/2 To		15	23220	
Tacoma	PST060	841	2005	Chevrolet	Pickup Truck 1/2 To		15	24645	
Tacoma	PST060	859	2008	Chevrolet	Pickup Truck 1/2 To	o Gasoline	15	25215	1681

							Avg		
	Terminal						Speed	Mileage	Hours
Port	ID	ID No.	YEAR	MAKE	MODEL	ENGINE	(mph)	2011	2011
Tacoma	PST060	829	1999	Chevrolet	Step Van 12 Foot	Gasoline	15	26460	1764
Tacoma	PST060	836	2004	Chevrolet	Pickup Truck 1/2 T	To Gasoline	15	26955	1797
Tacoma	PST060	853	2006	Chevrolet	Pickup Truck 1/2 T	To Gasoline	15	27540	1836
Tacoma	PST060	835	2004	Chevrolet	Pickup Truck 1/2 T	To Gasoline	15	29685	1979
Tacoma	PST060	833	1999	Chevrolet	Step Van 12 Foot	Gasoline	15	33570	2238
Tacoma	PST060	864	2008	Workhorse	Step Van 12 Foot	Gasoline	15	37290	2486
Tacoma	PST060	852	2006	Chevrolet	Pickup Truck 1/2 T	To Gasoline	15	38040	2536
Tacoma	PST060	854	2006	Chevrolet	Pickup Truck 1/2 T	To Gasoline	15	38610	2574
Tacoma	PST060	838	2004	Chevrolet	Pickup Truck 1/2 T	To Gasoline	15	39285	2619
Tacoma	PST060	827	1999	Chevrolet	Step Van 14 Foot	Diesel	15	40515	2701
Tacoma	PST060	862	2008	Chevrolet	Pickup Truck 1/2 T	To Gasoline	15	40530	2702
Tacoma	PST060	863	2008	Workhorse	Step Van 12 Foot	Gasoline	15	40665	2711
Seattle	PSS020			Car	Passenger cars	Gasoline	15	11813	
Seattle	PSS020			Minivan		Gasoline	15	60	